1
|
Fonseca L, Ribeiro M, Schultz J, Borges NA, Cardozo L, Leal VO, Ribeiro-Alves M, Paiva BR, Leite PEC, Sanz CL, Kussi F, Nakao LS, Rosado A, Stenvinkel P, Mafra D. Effects of Propolis Supplementation on Gut Microbiota and Uremic Toxin Profiles of Patients Undergoing Hemodialysis. Toxins (Basel) 2024; 16:416. [PMID: 39453192 PMCID: PMC11511383 DOI: 10.3390/toxins16100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Propolis possesses many bioactive compounds that could modulate the gut microbiota and reduce the production of uremic toxins in patients with chronic kidney disease (CKD) undergoing hemodialysis (HD). This clinical trial aimed to evaluate the effects of propolis on the gut microbiota profile and uremic toxin plasma levels in HD patients. These are secondary analyses from a previous double-blind, randomized clinical study, with 42 patients divided into two groups: the placebo and propolis group received 400 mg of green propolis extract/day for eight weeks. Indole-3 acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) plasma levels were evaluated by reversed-phase liquid chromatography, and cytokines were investigated using the multiplex assay (Bio-Plex Magpix®). The fecal microbiota composition was analyzed in a subgroup of patients (n = 6) using a commercial kit for fecal DNA extraction. The V4 region of the 16S rRNA gene was then amplified by the polymerase chain reaction (PCR) using short-read sequencing on the Illumina NovaSeq PE250 platform in a subgroup. Forty-one patients completed the study, 20 in the placebo group and 21 in the propolis group. There was a positive correlation between IAA and TNF-α (r = 0.53, p = 0.01), IL-2 (r = 0.66, p = 0.002), and between pCS and IL-7 (r = 0.46, p = 0.04) at the baseline. No significant changes were observed in the values of uremic toxins after the intervention. Despite not being significant, microbial evenness and observed richness increased following the propolis intervention. Counts of the Fusobacteria species showed a positive correlation with IS, while counts of Firmicutes, Lentisphaerae, and Proteobacteria phyla were negatively correlated with IS. Two months of propolis supplementation did not reduce the plasma levels of uremic toxins (IAA, IS, and p-CS) or change the fecal microbiota.
Collapse
Affiliation(s)
- Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Natália A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Ludmila Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Viviane O. Leal
- Nutrition Division, Pedro Ernesto University Hospital (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro 20550-170, Brazil;
| | - Bruna R. Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Paulo E. C. Leite
- Graduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil;
| | - Carmen L. Sanz
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Fernanda Kussi
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Lia S. Nakao
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Alexandre Rosado
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| |
Collapse
|
2
|
Mansouri F, Shateri Z, Jahromi SE, Mahmudi-Zadeh M, Nouri M, Babajafari S. Association between pro-vegetarian dietary pattern and the risk of protein-energy wasting and sarcopenia in patients with chronic kidney disease. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:110. [PMID: 39085942 PMCID: PMC11293009 DOI: 10.1186/s41043-024-00606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Chronic kidney disease (CKD) is characterized by structural abnormalities in nephrons, loss of functional nephrons, and impaired renal excretory function. A pro-vegetarian dietary pattern (PDP) is a gradual and progressive approach to vegetarianism. The current study aimed to assess the association between PDP and the odds of protein-energy wasting (PEW) and sarcopenia in patients with CKD. METHODS The present cross-sectional study was conducted on kidney disease patients (n = 109) referred to two clinics in Shiraz, Iran. The diagnosis of sarcopenia and PEW was made according to the guidelines of the Asian Working Group for Sarcopenia (AWGS) and the International Society of Renal Nutrition and Metabolism (ISRNM) criteria, respectively. The participants' dietary intake was evaluated using a 168-item semi-quantitative food frequency questionnaire (FFQ). For PDP index calculation, plant and animal food sources were categorized into 12 subgroups. The association between sarcopenia and PEW with PDP was evaluated using logistic regression. RESULTS The PDP was significantly associated with a lower risk of PEW in the second tertile compared to the first in the crude model (odds ratio (OR) = 0.225; confidence interval (CI): 0.055-0.915; p-value = 0.037). After adjusting for potential confounders, lower significant odds of PEW were observed in the second and last tertiles of PDP compared to the first (T2: OR = 0.194; CI: 0.039-0.962; p-value = 0.045, and T3: OR = 0.168; CI: 0.030-0.950; p-value = 0.044). In contrast, no significant relationship was observed between PDP and the odds of sarcopenia (p-value ˃ 0.05). CONCLUSIONS Overall, the findings indicated that greater adherence to PDP was negatively associated with the odds of PEW. Additionally, the results showed no association between PDP and the odds of sarcopenia. Further studies are needed to support these findings.
Collapse
Affiliation(s)
- Fatemeh Mansouri
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zainab Shateri
- Department of Nutrition and Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrokh Ezzatzadegan Jahromi
- Department of Medicine, School of Medicine, Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Mahmudi-Zadeh
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Nouri
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Siavash Babajafari
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Nutrition research center, Department of Clinical Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Zhang CY, Yue DJ, Wang D, Wu FF. Effects of Bifidobacterium bifidum tetragonum tablets and Jin Gui Ren Qi Pill on intestinal flora and metabolism in patients with diabetic kidney disease. Front Pharmacol 2024; 15:1346168. [PMID: 39139646 PMCID: PMC11319841 DOI: 10.3389/fphar.2024.1346168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/05/2024] [Indexed: 08/15/2024] Open
Abstract
Objective To investigate the effects of Bifidobacterium bifidum tetragonum tablets and Jin Gui Ren Qi Pill on intestinal flora and metabolism in patients with diabetic kidney disease. Methods In the study conducted at Heping Hospital of Changzhi Medical College from March 2021 to December 2022, 30 cases of patients diagnosed with diabetic nephropathy were meticulously selected as study subjects. Employing a double-blind randomized table method, these patients were randomly allocated into three groups: the control group (n = 10), the Bifidobacterium bifidum tetragonum tablets group (n = 10), and the Jin Gui Ren Qi Pill group (n = 10). The control group received standard western medical treatments for diabetic nephropathy, including serum glucose, blood lipids, blood pressure management, and other conventional therapies. In addition to the standard treatments, the Bifidobacterium bifidum tetragonum tablets group received Bifidobacterium bifidum tetragonum tablets, while the Jin Gui Ren Qi Pill group received Jin Gui Ren Qi Pill. Before and after a 4-week treatment period, various baseline parameters were assessed, including fasting blood glucose, 2-h postprandial blood glucose, triglycerides, serum total cholesterol, serum low-density lipoprotein cholesterol, serum high-density lipoprotein cholesterol, random urine microalbumin/creatinine ratio (ACR), blood creatinine (SCr), and traditional Chinese medicine evidence scores. Stool specimens were collected from all three groups before and after treatment for 16S rDNA high-throughput sequencing, followed by comprehensive analyses including OUT clustering, Alpha diversity, Beta diversity, species composition analysis, LEfSe analysis, and KEGG function prediction. Spearman correlation analysis was employed to explore the relationship between intestinal flora and clinical indicators. Furthermore, fasting peripheral venous blood was collected from patients in the Bifidobacterium tetrapunctate tablets group and the control group before and after intervention to measure the optical density values of tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interleukin-6 (IL-6) using the Beijing Biolite ELISA kit. This study was conducted with the approval of the Ethics Committee of Changzhi Medical College. Results 1. The 2hPBG, total cholesterol and LDL levels were observed among patients with diabetic kidney disease (DKD) across all groups: the Jin Gui Ren Qi Pill group, the Bifidobacterium bifidum tetragonum tablets group, and the control group (p < 0.05). 2. The Jin Gui Ren Qi Pill demonstrated superior efficacy in alleviating TCM symptoms and reducing the ACR compared to both the Bifidobacterium bifidum tetragonum tablets group and the control group. Conversely, Bifidobacterium bifidum tetragonum tablets exhibited a more pronounced reduction in TC levels compared to both the Jin Gui Ren Qi Pill and control groups. Notably, Bifidobacterium bifidum tetragonum tablets effectively decreased (IL-2) levels in patients with DKD. 3. Bifidobacterium bifidum tetragonum tablets also demonstrated efficacy in reducing IL-2 levels in DKD patients. 4. Analysis of intestinal microorganism abundance and diversity before and after the intervention, as well as among the three groups, revealed no significant alterations. Similarly, comparisons of ACE, Chao, Simpson, and Shannon indices showed no statistically significant differences (p > 0.05). 5. Qualitative analysis of intestinal microorganisms before and after intervention, as well as among the three groups, indicated no significant differences. Anosim test results also did not reveal qualitative distinctions (Anosim test R = 0.021, p = 0.215). 6. LEfSe analysis unveiled a noteworthy increase in Prevotella_7 abundance within the Jin Gui Ren Qi Pill group post-intervention (p < 0.05). 7. Furthermore, Chinese medicine evidence scores, body mass index, TC, and LDL levels correlated positively with the relative abundance of Tyzzerella_3 bacterial flora. Conversely, age, disease duration, and 2hPBG correlated positively with the relative abundance of Christensenellaceae_R_7 flora, while TC and LDL levels displayed a negative correlation with the relative abundance of Christensenellaceae_R_7 flora. Conclusion The combination of Jin Gui Ren Qi Pill with western medical treatment exhibited superior efficacy in ameliorating clinical symptoms and reducing the ACR in patients with DKD compared to western medical treatment alone. Furthermore, this combination therapy led to an increase in the abundance of Prevotella_7 within the intestinal flora of patients, suggesting a potential enhancement in carbohydrate metabolism by the intestinal microbiota. On the other hand, Bifidobacterium bifidum tetragonum tablets bacterial tablets combined with western medical treatment demonstrated enhanced efficacy in reducing TC levels in DKD patients compared to western medical treatment alone. Additionally, this combination therapy effectively reduced the levels of IL-2 in DKD patients, thus mitigating inflammation in these individuals.
Collapse
Affiliation(s)
- Cheng-Yu Zhang
- Department of Endocrinology and Metabolism, The Fifth People’s Hospital of Chongqing, Chongqing, China
| | - Dong-jie Yue
- Zhengzhou Second People’s Hospital, Zhengzhou City, Henan Province, China
| | - Di Wang
- Department of Endocrinology and Metabolism, Binzhou People's Hospital, Binzhou City, Shandong Province, China
| | - Fei-fei Wu
- Department of Endocrinology and Metabolism, Heping Hospital Affifiliated to Changzhi Medical College, Changzhi, Shanxi Province, China
| |
Collapse
|
4
|
Patel MJ, Emerenini C, Wang X, Bottiglieri T, Kitzman H. Metabolomic and Physiological Effects of a Cardiorenal Protective Diet Intervention in African American Adults with Chronic Kidney Disease. Metabolites 2024; 14:300. [PMID: 38921435 PMCID: PMC11205948 DOI: 10.3390/metabo14060300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Chronic kidney disease (CKD) impacts 14% of adults in the United States, and African American (AA) individuals are disproportionately affected, with more than 3 times higher risk of kidney failure as compared to White individuals. This study evaluated the effects of base-producing fruit and vegetables (FVs) on cardiorenal outcomes in AA persons with CKD and hypertension (HTN) in a low socioeconomic area. The "Cardiorenal Protective Diet" prospective randomized trial evaluated the effects of a 6-week, community-based FV intervention compared to a waitlist control (WL) in 91 AA adults (age = 58.3 ± 10.1 years, 66% female, 48% income ≤ USD 25K). Biometric and metabolomic variables were collected at baseline and 6 weeks post-intervention. The change in health outcomes for both groups was statistically insignificant (p > 0.05), though small reductions in albumin to creatinine ratio, body mass index, total cholesterol, and systolic blood pressure were observed in the FV group. Metabolomic profiling identified key markers (p < 0.05), including C3, C5, 1-Met-His, kynurenine, PC ae 38:5, and choline, indicating kidney function decline in the WL group. Overall, delivering a directed cardiorenal protective diet intervention improved cardiorenal outcomes in AA adults with CKD and HTN. Additionally, metabolomic profiling may serve as a prognostic technique for the early identification of biomarkers as indicators for worsening CKD and increased CVD risk.
Collapse
Affiliation(s)
- Meera J. Patel
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Chiamaka Emerenini
- College of Natural Sciences, University of Texas at Austin, Austin, TX 78712, USA;
| | - Xuan Wang
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA; (X.W.); (T.B.)
| | - Heather Kitzman
- Peter J. O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
5
|
Lv D, Zheng W, Zhang Z, Lin Z, Wu K, Liu H, Liao X, Sun Y. Microbial imidazole propionate affects glomerular filtration rate in patients with diabetic nephropathy through association with HSP90α. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119703. [PMID: 38453032 DOI: 10.1016/j.bbamcr.2024.119703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/09/2024]
Abstract
Imidazole propionate (ImP) is a detrimental metabolite produced by the fermentation of histidine intermediates via the intestinal flora. Here, the untargeted metabolite analysis of plasma metabolites from patients with diabetic nephropathy (DN), in combination with the Human Metabolome Database, revealed significantly increased levels of ImP in patients with DN, with a positive correlation with patients' blood creatinine concentration and urinary albumin-to-creatinine ratio, and a negative correlation with the glomerular filtration rate. RNA-seq was applied to detect the effects of ImP on renal tissue transcriptome in mice with DN. It demonstrated that ImP exacerbated renal injury in mice with DN and promoted renal tubular epithelial-mesenchymal transition (EMT), leading to renal mesenchymal fibrosis and renal impairment. Furthermore, ImP was found to directly target HAP90α and activate the PI3K-Akt signalling pathway, which is involved in EMT, by the drug affinity response target stability method. The findings showed that ImP may provide a novel target for DN quality, as it can directly bind to and activate HSP90, thereby facilitating the development of DN while acting as a potential indicator for the clinical diagnosis of DN.
Collapse
Affiliation(s)
- Dan Lv
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Wenhan Zheng
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zheng Zhang
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Ziyue Lin
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Keqian Wu
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Handeng Liu
- Laboratory of Tissue and Cell Biology, Experimental Teaching Center, Chongqing Medical University, Chongqing 400016, China
| | - Xiaohui Liao
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Yan Sun
- Department of Neuroscience Research Center, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
6
|
Sánchez-Ospina D, Mas-Fontao S, Gracia-Iguacel C, Avello A, González de Rivera M, Mujika-Marticorena M, Gonzalez-Parra E. Displacing the Burden: A Review of Protein-Bound Uremic Toxin Clearance Strategies in Chronic Kidney Disease. J Clin Med 2024; 13:1428. [PMID: 38592263 PMCID: PMC10934686 DOI: 10.3390/jcm13051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/10/2024] Open
Abstract
Uremic toxins (UTs), particularly protein-bound uremic toxins (PBUTs), accumulate in chronic kidney disease (CKD) patients, causing significant health complications like uremic syndrome, cardiovascular disease, and immune dysfunction. The binding of PBUTs to plasma proteins such as albumin presents a formidable challenge for clearance, as conventional dialysis is often insufficient. With advancements in the classification and understanding of UTs, spearheaded by the European Uremic Toxins (EUTox) working group, over 120 molecules have been identified, prompting the development of alternative therapeutic strategies. Innovations such as online hemodiafiltration aim to enhance the removal process, while novel adsorptive therapies offer a means to address the high affinity of PBUTs to plasma proteins. Furthermore, the exploration of molecular displacers, designed to increase the free fraction of PBUTs, represents a cutting-edge approach to facilitate their dialytic clearance. Despite these advancements, the clinical application of displacers requires more research to confirm their efficacy and safety. The pursuit of such innovative treatments is crucial for improving the management of uremic toxicity and the overall prognosis of CKD patients, emphasizing the need for ongoing research and clinical trials.
Collapse
Affiliation(s)
- Didier Sánchez-Ospina
- Servicio Análisis Clínicos, Hospital Universitario de Burgos, 09006 Burgos, Spain; (D.S.-O.); (M.M.-M.)
| | - Sebastián Mas-Fontao
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Faculty of Medicine and Biomedicine, Universidad Alfonso X el Sabio (UAX), 28037 Madrid, Spain
| | - Carolina Gracia-Iguacel
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Alejandro Avello
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | - Marina González de Rivera
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| | | | - Emilio Gonzalez-Parra
- IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Univerdad Autonoma de madrid, 28049 Madrid, Spain; (C.G.-I.); (A.A.); (M.G.d.R.)
| |
Collapse
|
7
|
Hasson DC, Rebholz CM, Grams ME. A Deeper Dive Into Lipid Alterations in CKD. Am J Kidney Dis 2024; 83:1-2. [PMID: 37897488 DOI: 10.1053/j.ajkd.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Denise C Hasson
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, New York University Langone Health, New York, New York
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York.
| |
Collapse
|
8
|
Delprete C, Rimondini Giorgini R, Lucarini E, Bastiaanssen T, Scicchitano D, Interino N, Formaggio F, Uhlig F, Ghelardini C, Hyland N, Cryan J, Liguori R, Candela M, Fiori J, Turroni S, Di Cesare Mannelli L, Caprini M. Disruption of the microbiota-gut-brain axis is a defining characteristic of the α-Gal A (-/0) mouse model of Fabry disease. Gut Microbes 2023; 15:2256045. [PMID: 37712629 PMCID: PMC10506438 DOI: 10.1080/19490976.2023.2256045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Fabry disease (FD) is an X-linked metabolic disease caused by a deficiency in α-galactosidase A (α-Gal A) activity. This causes accumulation of glycosphingolipids, especially globotriaosylceramide (Gb3), in different cells and organs. Neuropathic pain and gastrointestinal (GI) symptoms, such as abdominal pain, nausea, diarrhea, constipation, and early satiety, are the most frequent symptoms reported by FD patients and severely affect their quality of life. It is generally accepted that Gb3 and lyso-Gb3 are involved in the symptoms; nevertheless, the origin of these symptoms is complex and multifactorial, and the exact mechanisms of pathogenesis are still poorly understood. Here, we used a murine model of FD, the male α-Gal A (-/0) mouse, to characterize functionality, behavior, and microbiota in an attempt to elucidate the microbiota-gut-brain axis at three different ages. We provided evidence of a diarrhea-like phenotype and visceral hypersensitivity in our FD model together with reduced locomotor activity and anxiety-like behavior. We also showed for the first time that symptomology was associated with early compositional and functional dysbiosis of the gut microbiota, paralleled by alterations in fecal short-chain fatty acid levels, which partly persisted with advancing age. Interestingly, most of the dysbiotic features suggested a disruption of gut homeostasis, possibly contributing to accelerated intestinal transit, visceral hypersensitivity, and impaired communication along the gut-brain axis.
Collapse
Affiliation(s)
- C. Delprete
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - R. Rimondini Giorgini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - E. Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and ToxicoKGMI_A_2256045logy Section, University of Florence, Florence, Italy
| | - T.F.S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - D. Scicchitano
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - N. Interino
- Complex Operational Unit Clinica Neurologica, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
| | - F. Formaggio
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - F. Uhlig
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - C. Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and ToxicoKGMI_A_2256045logy Section, University of Florence, Florence, Italy
| | - N.P. Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - J.F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R. Liguori
- Complex Operational Unit Clinica Neurologica, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, ltaly
| | - M. Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - J. Fiori
- Complex Operational Unit Clinica Neurologica, IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| | - S. Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - L. Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, Neurofarba, Pharmacology and ToxicoKGMI_A_2256045logy Section, University of Florence, Florence, Italy
| | - M. Caprini
- Laboratory of Human and General Physiology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Pantazi AC, Kassim MAK, Nori W, Tuta LA, Mihai CM, Chisnoiu T, Balasa AL, Mihai L, Lupu A, Frecus CE, Lupu VV, Chirila SI, Badescu AG, Hangan LT, Cambrea SC. Clinical Perspectives of Gut Microbiota in Patients with Chronic Kidney Disease and End-Stage Kidney Disease: Where Do We Stand? Biomedicines 2023; 11:2480. [PMID: 37760920 PMCID: PMC10525496 DOI: 10.3390/biomedicines11092480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota (GM) plays a vital role in human health, with increasing evidence linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While these interventions show promising results in reducing uremic toxins and inflammation, challenges remain in the form of patient-specific GM variability, potential side effects, and safety concerns. Our understanding of GMs role in kidney disease is still evolving, necessitating further research to elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials are needed to validate these approaches' safety, efficacy, and feasibility.
Collapse
Affiliation(s)
| | | | - Wassan Nori
- College of Medicine, Mustansiriyah University, Baghdad 10052, Iraq;
| | - Liliana Ana Tuta
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Cristina Maria Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Tatiana Chisnoiu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Adriana Luminita Balasa
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Larisia Mihai
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Ancuta Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Corina Elena Frecus
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
- Clinical Emergency Hospital of Constanta, 900591 Constanta, Romania
| | - Vasile Valeriu Lupu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Sergiu Ioachim Chirila
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | | | - Laurentiu-Tony Hangan
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| | - Simona Claudia Cambrea
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania (L.A.T.)
| |
Collapse
|
10
|
Chen C, Hu X, Chen X. Saikosaponin A protects against uremic toxin indole‑3 acetic acid‑induced damage to the myocardium. Mol Med Rep 2023; 28:159. [PMID: 37417356 PMCID: PMC10407609 DOI: 10.3892/mmr.2023.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic kidney disease (CKD)‑associated cardiac injury is a common complication in patients with CKD. Indole‑3 acetic acid (IAA) is a uremic toxin that injures the cardiovascular system. Saikosaponin A (SSA) protects against pressure overload‑induced cardiac fibrosis. However, the role and molecular mechanisms of IAA and SSA in CKD‑associated cardiac injury remain unclear. The present study investigated the effects of IAA and SSA on CKD‑associated cardiac injury in neonatal mouse cardiomyocytes and a mouse model of CKD. The expression of tripartite motif‑containing protein 16 (Trim16), receptor interacting protein kinase 2 (RIP2) and phosphorylated‑p38 were assessed using western blotting. The ubiquitination of RIP2 was measured by coimmunoprecipitation, and mouse cardiac structure and function were evaluated using hematoxylin and eosin staining and echocardiography. The results demonstrated that, SSA inhibited IAA‑induced cardiomyocyte hypertrophy, upregulated Trim16 expression, downregulated RIP2 expression and decreased p38 phosphorylation. Furthermore, Trim16 mediated SSA‑induced degradation of RIP2 by ubiquitination. In a mouse model of IAA‑induced CKD‑associated cardiac injury, SSA upregulated the protein expression levels of Trim16 and downregulated those of RIP2. Moreover, SSA alleviated heart hypertrophy and diastolic dysfunction in IAA‑treated mice. Taken together, these results suggest that SSA is a protective agent against IAA‑induced CKD‑associated cardiac injury and that Trim16‑mediated ubiquitination‑related degradation of RIP2 and p38 phosphorylation may contribute to the development of CKD‑associated cardiac injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Medical Science, Yangzhou Polytechnic College, Yangzhou, Jiangsu 225127, P.R. China
| | - Xiaoyuan Hu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinguang Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
11
|
Kim KR, Kim SM, Kim JH. A pilot study of alterations of the gut microbiome in canine chronic kidney disease. Front Vet Sci 2023; 10:1241215. [PMID: 37691637 PMCID: PMC10484476 DOI: 10.3389/fvets.2023.1241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Gut dysbiosis has been noted in humans and animals with chronic kidney disease (CKD). However, little is known about the gut microbiome in canine patients with CKD. This study aimed to analyze and compare the gut microbiome profiles of healthy and CKD dogs, including differences in the gut microbiome between each CKD stage. Methods The study was conducted on 29 client-owned dogs who underwent physical examination, complete blood count (CBC), serum biochemistry, and urinalysis. The gut microbiome profile of healthy dogs (n = 10) and dogs with CKD (n = 19) was analyzed employing 16S rRNA sequencing. Results Significant differences were seen in the composition of the gut microbiome, with increased operational taxonomic units from the phylum Proteobacteria (p = 0.035), family Enterobacteriaceae (p < 0.001), and genus Enterococcus (p = 0.002) in dogs with CKD, and a decrease in the genus Ruminococcus (p = 0.007). Furthermore, an increase in both the progression of CKD and abundance of genus Klebsiella (Jonckheere-Terpstra test statistic value (JT) = 2.852, p = 0.004) and Clostridium (JT = 2.018, p = 0.044) was observed. Discussion Our study demonstrated that in dogs with CKD, the composition of the gut microbiome varied depending on the stage of CKD. Alterations in gut microbiome composition observed in CKD patients are characterized by an increase in proteolytic bacteria and a decrease in saccharolytic bacteria. These findings suggest specific gut microbiota could be targeted for clinical management of uremic dogs with CKD.
Collapse
Affiliation(s)
- Kyung-Ryung Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Fonseca RID, Menezes LRA, Santana-Filho AP, Schiefer EM, Pecoits-Filho R, Stinghen AEM, Sassaki GL. Untargeted plasma 1H NMR-based metabolomic profiling in different stages of chronic kidney disease. J Pharm Biomed Anal 2023; 229:115339. [PMID: 36963247 DOI: 10.1016/j.jpba.2023.115339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Chronic kidney disease (CKD) is a serious public health issue affecting thousands of people worldwide. CKD diagnosis is usually made by Estimated Glomerular Filtration Rate (eGFR) and albuminuria, which limit the knowledge of the mechanisms behind CKD progression. The aim of the present study was to identify changes in the metabolomic profile that occur as CKD advances. In this sense, 77 plasma samples from patients with CDK were evaluated by 1D and 2D Nuclear Magnetic Resonance Spectroscopy (NMR). The NMR data showed significant changes in the metabolomic profile of CKD patients and the control group. Principal component analysis (PCA) clustered CKD and control patients into three distinct groups, control, stage 1 (G1)-stage 4 (G4) and stage 5 (G5). Lactate, glucose, acetate and creatinine were responsible for discriminating the control group from all the others CKD stages. Valine, alanine, glucose, creatinine, glutamate and lactate were responsible for the clustering of G1-G4 stages. G5 was discriminated by calcium ethylenediamine tetraacetic acid, magnesium ethylenediamine tetraacetic acid, creatinine, betaine/choline/trimethylamine N-oxide (TMAO), lactate and acetate. CKD G5 plasma pool which was submitted in MetaboAnalyst 4.0 platform (MetPA) analysis and showed 13 metabolic pathways involved in CKD physiopathology. Metabolic changes associated with glycolysis and gluconeogenesis allowed discriminating between CKD and control patients. The determination of involved molecules in TMAO generation in G5 suggests an important role in this uremic toxin linked to CKD and cardiovascular diseases. The aforementioned results propose the feasibility of metabolic assessment of CKD by NMR during treatment and disease progression.
Collapse
Affiliation(s)
| | | | | | - Elberth Manfron Schiefer
- Universidade Tecnológica Federal do Paraná, Av. Sete de Setembro, 3165, Curitiba 80230-901, Brazil
| | - Roberto Pecoits-Filho
- Center for Health and Biological Sciences, Pontifícia Universidade Católica do Paraná, Curitiba CEP 80215-901, Brazil
| | | | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba 80050-540, Brazil.
| |
Collapse
|
13
|
Lin CH, Lin YN, Lane HY, Chen CJ. The identification of a potential plasma metabolite marker for Alzheimer’s disease by LC-MS untargeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123686. [PMID: 37068461 DOI: 10.1016/j.jchromb.2023.123686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AND AIMS Alzheimer's disease (AD), the most common type of dementia, is hard to recognize early, resulting in delayed treatment and poor outcome. At present, there is neither reliable, non-invasive methods to diagnose it accurately and nor effective drugs to recover it. Discovery and quantification of novel metabolite markers in plasma of AD patients and investigation of the correlation between the markers and AD assessment scores. MATERIALS AND METHODS Untargeted liquid chromatography-mass spectrometry (LC-MS)-based metabolomics with LC-quadrupole- time-of-flight (Q-TOF) was performed in plasma samples of age-matched AD patients and healthy controls. The potential markers were further quantified with targeted multiple reaction monitoring (MRM) approach. RESULTS Among the candidates, progesterone, and 3-indoleacetic acid (3-IAA) were successfully identified and then validated in 50 plasma samples from 25 AD patients and 25 matched normal controls with MRM approach. As a result, 3-IAA was significantly altered in AD patients and correlated with some AD assessment scores. CONCLUSION By using untargeted LC-MS metabolomic and LC-MRM approaches to analyze plasma metabolites of AD patients and normal subjects, 3-IAA was discovered and quantified to be significantly altered in AD patients and correlated with several AD assessment scores.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ning Lin
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Favero C, Ortiz A, Sanchez-Niño MD. Probiotics for kidney disease. Clin Kidney J 2022; 15:1981-1986. [PMID: 36325000 PMCID: PMC9613434 DOI: 10.1093/ckj/sfac056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 09/28/2023] Open
Abstract
Diet has long been known to influence the course of chronic kidney disease (CKD) and may even result in acute kidney injury (AKI). Diet may influence kidney disease through a direct impact of specific nutrients on the human body through modulation of the gut microbiota composition or through metabolites generated by the gut microbiota from ingested nutrients. The potential for interaction between diet, microbiota and CKD has fueled research into interventions aimed at modifying the microbiota to treat CKD. These interventions may include diet, probiotics, prebiotics, fecal microbiota transplant and other interventions that modulate the microbiota and its metabolome. A recent report identified Lactobacillus casei Zhang from traditional Chinese koumiss as a probiotic that may protect mice from AKI and CKD and slow CKD progression in humans. Potential mechanisms of action include modulation of the gut microbiota and increased availability of short-chain fatty acids with anti-inflammatory properties and of nicotinamide. However, the clinical relevance needs validation in large well-designed clinical trials.
Collapse
Affiliation(s)
- Chiara Favero
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
- Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Oe Y, Takahashi N. Tissue Factor, Thrombosis, and Chronic Kidney Disease. Biomedicines 2022; 10:2737. [PMID: 36359257 PMCID: PMC9687479 DOI: 10.3390/biomedicines10112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2023] Open
Abstract
Coagulation abnormalities are common in chronic kidney disease (CKD). Tissue factor (TF, factor III) is a master regulator of the extrinsic coagulation system, activating downstream coagulation proteases, such as factor Xa and thrombin, and promoting fibrin formation. TF and coagulation proteases also activate protease-activated receptors (PARs) and are implicated in various organ injuries. Recent studies have shown the mechanisms by which thrombotic tendency is increased under CKD-specific conditions. Uremic toxins, such as indoxyl sulfate and kynurenine, are accumulated in CKD and activate TF and coagulation; in addition, the TF-coagulation protease-PAR pathway enhances inflammation and fibrosis, thereby exacerbating renal injury. Herein, we review the recent research studies to understand the role of TF in increasing the thrombotic risk and CKD progression.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology, Rheumatology, and Endocrinology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences & Faculty of Pharmaceutical Sciences, Sendai 980-8578, Japan
| |
Collapse
|
17
|
Ni Y, Zheng L, Nan S, Ke L, Fu Z, Jin J. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1406-1420. [PMID: 36239349 PMCID: PMC9827797 DOI: 10.3724/abbs.2022140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022] Open
Abstract
The role of gut-kidney crosstalk in the progression of diabetic nephropathy (DN) is receiving increasing concern. On one hand, the decline in renal function increases circulating uremic toxins and affects the composition and function of gut microbiota. On the other hand, intestinal dysbiosis destroys the epithelial barrier, leading to increased exposure to endotoxins, thereby exacerbating kidney damage by inducing systemic inflammation. Dietary inventions, such as higher fiber intake, prebiotics, probiotics, postbiotics, fecal microbial transplantation (FMT), and engineering bacteria and phages, are potential microbiota-based therapies for DN. Furthermore, novel diabetic agents, such as glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-dependent glucose transporter-2 (SGLT-2) inhibitors, may affect the progression of DN partly through gut microbiota. In the current review, we mainly summarize the evidence concerning the gut-kidney axis in the advancement of DN and discuss therapies targeting the gut microbiota, expecting to provide new insight into the clinical treatment of DN.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Liujie Zheng
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Sujie Nan
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Lehui Ke
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Zhengwei Fu
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032China
| | - Juan Jin
- Urology & Nephrology CenterDepartment of NephrologyZhejiang Provincial People’s Hospital (Affiliated People’s HospitalHangzhou Medical College)Hangzhou310014China
| |
Collapse
|
18
|
Favero C, Giordano L, Mihaila SM, Masereeuw R, Ortiz A, Sanchez-Niño MD. Postbiotics and Kidney Disease. Toxins (Basel) 2022; 14:toxins14090623. [PMID: 36136562 PMCID: PMC9501217 DOI: 10.3390/toxins14090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is projected to become the fifth global cause of death by 2040 as a result of key shortcomings in the current methods available to diagnose and treat kidney diseases. In this regard, the novel holobiont concept, used to describe an individual host and its microbial community, may pave the way towards a better understanding of kidney disease pathogenesis and progression. Microbiota-modulating or -derived interventions include probiotics, prebiotics, synbiotics and postbiotics. As of 2019, the concept of postbiotics was updated by the International Scientific Association of Probiotics and Prebiotics (ISAPP) to refer to preparations of inanimate microorganisms and/or their components that confer a health benefit to the host. By explicitly excluding purified metabolites without a cellular biomass, any literature making use of such term is potentially rendered obsolete. We now review the revised concept of postbiotics concerning their potential clinical applications and research in kidney disease, by discussing in detail several formulations that are undergoing preclinical development such as GABA-salt for diet-induced hypertension and kidney injury, sonicated Lactobacillus paracasei in high fat diet-induced kidney injury, GABA-salt, lacto-GABA-salt and postbiotic-GABA-salt in acute kidney injury, and O. formigenes lysates for hyperoxaluria. Furthermore, we provide a roadmap for postbiotics research in kidney disease to expedite clinical translation.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
| | - Laura Giordano
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Silvia Maria Mihaila
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28049 Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS) 2040, 28049 Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Correspondence: (A.O.); (M.D.S.-N.)
| |
Collapse
|
19
|
Lacticaseibacillus rhamnosus Fmb14 prevents purine induced hyperuricemia and alleviate renal fibrosis through gut-kidney axis. Pharmacol Res 2022; 182:106350. [PMID: 35843568 DOI: 10.1016/j.phrs.2022.106350] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Hyperuricemia is a critical threat to human health, and conventional medical treatment only aims to treat acute gouty arthritis. Purine diet-mediated chronic hyperuricemia and related syndromes are neglected in clinical therapeutics. In this study, the prevention ability of Lacticaseibacillus rhamnosus Fmb14, screened from Chinese yogurt, was evaluated in chronic purine-induced hyperuricemia (CPH) mice. After 12 weeks of Fmb14 administration, serum uric acid (SUA) in CPH mice decreased by 36.8 %, from 179.1 to 113.2 µmol/L, and the mortality rate decreased from 30 % to 10 %. The prevention role of Fmb14 in CPH was further investigated, and the reduction of uric acid by Fmb14 was attributed to the reduction of XOD (xanthine oxidase) in the liver and URAT1 in the kidney, as well the promotion of ABCG2 in the colon. Fmb14 administration Increased ZO-1 and Occludin expression in the colon and decreased fibrosis degree in the kidney indicated that Fmb14 administration had preventive effects through the gut-kidney axis in CPH. In specific, Fmb14 administration upregulated the diversity of gut microbiota, increased short-chain fatty acids (SCFA) by 35 % in colon materials and alleviated the inflammatory response by reducing biomarkers levels of IL-1β, IL-18 and TNF-α at 11.6 %, 21.7 % and 26.5 % in serum, compared to CPH group, respectively. Additionally, 16 S rRNA sequencing showed 31.5 % upregulation of Prevotella, 20.5 % and 21.6 % downregulation of Ruminococcus and Suterella at the genus level, which may be a new gut microbial marker in hyperuricemia. In conclusion, Fmb14 ameliorated CPH through the gut-kidney axis, suggesting a new strategy to prevent hyperuricemia.
Collapse
|
20
|
Villalvazo P, Carriazo S, Martin-Cleary C, Sanchez-Niño MD, Ortiz A. Solving the riddle of Aguascalientes nephropathy: nephron number, environmental toxins and family clustering. Clin Kidney J 2022; 15:1226-1230. [PMID: 35756744 PMCID: PMC9217524 DOI: 10.1093/ckj/sfac042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Aguascalientes, Mexico, has a high incidence and prevalence of advanced chronic kidney disease (CKD). CKD is especially frequent in young people ages 20-40 years in whom the cause of CKD was unknown, although kidney biopsies frequently showed focal segmental glomerulosclerosis (FSGS) and glomerulomegaly. Macias-Diaz et al. have now pursued this lead by screening teenagers in Calvillo, one of the hardest hit municipalities. They uncovered clinical, laboratory, kidney biopsy and exposure findings that define a new entity, Aguascalientes nephropathy, and are consistent with familial exposure to common environmental toxins, potentially consisting of pesticides. They hypothesize that prenatal exposure to these toxins may decrease nephron number. The young age of persons with FSGS would be consistent with a novel environmental toxin introduced more than 50 years ago but not present in the environment before. Key takeaways from this research are the need to screen teenagers for albuminuria, to provide kidney-protective strategies to patients identified as having CKD and for the research community to support Aguascalientes nephrologists and health authorities to unravel the cause and potential solutions for this CKD hotspot. In this regard, the screening approach and the cohort generated by Macias-Diaz et al. represent a giant step forward. The next steps should be to screen younger children for albuminuria and kidney size and to identify the putative toxins.
Collapse
Affiliation(s)
| | - Sol Carriazo
- IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Catalina Martin-Cleary
- IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Pharmacology, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Beker BM, Colombo I, Gonzalez-Torres H, Musso CG. Decreasing microbiota-derived uremic toxins to improve CKD outcomes. Clin Kidney J 2022; 15:2214-2219. [PMID: 36381370 PMCID: PMC9664568 DOI: 10.1093/ckj/sfac154] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Chronic kidney disease (CKD) is set to become the fifth-leading global cause of death by 2040. This illustrates the many unknowns regarding its pathogenesis and therapy. A key unknown relates to the therapeutic impact of the interaction between CKD and the gut microbiome. The normal gut microbiome is essential for body homeostasis. There is evidence for multiple interactions between the microbiota and CKD—its causes, comorbidities and therapeutic interventions—that are only starting to be unraveled. Thus uremic retention products, such as urea itself, modify the gut microbiota biology and both dietary and drug prescriptions modify the composition and function of the microbiota. Conversely, the microbiota may influence the progression and manifestations of CKD through the production of biologically active compounds (e.g. short-chain fatty acids such as butyrate and crotonate) and precursors of uremic toxins. The present review addresses these issues and their relevance for novel therapeutic approaches ranging from dietary interventions to prebiotics, probiotics, synbiotics and postbiotics, to the prevention of the absorption of microbial metabolites and to increased clearance of uremic toxins of bacterial origin through optimized dialysis techniques or blockade of tubular cell transporters.
Collapse
Affiliation(s)
- Braian M Beker
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| | - Iara Colombo
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| | - Henry Gonzalez-Torres
- Facultad de Ciencias de la Salud. Universidad Simón Bolívar , Barranquilla , Colombia
- Doctorado en Ciencias Biomédicas. Universidad del Valle, Cali , Valle del Cauca , Colombia
| | - Carlos G Musso
- Human Physiology Department, Instituto Universitario del Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
- Facultad de Ciencias de la Salud. Universidad Simón Bolívar , Barranquilla , Colombia
- Research Department, Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
22
|
Lee N, Kim D. Toxic Metabolites and Inborn Errors of Amino Acid Metabolism: What One Informs about the Other. Metabolites 2022; 12:metabo12060527. [PMID: 35736461 PMCID: PMC9231173 DOI: 10.3390/metabo12060527] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
In inborn errors of metabolism, such as amino acid breakdown disorders, loss of function mutations in metabolic enzymes within the catabolism pathway lead to an accumulation of the catabolic intermediate that is the substrate of the mutated enzyme. In patients of such disorders, dietarily restricting the amino acid(s) to prevent the formation of these catabolic intermediates has a therapeutic or even entirely preventative effect. This demonstrates that the pathology is due to a toxic accumulation of enzyme substrates rather than the loss of downstream products. Here, we provide an overview of amino acid metabolic disorders from the perspective of the ‘toxic metabolites’ themselves, including their mechanism of toxicity and whether they are involved in the pathology of other disease contexts as well. In the research literature, there is often evidence that such metabolites play a contributing role in multiple other nonhereditary (and more common) disease conditions, and these studies can provide important mechanistic insights into understanding the metabolite-induced pathology of the inborn disorder. Furthermore, therapeutic strategies developed for the inborn disorder may be applicable to these nonhereditary disease conditions, as they involve the same toxic metabolite. We provide an in-depth illustration of this cross-informing concept in two metabolic disorders, methylmalonic acidemia and hyperammonemia, where the pathological metabolites methylmalonic acid and ammonia are implicated in other disease contexts, such as aging, neurodegeneration, and cancer, and thus there are opportunities to apply mechanistic or therapeutic insights from one disease context towards the other. Additionally, we expand our scope to other metabolic disorders, such as homocystinuria and nonketotic hyperglycinemia, to propose how these concepts can be applied broadly across different inborn errors of metabolism and various nonhereditary disease conditions.
Collapse
|
23
|
Antioxidant Activity, Metal Chelating Ability and DNA Protective Effect of the Hydroethanolic Extracts of Crocus sativus Stigmas, Tepals and Leaves. Antioxidants (Basel) 2022; 11:antiox11050932. [PMID: 35624796 PMCID: PMC9137568 DOI: 10.3390/antiox11050932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
The present study investigated the antioxidant activity, metal chelating ability and genoprotective effect of the hydroethanolic extracts of Crocus sativus stigmas (STG), tepals (TPL) and leaves (LV). We evaluated the antioxidant and metal (Fe2+ and Cu2+) chelating activities of the stigmas, tepals and leaves of C. sativus. Similarly, we examined the genotoxic and DNA protective effect of these parts on rat leukocytes by comet assay. The results showed that TPL contains the best polyphenol content (64.66 µg GA eq/mg extract). The highest radical scavenging activity is shown by the TPL (DPPH radical scavenging activity: IC50 = 80.73 µg/mL). The same extracts gave a better ferric reducing power at a dose of 50 µg/mL, and better protective activity against β-carotene degradation (39.31% of oxidized β-carotene at a 100 µg/mL dose). In addition, they showed a good chelating ability of Fe2+ (48.7% at a 500 µg/mL dose) and Cu2+ (85.02% at a dose of 500 µg/mL). Thus, the antioxidant activity and metal chelating ability in the C. sativus plant is important, and it varies according to the part and dose used. In addition, pretreatment with STG, TPL and LV significantly (p < 0.001) protected rat leukocytes against the elevation of percent DNA in the tail, tail length and tail moment in streptozotocin- and alloxan-induced DNA damage. These results suggest that C. sativus by-products contain natural antioxidant, metal chelating and DNA protective compounds, which are capable of reducing the risk of cancer and other diseases associated with daily exposure to genotoxic xenobiotics.
Collapse
|
24
|
Loo RL, Chan Q, Nicholson JK, Holmes E. Balancing the Equation: A Natural History of Trimethylamine and Trimethylamine- N-oxide. J Proteome Res 2022; 21:560-589. [PMID: 35142516 DOI: 10.1021/acs.jproteome.1c00851] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trimethylamine (TMA) and its N-oxide (TMAO) are ubiquitous in prokaryote and eukaryote organisms as well as in the environment, reflecting their fundamental importance in evolutionary biology, and their diverse biochemical functions. Both metabolites have multiple biological roles including cell-signaling. Much attention has focused on the significance of serum and urinary TMAO in cardiovascular disease risk, yet this is only one of the many facets of a deeper TMA-TMAO partnership that reflects the significance of these metabolites in multiple biological processes spanning animals, plants, bacteria, and fungi. We report on analytical methods for measuring TMA and TMAO and attempt to critically synthesize and map the global functions of TMA and TMAO in a systems biology framework.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London W2 1PG, United Kingdom.,MRC Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, United Kingdom
| | - Jeremy K Nicholson
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Institute of Global Health Innovation, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Elaine Holmes
- Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,The Australian National Phenome Centre, Health Futures Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Nutrition Research, Department of Metabolism, Nutrition and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, United Kingdom
| |
Collapse
|
25
|
Carriazo S, Villalvazo P, Ortiz A. More on the invisibility of chronic kidney disease… and counting. Clin Kidney J 2022; 15:388-392. [PMID: 35198154 PMCID: PMC8690216 DOI: 10.1093/ckj/sfab240] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Lack of awareness of a diagnosis of chronic kidney disease (CKD) in patients and physicians is a major contributor to fueling the CKD pandemic by also making it invisible to researchers and health authorities. This is an urgent matter to tackle if dire predictions of future CKD burden are to be addressed. CKD is set to become the fifth-leading global cause of death by 2040 and the second-leading cause of death before the end of the century in some countries with long life expectancy. Coronavirus disease 2019 (COVID-19) illustrated this invisibility: only after the summer of 2020 did it become clear that CKD was a major driver of COVID-19 mortality, both in terms of prevalence as a risk factor and of the risk conferred for lethal COVID-19. However, by that time the damage was done: news outlets and scientific publications continued to list diabetes and hypertension, but not CKD, as major risk factors for severe COVID-19. In a shocking recent example from Sweden, CKD was found to be diagnosed in just 23% of 57 880 persons who fulfilled diagnostic criteria for CKD. In the very same large cohort, diabetes or cancer were diagnosed in 29% of persons, hypertension in 82%, cardiovascular disease in 39% and heart failure in 28%. Thus, from the point of view of physicians, patients and health authorities, CKD was the least common comorbidity in persons with CKD, ranking sixth, after other better-known conditions. One of the consequences of this lack of awareness was that nephrotoxic medications were more commonly prescribed in patients with CKD who did not have a diagnosis of CKD. Low awareness of CKD may also fuel concepts such as the high prevalence of hypertensive nephropathy when CKD is diagnosed after the better-known condition of hypertension.
Collapse
Affiliation(s)
- Sol Carriazo
- Instituto de Investigación Sanitaria Fundacion Jimenez Diaz, Madrid, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| | | | - Alberto Ortiz
- Instituto de Investigación Sanitaria Fundacion Jimenez Diaz, Madrid, Spain
- Red de Investigación Renal (REDINREN), Madrid, Spain
| |
Collapse
|
26
|
Ebrahim Z, Proost S, Tito RY, Raes J, Glorieux G, Moosa MR, Blaauw R. The Effect of ß-Glucan Prebiotic on Kidney Function, Uremic Toxins and Gut Microbiome in Stage 3 to 5 Chronic Kidney Disease (CKD) Predialysis Participants: A Randomized Controlled Trial. Nutrients 2022; 14:nu14040805. [PMID: 35215453 PMCID: PMC8880761 DOI: 10.3390/nu14040805] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that gut dysbiosis contributes to the progression of chronic kidney disease (CKD) owing to several mechanisms, including microbiota-derived uremic toxins, diet and immune-mediated factors. The aim of this study was to investigate the effect of a ß-glucan prebiotic on kidney function, uremic toxins and the gut microbiome in stage 3 to 5 CKD participants. Fifty-nine participants were randomized to either the ß-glucan prebiotic intervention group (n = 30) or the control group (n = 29). The primary outcomes were to assess kidney function (urea, creatinine and glomerular filtration rate), plasma levels of total and free levels of uremic toxins (p-cresyl sulfate (pCS), indoxyl-sulfate (IxS), p-cresyl glucuronide (pCG) and indoxyl 3-acetic acid (IAA) and gut microbiota using 16S rRNA sequencing at baseline, week 8 and week 14. The intervention group (age 40.6 ± 11.4 y) and the control group (age 41.3 ± 12.0 y) did not differ in age or any other socio-demographic variables at baseline. There were no significant changes in kidney function over 14 weeks. There was a significant reduction in uremic toxin levels at different time points, in free IxS at 8 weeks (p = 0.003) and 14 weeks (p < 0.001), free pCS (p = 0.006) at 14 weeks and total and free pCG (p < 0.001, p < 0.001, respectively) and at 14 weeks. There were no differences in relative abundances of genera between groups. Enterotyping revealed that the population consisted of only two of the four enterotypes: Bacteroides 2 and Prevotella. The redundancy analysis showed a few factors significantly affected the gut microbiome: these included triglyceride levels (p < 0.001), body mass index (p = 0.002), high- density lipoprotein (p < 0.001) and the prebiotic intervention (p = 0.002). The ß-glucan prebiotic significantly altered uremic toxin levels of intestinal origin and favorably affected the gut microbiome.
Collapse
Affiliation(s)
- Zarina Ebrahim
- Division of Human Nutrition, Department of Global Health, Stellenbosch University, Cape Town 8000, South Africa;
- Correspondence: (Z.E.); (S.P.)
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (R.Y.T.); (J.R.)
- Center for Microbiology, VIB, 3000 Leuven, Belgium
- Correspondence: (Z.E.); (S.P.)
| | - Raul Yhossef Tito
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (R.Y.T.); (J.R.)
- Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium; (R.Y.T.); (J.R.)
- Center for Microbiology, VIB, 3000 Leuven, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium;
| | | | - Renée Blaauw
- Division of Human Nutrition, Department of Global Health, Stellenbosch University, Cape Town 8000, South Africa;
| |
Collapse
|
27
|
Su G, Qin X, Yang C, Sabatino A, Kelly JT, Avesani CM, Carrero JJ. Fiber intake and health in people with chronic kidney disease. Clin Kidney J 2022; 15:213-225. [PMID: 35145637 PMCID: PMC8825222 DOI: 10.1093/ckj/sfab169] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that diet, particularly one that is rich in dietary fiber, may prevent the progression of chronic kidney disease (CKD) and its associated complications in people with established CKD. This narrative review summarizes the current evidence and discusses the opportunities for increasing fiber intake in people with CKD to improve health and reduce disease complications. A higher consumption of fiber exerts multiple health benefits, such as increasing stool output, promoting the growth of beneficial microbiota, improving the gut barrier and decreasing inflammation, as well decreasing uremic toxin production. Despite this, the majority of people with CKD consume less than the recommended dietary fiber intake, which may be due in part to the competing dietary potassium concern. Based on existing evidence, we see benefits from adopting a higher intake of fiber-rich food, and recommend cooperation with the dietitian to ensure an adequate diet plan. We also identify knowledge gaps for future research and suggest means to improve patient adherence to a high-fiber diet.
Collapse
Affiliation(s)
- Guobin Su
- National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Clinical Research Center for Kidney Disease, Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Global Public Health, Health Systems and Policy, Karolinska Institutet, Stockholm, Sweden
| | - Xindong Qin
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changyuan Yang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Alice Sabatino
- Department of Nephrology, Parma University Hospital, Parma, Italy
| | - Jaimon T Kelly
- Centre for Online Health, The University of Queensland, Brisbane, Australia.,Centre for Health Services Research, The University of Queensland, Brisbane, Australia
| | - Carla Maria Avesani
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Medical Unit Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Jesus Carrero
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Wehedy E, Shatat IF, Al Khodor S. The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword. Front Med (Lausanne) 2022; 8:790783. [PMID: 35111779 PMCID: PMC8801809 DOI: 10.3389/fmed.2021.790783] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.
Collapse
Affiliation(s)
- Eman Wehedy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Souhaila Al Khodor
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
29
|
Fontecha-Barriuso M, Lopez-Diaz AM, Carriazo S, Ortiz A, Sanz AB. Nicotinamide and acute kidney injury. Clin Kidney J 2021; 14:2453-2462. [PMID: 34950458 PMCID: PMC8690056 DOI: 10.1093/ckj/sfab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
In a recent issue of ckj, Piedrafita et al. reported that urine tryptophan and kynurenine are reduced in cardiac bypass surgery patients that develop acute kidney injury (AKI), suggesting reduced activity of the kynurenine pathway of nicotinamide (NAM) adenine dinucleotide (NAD+) synthesis from tryptophan. However, NAM supplementation aiming at repleting NAD+ did not replete kidney NAD+ and did not improve glomerular filtration or reduce histological injury in ischaemic-reperfusion kidney injury in mice. The lack of improvement of kidney injury is partially at odds with prior reports that did not study kidney NAD+, glomerular filtration or histology in NAM-treated wild-type mice with AKI. We now present an overview of research on therapy with vitamin B3 vitamers and derivate molecules {niacin, Nicotinamide [NAM; niacinamide], NAM riboside [Nicotinamide riboside (NR)], Reduced nicotinamide riboside [NRH] and NAM mononucleotide} in kidney injury, including an overview of ongoing clinical trials, and discuss the potential explanations for diverging reports on the impact of these therapeutic approaches on pre-clinical acute and chronic kidney disease.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ana M Lopez-Diaz
- Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain
| | - Sol Carriazo
- Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain
| | - Alberto Ortiz
- Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain
- REDINREN, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- IRSIN, Madrid, Spain
| | - Ana Belen Sanz
- Laboratory of Experimental Nephrology, Research Institute-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, 28040 Madrid, Spain
- REDINREN, Madrid, Spain
| |
Collapse
|
30
|
Ortiz A, Sanchez-Niño MD. Key unsolved issues in kidney replacement therapy. J Intern Med 2021; 290:749-751. [PMID: 33482018 DOI: 10.1111/joim.13255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Alberto Ortiz
- From the, Nephrology and Hypertension, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- From the, Nephrology and Hypertension, IIS-Fundación Jimenez Díaz-UAM, Madrid, Spain.,Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| |
Collapse
|
31
|
Sanchez-Niño MD, Aguilera-Correa JJ, Politei J, Esteban J, Requena T, Ortiz A. Unraveling the drivers and consequences of gut microbiota disruption in Fabry disease: the lyso-Gb3 link. Future Microbiol 2021; 15:227-231. [PMID: 32271110 DOI: 10.2217/fmb-2019-0249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - John-Jairo Aguilera-Correa
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Juan Politei
- Fundación Para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM. Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Teresa Requena
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Alberto Ortiz
- Fundación Para el Estudio de las Enfermedades Neurometabólicas, Buenos Aires, Argentina
| |
Collapse
|
32
|
In Vitro Selection of Probiotics, Prebiotics, and Antioxidants to Develop an Innovative Synbiotic (NatuREN G) and Testing Its Effect in Reducing Uremic Toxins in Fecal Batches from CKD Patients. Microorganisms 2021; 9:microorganisms9061316. [PMID: 34204263 PMCID: PMC8235484 DOI: 10.3390/microorganisms9061316] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/22/2022] Open
Abstract
We aimed to develop an innovative synbiotic formulation for use in reducing dysbiosis, uremic toxins (e.g., p-cresol and indoxyl sulfate), and, consequently, the pathognomonic features of patients with chronic kidney disease (CKD). Twenty-five probiotic strains, belonging to lactobacilli and Bifidobacterium, were tested for their ability to grow in co-culture with different vegetable (pomegranate, tomato, and grapes) sources of antioxidants and prebiotics (inulin, fructo-oligosaccharides, and β-glucans). Probiotics were selected based on the acidification rates and viable cell counts. Inulin and fructo-oligosaccharides reported the best prebiotic activity, while a pomegranate seed extract was initially chosen as antioxidant source. The investigation was also conducted in fecal batches from healthy and CKD subjects, on which metabolomic analyses (profiling volatile organic compounds and total free amino acids) were conducted. Two out of twenty-five probiotics were finally selected. After the stability tests, the selective innovative synbiotic formulation (named NatuREN G) comprised Bifidobacterium animalis BLC1, Lacticaseibacillus casei LC4P1, fructo-oligosaccharides, inulin, quercetin, resveratrol, and proanthocyanidins. Finally, NatuREN G was evaluated on fecal batches collected from CKD in which modified the viable cell densities of some cultivable bacterial patterns, increased the concentration of acetic acid and decane, while reduced the concentration of nonanoic acid, dimethyl trisulfide, and indoxyl sulfate.
Collapse
|
33
|
Colonic dialysis can influence gut flora to protect renal function in patients with pre-dialysis chronic kidney disease. Sci Rep 2021; 11:12773. [PMID: 34140540 PMCID: PMC8211730 DOI: 10.1038/s41598-021-91722-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/12/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health burden around the world. The gut microbiome may contribute to CKD progression and serve as a promising therapeutic target. Colonic dialysis has long been used in China to help remove gut-derived toxins to delay CKD progression. Since disturbances in the gut biome may influence disease progression, we wondered whether colonic dialysis may mitigate the condition by influencing the biome. We compared the gut microbiota, based on 16S rRNA gene sequencing, in fecal samples of 25 patients with CKD (stages 3–5) who were receiving colonic dialysis(group CD), 25 outpatients with CKD not receiving colonic dialysis(group OP), and 34 healthy subjects(group HS). Richness of gut microbiota was similar between patients on colonic dialysis and healthy subjects, and richness in these two groups was significantly higher than that in patients not on colonic dialysis. Colonic dialysis also altered the profile of microbes in the gut of CKD patients, bringing it closer to the profile in healthy subjects. Colonic dialysis may protect renal function in pre-dialysis CKD by mitigating dysbiosis of gut microbiota.
Collapse
|
34
|
Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, Ortiz A, Fernandez-Fernandez B, Sanchez-Niño MD. Phosphate, Microbiota and CKD. Nutrients 2021; 13:1273. [PMID: 33924419 PMCID: PMC8070653 DOI: 10.3390/nu13041273] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Elena Gomá-Garcés
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
- School of Medicine, Department of Pharmacology and Therapeutics, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
35
|
Camelo-Castillo A, Rivera-Caravaca JM, Orenes-Piñero E, Ramírez-Macías I, Roldán V, Lip GYH, Marín F. Gut Microbiota and the Quality of Oral Anticoagulation in Vitamin K Antagonists Users: A Review of Potential Implications. J Clin Med 2021; 10:715. [PMID: 33670220 PMCID: PMC7916955 DOI: 10.3390/jcm10040715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
The efficacy and safety of vitamin K antagonists (VKAs) as oral anticoagulants (OACs) depend on the quality of anticoagulation control, as reflected by the mean time in therapeutic range (TTR). Several factors may be involved in poor TTR such as comorbidities, high inter-individual variability, interacting drugs, and non-adherence. Recent studies suggest that gut microbiota (GM) plays an important role in the pathogenesis of cardiovascular diseases, but the effect of the GM on anticoagulation control with VKAs is unknown. In the present review article, we propose different mechanisms by which the GM could have an impact on the quality of anticoagulation control in patients taking VKA therapy. We suggest that the potential effects of GM may be mediated first, by an indirect effect of metabolites produced by GM in the availability of VKAs drugs; second, by an effect of vitamin K-producing bacteria; and finally, by the structural modification of the molecules of VKAs. Future research will help confirm these hypotheses and may suggest profiles of bacterial signatures or microbial metabolites, to be used as biomarkers to predict the quality of anticoagulation. This could lead to the design of intervention strategies modulating gut microbiota, for example, by using probiotics.
Collapse
Affiliation(s)
- Anny Camelo-Castillo
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| | - José Miguel Rivera-Caravaca
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain;
| | - Inmaculada Ramírez-Macías
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| | - Vanessa Roldán
- Department of Hematology and Clinical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, 30008 Murcia, Spain;
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Aalborg University, 9000 Aalborg, Denmark
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, University of Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), CIBERCV, 30120 Murcia, Spain; (A.C.-C.); (J.M.R.-C.); (I.R.-M.)
| |
Collapse
|
36
|
Meineri G, Saettone V, Radice E, Bruni N, Martello E, Bergero D. The synergistic effect of prebiotics, probiotics and antioxidants on dogs with chronic kidney disease. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1940323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Giorgia Meineri
- Dipartimento di Scienze Veterinarie, Università' degli studi di Torino, Grugliasco, Italy
| | - Vittorio Saettone
- Dipartimento di Scienze Veterinarie, Università' degli studi di Torino, Grugliasco, Italy
| | - Elisabetta Radice
- Dipartimento di Scienze Chirurgiche, Università' degli studi di Torino, Torino, Italy
| | | | - Elisa Martello
- Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, UK
| | - Domenico Bergero
- Dipartimento di Scienze Veterinarie, Università' degli studi di Torino, Grugliasco, Italy
| |
Collapse
|
37
|
Verzola D, Picciotto D, Saio M, Aimasso F, Bruzzone F, Sukkar SG, Massarino F, Esposito P, Viazzi F, Garibotto G. Low Protein Diets and Plant-Based Low Protein Diets: Do They Meet Protein Requirements of Patients with Chronic Kidney Disease? Nutrients 2020; 13:E83. [PMID: 33383799 PMCID: PMC7824653 DOI: 10.3390/nu13010083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
A low protein diet (LPD) has historically been used to delay uremic symptoms and decrease nitrogen (N)-derived catabolic products in patients with chronic kidney disease (CKD). In recent years it has become evident that nutritional intervention is a necessary approach to prevent wasting and reduce CKD complications and disease progression. While a 0.6 g/kg, high biological value protein-based LPD has been used for years, recent observational studies suggest that plant-derived LPDs are a better approach to nutritional treatment of CKD. However, plant proteins are less anabolic than animal proteins and amino acids contained in plant proteins may be in part oxidized; thus, they may not completely be used for protein synthesis. In this review, we evaluate the role of LPDs and plant-based LPDs on maintaining skeletal muscle mass in patients with CKD and examine different nutritional approaches for improving the anabolic properties of plant proteins when used in protein-restricted diets.
Collapse
Affiliation(s)
- Daniela Verzola
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
| | - Daniela Picciotto
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
- Clinica Nefrologica, Dialisi, Trapianto, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy
| | - Michela Saio
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
- Clinica Nefrologica, Dialisi, Trapianto, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy
| | - Francesca Aimasso
- Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy; (F.A.); (F.B.); (S.G.S.); (F.M.)
| | - Francesca Bruzzone
- Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy; (F.A.); (F.B.); (S.G.S.); (F.M.)
| | - Samir Giuseppe Sukkar
- Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy; (F.A.); (F.B.); (S.G.S.); (F.M.)
| | - Fabio Massarino
- Clinical Nutrition Unit, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy; (F.A.); (F.B.); (S.G.S.); (F.M.)
| | - Pasquale Esposito
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
- Clinica Nefrologica, Dialisi, Trapianto, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
- Clinica Nefrologica, Dialisi, Trapianto, IRCCS Ospedale Policlinico San Martino, 16142 Genoa, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; (D.V.); (D.P.); (M.S.); (P.E.); (F.V.)
| |
Collapse
|
38
|
Ikee R, Sasaki N, Yasuda T, Fukazawa S. Chronic Kidney Disease, Gut Dysbiosis, and Constipation: A Burdensome Triplet. Microorganisms 2020; 8:microorganisms8121862. [PMID: 33255763 PMCID: PMC7760012 DOI: 10.3390/microorganisms8121862] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Gut dysbiosis has been implicated in the progression of chronic kidney disease (CKD). Alterations in the gut environment induced by uremic toxins, the dietary restriction of fiber-rich foods, and multiple drugs may be involved in CKD-related gut dysbiosis. CKD-related gut dysbiosis is considered to be characterized by the expansion of bacterial species producing precursors of harmful uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, and the contraction of species generating beneficial short-chain fatty acids, such as butyrate. Gut-derived uremic toxins cause oxidative stress and pro-inflammatory responses, whereas butyrate exerts anti-inflammatory effects and contributes to gut epithelial integrity. Gut dysbiosis is associated with the disruption of the gut epithelial barrier, which leads to the translocation of endotoxins. Research on CKD-related gut dysbiosis has mainly focused on chronic inflammation and consequent cardiovascular and renal damage. The pathogenic relationship between CKD-related gut dysbiosis and constipation has not yet been investigated in detail. Constipation is highly prevalent in CKD and affects the quality of life of these patients. Under the pathophysiological state of gut dysbiosis, altered bacterial fermentation products may play a prominent role in intestinal dysmotility. In this review, we outline the factors contributing to constipation, such as the gut microbiota and bacterial fermentation; introduce recent findings on the pathogenic link between CKD-related gut dysbiosis and constipation; and discuss potential interventions. This pathogenic link needs to be elucidated in more detail and may contribute to the development of novel treatment options not only for constipation, but also cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Ryota Ikee
- Sapporo Nephrology Satellite Clinic, 9-2-15, Hassamu 6-jo, Nishi-ku, Sapporo 063-0826, Japan;
- Correspondence:
| | - Naomi Sasaki
- Sapporo Nephrology Clinic, 20-2-12, Nishimachikita, Nishi-ku, Sapporo 063-0061, Japan; (N.S.); (S.F.)
| | - Takuji Yasuda
- Sapporo Nephrology Satellite Clinic, 9-2-15, Hassamu 6-jo, Nishi-ku, Sapporo 063-0826, Japan;
| | - Sawako Fukazawa
- Sapporo Nephrology Clinic, 20-2-12, Nishimachikita, Nishi-ku, Sapporo 063-0061, Japan; (N.S.); (S.F.)
| |
Collapse
|
39
|
Stanford J, Charlton K, Stefoska-Needham A, Zheng H, Bird L, Borst A, Fuller A, Lambert K. Associations Among Plant-Based Diet Quality, Uremic Toxins, and Gut Microbiota Profile in Adults Undergoing Hemodialysis Therapy. J Ren Nutr 2020; 31:177-188. [PMID: 32981834 DOI: 10.1053/j.jrn.2020.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The objective of the study was to evaluate associations among diet quality, serum uremic toxin concentrations, and the gut microbiota profile in adults undergoing hemodialysis therapy. DESIGN AND METHODS This is a cross-sectional analysis of baseline data from a clinical trial involving adults receiving hemodialysis therapy. Usual dietary intake was determined using a diet history method administered by Accredited Practising Dietitians. Two approaches were used for diet quality assessment: (1) using three a priori defined plant-based diet indices-an overall plant-based diet index (PDI), a healthy PDI, and an unhealthy PDI and (2) classification of food group intake. Serum uremic toxins (p-cresyl sulfate and indoxyl sulfate (IS); free and total) were determined by ultra-performance liquid chromatography. Gut microbiota composition was established through sequencing the 16S rRNA gene in stool samples. RESULTS Twenty-two adults (median age 70.5 [interquartile range: 59-76], 64% male) were included in the final analysis. Higher adherence to the PDI was associated with lower total IS levels (P = .028), independent of dialysis adequacy, urinary output, and blood albumin levels. In contrast, higher adherence to the unhealthy PDI was associated with increases in both free and total IS. Several other direct and inverse associations between diet quality with uremic toxins, microbial relative abundances, and diversity metrics were also highlighted. Diet-associated taxa showed significantly different trends of association with serum uremic toxin concentrations (P < .05). Higher adherence to the PDI was negatively associated with relative abundances of Haemophilus and Haemophilus parainfluenzae that were related to elevated total IS levels. In contrast, increased intake of food items considered unhealthy, such as animal fats, sweets and desserts, were associated with bacteria linked to higher IS and p-cresyl sulfate (total and free) concentrations. CONCLUSIONS The quality of diet and food selections may influence uremic toxin production by the gut microbiota in adults receiving hemodialysis. Well-designed dietary intervention trials that adopt multi-omic technologies appropriate for the functional annotation of the gut microbiome are needed to validate our findings and establish causality.
Collapse
Affiliation(s)
- Jordan Stanford
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia.
| | - Karen Charlton
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Anita Stefoska-Needham
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Huimin Zheng
- Division of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Luke Bird
- Wollongong Hospital, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Addison Borst
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Andrew Fuller
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Kelly Lambert
- Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
40
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
41
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
42
|
Chronic kidney disease in cats alters response of the plasma metabolome and fecal microbiome to dietary fiber. PLoS One 2020; 15:e0235480. [PMID: 32614877 PMCID: PMC7331996 DOI: 10.1371/journal.pone.0235480] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022] Open
Abstract
The objectives were to determine the effects of feeding different fiber types to healthy cats and cats with chronic kidney disease (CKD) on plasma metabolites and the fecal microbiome.
Collapse
|
43
|
Bolasco P. Hemodialysis-Nutritional Flaws in Diagnosis and Prescriptions. Could Amino Acid Losses be the Sharpest "Sword of Damocles"? Nutrients 2020; 12:nu12061773. [PMID: 32545868 PMCID: PMC7353226 DOI: 10.3390/nu12061773] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
This review aims to highlight the strengths and weaknesses emerging from diagnostic evaluations and prescriptions in an intent to prevent progression over time of malnutrition and/or protein-energy wasting (PEW) in hemodialysis (HD) patients. In particular, indications of the most effective pathway to follow in diagnosing a state of malnutrition are provided based on a range of appropriate chemical-clinical, anthropometric and instrumental analyses and monitoring of the nutritional status of HD patients. Finally, based on the findings of recent studies, therapeutic options to be adopted for the purpose of preventing or slowing down malnutrition have been reviewed, with particular focus on protein-calorie intake, the role of oral and/or intravenous supplements and efficacy of some classes of amino acids. A new determining factor that may lead inexorably to PEW in hemodialysis patients is represented by severe amino acid loss during hemodialysis sessions, for which mandatory compensation should be introduced.
Collapse
Affiliation(s)
- Piergiorgio Bolasco
- Nephrology Consultant, Sardinian Regional Public Health Institution, 09047 Selargius, Italy; ; Tel.: +39-333-2914-844; Fax: +39-070-609-3240
- Chronic Kidney Disease Treatment Group of the Italian Society of Nephrology, University Street, 11, 00185 Rome, Italy
| |
Collapse
|
44
|
Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol 2020; 21:215. [PMID: 32503496 PMCID: PMC7275316 DOI: 10.1186/s12882-020-01805-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background There is mounting evidence that individuals with kidney disease and kidney stones have an abnormal gut microbiota composition. No studies to date have summarised the evidence to categorise how the gut microbiota profile of these individuals may differ from controls. Synthesis of this evidence is essential to inform future clinical trials. This systematic review aims to characterise differences of the gut microbial community in adults with kidney disease and kidney stones, as well as to describe the functional capacity of the gut microbiota and reporting of diet as a confounder in these studies. Methods Included studies were those that investigated the gut microbial community in adults with kidney disease or kidney stones and compared this to the profile of controls. Six scientific databases (CINHAL, Medline, PubMed, Scopus, Web of Science and Cochrane Library), as well as selected grey literature sources, were searched. Quality assessment was undertaken independently by three authors. The system of evidence level criteria was employed to quantitatively evaluate the alteration of microbiota by strictly considering the number, methodological quality and consistency of the findings. Additional findings relating to altered functions of the gut microbiota, dietary intakes and dietary methodologies used were qualitatively summarised. Results Twenty-five articles met the eligibility criteria and included data from a total of 892 adults with kidney disease or kidney stones and 1400 controls. Compared to controls, adults with kidney disease had increased abundances of several microbes including Enterobacteriaceae, Streptococcaceae, Streptococcus and decreased abundances of Prevotellaceae, Prevotella, Prevotella 9 and Roseburia among other taxa. Adults with kidney stones also had an altered microbial composition with variations to Bacteroides, Lachnospiraceae NK4A136 group, Ruminiclostridium 5 group, Dorea, Enterobacter, Christensenellaceae and its genus Christensenellaceae R7 group. Differences in the functional potential of the microbial community between controls and adults with kidney disease or kidney stones were also identified. Only three of the 25 articles presented dietary data, and of these studies, only two used a valid dietary assessment method. Conclusions The gut microbiota profile of adults with kidney disease and kidney stones differs from controls. Future study designs should include adequate reporting of important confounders such as dietary intake to assist with interpretation of findings.
Collapse
Affiliation(s)
- Jordan Stanford
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, 2522, Australia.
| | - Karen Charlton
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Anita Stefoska-Needham
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| | - Rukayat Ibrahim
- University of Surrey, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, Guildford, GU2 7XH, UK
| | - Kelly Lambert
- University of Wollongong, School of Medicine, Faculty of Science, Medicine and Health, Wollongong, New South Wales, 2522, Australia.,University of Wollongong, Health Impacts Research Cluster, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
45
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
46
|
Wu IW, Gao SS, Chou HC, Yang HY, Chang LC, Kuo YL, Dinh MCV, Chung WH, Yang CW, Lai HC, Hsieh WP, Su SC. Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Am J Cancer Res 2020; 10:5398-5411. [PMID: 32373220 PMCID: PMC7196299 DOI: 10.7150/thno.41725] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023] Open
Abstract
Chronic kidney disease (CKD) is a serious healthcare dilemma, associated with specific changes in gut microbiota and circulating metabolome. Yet, the functional capacity of CKD microbiome and its intricate relationship with the host metabolism at different stages of disease are less understood. Methods: Here, shotgun sequencing of fecal samples and targeted metabolomics profiling of serum bile acids, short- and medium-chain fatty acids, and uremic solutes were performed in a cohort of CKD patients with different severities and non-CKD controls. Results: We identified that levels of 13 microbial species and 6 circulating metabolites were significantly altered across early to advanced stages or only in particular stage(s). Among these, Prevotella sp. 885 (decreased) was associated with urea excretion, while caproic acid (decreased) and p-cresyl sulfate (elevated) were positively and negatively correlated with the glomerular filtration rate, respectively. In addition, we identified gut microbial species linked to changes in circulating metabolites. Microbial genes related to secondary bile acid biosynthesis were differentially abundant at the early stage, while pathway modules related to lipid metabolism and lipopolysaccharide biosynthesis were enriched in the CKD microbiome at the advanced stage, suggesting that changes in microbial metabolism and host inflammation may contribute to renal health. Further, we identified metagenomic and metabolomic markers to discriminate cases of different severities from the controls, among which Bacteroides eggerthii individually was of particular value in early diagnosis. Conclusions: Our dual-omics data reveal the connections between intestinal microbes and circulating metabolites perturbed in CKD, which may be of etiological and diagnostic importance.
Collapse
|
47
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|
48
|
Serum Levels and Removal by Haemodialysis and Haemodiafiltration of Tryptophan-Derived Uremic Toxins in ESKD Patients. Int J Mol Sci 2020; 21:ijms21041522. [PMID: 32102247 PMCID: PMC7073230 DOI: 10.3390/ijms21041522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/30/2022] Open
Abstract
Tryptophan is an essential dietary amino acid that originates uremic toxins that contribute to end-stage kidney disease (ESKD) patient outcomes. We evaluated serum levels and removal during haemodialysis and haemodiafiltration of tryptophan and tryptophan-derived uremic toxins, indoxyl sulfate (IS) and indole acetic acid (IAA), in ESKD patients in different dialysis treatment settings. This prospective multicentre study in four European dialysis centres enrolled 78 patients with ESKD. Blood and spent dialysate samples obtained during dialysis were analysed with high-performance liquid chromatography to assess uremic solutes, their reduction ratio (RR) and total removed solute (TRS). Mean free serum tryptophan and IS concentrations increased, and concentration of IAA decreased over pre-dialysis levels (67%, 49%, −0.8%, respectively) during the first hour of dialysis. While mean serum total urea, IS and IAA concentrations decreased during dialysis (−72%, −39%, −43%, respectively), serum tryptophan levels increased, resulting in negative RR (−8%) towards the end of the dialysis session (p < 0.001), despite remarkable Trp losses in dialysate. RR and TRS values based on serum (total, free) and dialysate solute concentrations were lower for conventional low-flux dialysis (p < 0.001). High-efficiency haemodiafiltration resulted in 80% higher Trp losses than conventional low-flux dialysis, despite similar neutral Trp RR values. In conclusion, serum Trp concentrations and RR behave differently from uremic solutes IS, IAA and urea and Trp RR did not reflect dialysis Trp losses. Conventional low-flux dialysis may not adequately clear Trp-related uremic toxins while high efficiency haemodiafiltration increased Trp losses.
Collapse
|
49
|
Wu PH, Lin YT, Wu PY, Lee HH, Lee SC, Hung SC, Chen SC, Kuo MC, Chiu YW. Association between Circulation Indole-3-Acetic Acid Levels and Stem Cell Factor in Maintenance Hemodialysis Patients: A Cross-Sectional Study. J Clin Med 2020; 9:jcm9010124. [PMID: 31906560 PMCID: PMC7019261 DOI: 10.3390/jcm9010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/17/2022] Open
Abstract
Protein-bound uremic toxin is a cardiovascular (CV) risk factor for patients with end-stage renal disease. Indole-3-acetic acid (IAA) was found to be associated with CV disease but the detailed pathophysiology remains unknown. Moreover, mitogen-activated protein kinase (MAPK) signaling cascades play an important role in the pathogenesis of CV disease. Thus, we explored the association between circulating IAA levels and forty MAPK cascade associated proteins in patients undergoing hemodialysis (HD). Circulating total form IAA was quantified by mass spectrometry and forty MAPK cascade associated proteins by a proximity extension assay in 331 prevalent HD patients. Accounting for multiple testing, and in multivariable-adjusted linear regression models, circulating total form IAA levels were positively associated with stem cell factor (β coefficient 0.13, 95% confidence interval 0.04 to 0.21, p = 0.004). A bioinformatics approach using the search tool for interactions of chemicals (STITCH) tool provided information that IAA may be involved in the regulation of cell proliferation, hematopoietic cells, and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. The knowledge gained here can be generalized, thereby impacting the non-traditional CV risk factors in patients with kidney disease. Further in vitro work is necessary to validate the translation of the mechanistic pathways.
Collapse
Affiliation(s)
- Ping-Hsun Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
| | - Yi-Ting Lin
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Medical Sciences, Uppsala University, Uppsala 75105, Sweden
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Pei-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Hei-Hwa Lee
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Su-Chu Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 23142, Taiwan;
| | - Szu-Chia Chen
- Graduate Institute of Clinical Medicine, College of Medicines, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (Y.-T.L.); (P.-Y.W.); (S.-C.C.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 81267, Taiwan
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 7351)
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
50
|
Wu IW, Lin CY, Chang LC, Lee CC, Chiu CY, Hsu HJ, Sun CY, Chen YC, Kuo YL, Yang CW, Gao SS, Hsieh WP, Chung WH, Lai HC, Su SC. Gut Microbiota as Diagnostic Tools for Mirroring Disease Progression and Circulating Nephrotoxin Levels in Chronic Kidney Disease: Discovery and Validation Study. Int J Biol Sci 2020; 16:420-434. [PMID: 32015679 PMCID: PMC6990903 DOI: 10.7150/ijbs.37421] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022] Open
Abstract
The interplay of the gut microbes with gut-producing nephrotoxins and the renal progression remains unclear in large human cohort. Significant compositional and functional differences in the intestinal microbiota (by 16S rRNA gene sequencing) were noted among 30 controls and 92 (31 mild, 30 moderate and 31 advanced) patients at different chronic kidney disease (CKD) stages (discovery cohort). A core CKD-associated microbiota consisted of 7 genera (Escherichia_Shigella, Dialister, Lachnospiraceae_ND3007_group, Pseudobutyrivibrio, Roseburia, Paraprevotella and Ruminiclostridium) and 2 species (Collinsella stercoris and Bacteroides eggerthii) were identified to be highly correlated with the stages of CKD. Paraprevotella, Pseudobutyrivibrio and Collinsella stercoris were superior in discriminating CKD from the controls than the use of urine protein/creatinine ratio, even at early-stage of disease. The performance was further confirmed in a validation cohort comprising 22 controls and 76 peritoneal dialysis patients. Bacterial genera highly correlated with indoxyl sulfate and p-cresyl sulfate levels were identified. Prediction of the functional capabilities of microbial communities showed that microbial genes related to the metabolism of aromatic amino acids (phenylalanine, tyrosine, and tryptophan) were differentially enriched among the control and different CKD stages. Collectively, our results provide solid human evidence of the impact of gut-metabolite-kidney axis on the severity of chronic kidney disease and highlight a usefulness of specific gut microorganisms as possible disease differentiate marker of this global health burden.
Collapse
Affiliation(s)
- I-Wen Wu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chan-Yu Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Lun-Ching Chang
- Department of Mathematical Sciences, Florida Atlantic University, Florida, US
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chih-Yung Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Heng-Jung Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yuen-Chan Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Kuo
- Biotools, Co., Ltd, New Taipei City, Taiwan
| | - Chi-Wei Yang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkuo, Taiwan
| | - Sheng-Siang Gao
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hsin-Chih Lai
- Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Microbiota Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
| |
Collapse
|