1
|
Devan SBS, Ramli R, Alshehade SA, Lim SYM, Mamat N. Comparison of the techniques for isolating immunoassay-suitable proteins from heterogeneous fecal samples. Anal Biochem 2024; 698:115748. [PMID: 39667549 DOI: 10.1016/j.ab.2024.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Immunoassays could provide valuable insights into disease biomarkers and gut health by measuring fecal proteins. However, reliably isolating intact proteins from feces is challenging due to its heterogeneous and variable composition. This paper aims to review and compare different methods for extracting proteins from fecal samples to make them suitable for immunoassay analysis. Mechanical homogenization helps release proteins by disrupting solids, while protease inhibitors preserve protein integrity. Detergents like SDS solubilize proteins by disrupting hydrophobic interactions. Organic solvents such as acetone precipitate proteins and remove contaminants. Thermal treatment denatures proteases. Immunocapture uses antibodies to purify target proteins away from interference selectively. Commercial kits contain optimized buffers but may be cost-prohibitive. Combining mechanical, chemical, and immunological techniques synergistically integrates their advantages, improving the recovery of native proteins with reduced matrix effects. While all methods have merits, tailored protocols integrating multiple mechanisms appear most promising for extracting immunoassay-suitable fecal proteins. Further optimization and standardization of such combination approaches matched to proteins and assays of interest helps expand noninvasive fecal proteome analysis.
Collapse
Affiliation(s)
- Subramaniam-Betty Sheila Devan
- Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosli Ramli
- Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Salah Abdalrazak Alshehade
- Department of Pharmacology, Faculty of Pharmacy & Bio-Medical Sciences, MAHSA University, Selangor, 42610, Malaysia
| | - Sharoen Yu Ming Lim
- Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Noorhidayah Mamat
- Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Labossiere EH, Gonzalez-Diaz S, Enns S, Lopez P, Yang X, Kidane B, Vazquez-Grande G, Siddik AB, Kung SKP, Sandstrom P, Ravandi A, Ball TB, Su RC. Detectability of cytokine and chemokine using ELISA, following sample-inactivation using Triton X-100 or heat. Sci Rep 2024; 14:26777. [PMID: 39500912 PMCID: PMC11538312 DOI: 10.1038/s41598-024-74739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Clinical samples are routinely inactivated before molecular assays to prevent pathogen transmission. Antibody-based assays are sensitive to changes in analyte conformation, but the impact of inactivation on the analyte detectability has been overlooked. This study assessed the effects of commonly used inactivation-methods, Triton X-100 (0.5%) and heat (60 °C, 1 h), on cytokine/chemokine detection in plasma, lung aspirates, and nasopharyngeal samples. Heat significantly reduced analyte detectability in plasma (IL-12p40, IL-15, IL-16, VEGF, IL-7, TNF-β) by 33-99% (p ≤ 0.02), while Triton X-100 minimally affected analytes in plasma and nasopharyngeal samples (11-37%, p ≤ 0.04) and had no significant impact on lung aspirates. Structural analysis revealed that cytokines affected by heat had more hydrophobic residues and higher instability-indices. As the protein-detectability was affected differently in different sample types, the sample environment could also influence protein stability. This underscores the importance of selecting the most suitable inactivation methods for clinical samples to ensure accurate cytokine/chemokine analysis in both clinical and research settings.
Collapse
Affiliation(s)
- Erica Hofer Labossiere
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Sandra Gonzalez-Diaz
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Stephanie Enns
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Lopez
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xuefen Yang
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Gloria Vazquez-Grande
- Section of Critical Care, Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Abu Bakar Siddik
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Sam Kam-Pun Kung
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Paul Sandstrom
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Amir Ravandi
- Cardiovascular Lipidomics, Institute of Cardiovascular Sciences, St. Boniface Hospital, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Ruey-Chyi Su
- JC WILT Infectious Disease Research Center, National Microbiology Laboratories, Public Health Agency of Canada, Winnipeg, MB, Canada.
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Muthukutty P, MacDonald J, Yoo SY. Combating Emerging Respiratory Viruses: Lessons and Future Antiviral Strategies. Vaccines (Basel) 2024; 12:1220. [PMID: 39591123 PMCID: PMC11598775 DOI: 10.3390/vaccines12111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging viral diseases, including seasonal illnesses and pandemics, pose significant global public health risks. Respiratory viruses, particularly coronaviruses and influenza viruses, are associated with high morbidity and mortality, imposing substantial socioeconomic burdens. This review focuses on the current landscape of respiratory viruses, particularly influenza and SARS-CoV-2, and their antiviral treatments. It also discusses the potential for pandemics and the development of new antiviral vaccines and therapies, drawing lessons from past outbreaks to inform future strategies for managing viral threats.
Collapse
Affiliation(s)
| | | | - So Young Yoo
- Institute of Nanobio Convergence, Pusan National University, Busan 46241, Republic of Korea; (P.M.); (J.M.)
| |
Collapse
|
5
|
Zohreh Mirjalili S, Chavoshi F, Amini M, ZahraTamiji, Kobarfard F, Shirangi M. Development of a high-performance liquid chromatography using rhodamine B hydrazide as the derivatization reagent for determination of β propiolactone residues in inactivated COVID-19 vaccines. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124241. [PMID: 39053110 DOI: 10.1016/j.jchromb.2024.124241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
β-propiolactone (BPL) is an alkylating agent used for inactivation of biological samples such as vaccines. Due to its known carcinogenic properties, complete hydrolysis of BPL is essential, and the detection of trace amounts is crucial. In this study a novel High-Performance Liquid Chromatography-Ultraviolet (HPLC-UV) method was developed. Rhodamine B hydrazide (RBH) was synthesized and utilized as a derivatizing reagent to react with BPL. The reaction was optimized in a weak acidic solution, resulting in a high yield. The separation of the RBH-derivatized BPL was achieved on a C8 column and detected by a UV detector at a wavelength of 560 nm. The method's validation demonstrated a high linearity (r2 > 0.99) over a concentration range of 0.5-50 µg/mL, with detection and quantification limits of 0.17 µg/mL and 0.5 µg/mL, respectively. The average recovery of samples was 85.20 % with a relative standard deviation (RSD) of 1.75 %. This method was successfully applied for BPL residue analysis in inactivated COVID-19 vaccines. This novel derivatization method offers a promising solution for monitoring BPL residues in the vaccine production process for quality control purposes and compliance with regulatory standards.
Collapse
Affiliation(s)
- Seyedeh Zohreh Mirjalili
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Chavoshi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - ZahraTamiji
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Chemometrics, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Shirangi
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; PharmaBridge, Pharmaceutical Consultancy Company, Jule Stynestraat 102 3543 DS, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Kurniawan Y, Tyasningsih W, Rahmahani J, Puspitasari Y, Kusnoto K, Azzahra F, Tobing TM, Aswin A, Diyantoro D, Maulana FK, Susilowati H, Kuncorojakti S, Rantam FA. Protein characterization of an Indonesian isolate of foot and mouth disease virus inactivated with formaldehyde and binary ethylenimine. Vet World 2024; 17:1836-1845. [PMID: 39328437 PMCID: PMC11422645 DOI: 10.14202/vetworld.2024.1836-1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-footed animals. It is a major threat to livestock production worldwide, causing significant economic losses. Inactivation of FMD virus (FMDV) is crucial for vaccine development and control of outbreaks. However, traditional inactivation methods can sometimes damage the viral protein, affecting vaccine efficacy. Therefore, finding new inactivating agents that effectively inactivate the virus while preserving the integrity of its proteins is an important research area. This study investigated the optimal materials (0.04% formaldehyde, 0.001 M binary ethylenimine [BEI], or a combination) for inactivating and preserving the specific molecular weight of Serotype O FMDV protein. Materials and Methods This study used serotype O FMDV isolated from several areas of East Java. The virus was inoculated into baby hamster kidney-21 cells, and the titer was calculated using the TCID50 Assay. The virus was inactivated using 0.04% formaldehyde, 0.001 M BEI, or a combination of 0.04% formaldehyde and 0.001 M BEI. Inactive viral proteins were characterized using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting. Results Serotype O FMDV can be inactivated using 0.04% formaldehyde while preserving specific FMDV proteins, specifically VP0 and VP3 with a molecular weight (MW) of 36 kDa and VP3 with a MW of 24 kDa. Serotype O FMDV can be inactivated by 0.001 M BEI while preserving specific FMDV proteins, specifically VP0 with a MW of 35 kDa, VP3 with a MW of 28 kDa, and VP1 with a MW of 23 kDa. FMDV serotype O can be inactivated using a combination of 0.04% formaldehyde and 0.001 M BEI while preserving specific FMDV proteins, specifically VP0 and VP3 with a MW of 36 kDa and VP3 with a MW of 24 kDa. Conclusion This study found that 0.04% formaldehyde, alone or in combination with 0.001 M BEI, was effective for inactivating and preserving the specific molecular weight of Serotype O FMDV protein. The limitation of this study was the inactivations of the virus have not yet been tested for their potency on experimental animals. Further research is warranted to investigate the inactivation kinetics of these materials, including their potency on experimental animals. Additionally, a comparison of the inactivation rates between 0.04% formaldehyde alone and the combination with BEI would help to determine the optimal inactivation agent for future applications.
Collapse
Affiliation(s)
- Yudha Kurniawan
- Magister Program in Vaccinology and Immunotherapeutic, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Wiwiek Tyasningsih
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Jola Rahmahani
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Yulianna Puspitasari
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Kusnoto Kusnoto
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fadia Azzahra
- Bachelor Program in Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Talenta Miracle Tobing
- Bachelor Program in Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Ahmad Aswin
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Diyantoro Diyantoro
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Faculty of Vocational Studies, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firdausy Kurnia Maulana
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Helen Susilowati
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Suryo Kuncorojakti
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fedik Abdul Rantam
- Division of Veterinary Microbiology, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- Research Centre for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
7
|
Pastorino B, Touret F, Gilles M, De Lamballerie X, Charrel RN. Current status of pathogen handling in European laboratories: focus on viral inactivation process. Front Bioeng Biotechnol 2024; 12:1422553. [PMID: 38911551 PMCID: PMC11190168 DOI: 10.3389/fbioe.2024.1422553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
For handling safely infectious agents, European laboratories must comply with specific EC Directives, national regulations and recommendations from the World Health Organization (WHO). To prevent laboratory acquired infections (LAIs) and pathogens dissemination, a key biosafety rule requires that any infectious material (clinical specimens or research samples) manipulated outside a biosafety cabinet (BSC) must be inactivated unless the lack of infectivity is proven. This inactivation process is a crucial step for biosafety and must be guided by a rigorous experimental qualification and validation procedure. However, for diagnostic or research laboratories, this process is not harmonized with common standard operation procedures (SOPs) but based on individual risk assessment and general international guidelines which can pose problems in emergency situations such as major outbreaks or pandemics. This review focuses on viral inactivation method, outlining the current regulatory framework, its limitations and a number of ways in which biosafety can be improved.
Collapse
Affiliation(s)
- Boris Pastorino
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Franck Touret
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Magali Gilles
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Laboratoire des Infections Virales Aigues et Tropicales, AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Remi N. Charrel
- Unité des Virus Émergents (UVE: Aix-Marseille Univ, Università di Corsica, IRD 190, Inserm 1207, IRBA), Marseille, France
- Laboratoire des Infections Virales Aigues et Tropicales, AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
- LE Service de Prévention du Risque Infectieux (LESPRI), CLIN AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| |
Collapse
|
8
|
Wilkinson AF, Barra MJ, Novak EN, Bond M, Richards-Kortum R. Point-of-care isothermal nucleic acid amplification tests: progress and bottlenecks for extraction-free sample collection and preparation. Expert Rev Mol Diagn 2024; 24:509-524. [PMID: 38973430 PMCID: PMC11514575 DOI: 10.1080/14737159.2024.2375233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Suitable sample collection and preparation methods are essential to enable nucleic acid amplification testing at the point of care (POC). Strategies that allow direct isothermal nucleic acid amplification testing (iNAAT) of crude sample lysate without the need for nucleic acid extraction minimize time to result as well as the need for operator expertise and costly infrastructure. AREAS COVERED The authors review research to understand how sample matrix and preparation affect the design and performance of POC iNAATs. They focus on approaches where samples are directly combined with liquid reagents for preparation and amplification via iNAAT strategies. They review factors related to the type and method of sample collection, storage buffers, and lysis strategies. Finally, they discuss RNA targets and relevant regulatory considerations. EXPERT OPINION Limitations in sample preparation methods are a significant technical barrier preventing implementation of nucleic acid testing at the POC. The authors propose a framework for co-designing sample preparation and amplification steps for optimal performance with an extraction-free paradigm by considering a sample matrix and lytic strategy prior to an amplification assay and readout. In the next 5 years, the authors anticipate increasing priority on the co-design of sample preparation and iNAATs.
Collapse
Affiliation(s)
| | - Maria J. Barra
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Emilie N. Novak
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Meaghan Bond
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | | |
Collapse
|
9
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
10
|
Senpuku K, Kataoka-Nakamura C, Kunishima Y, Hirai T, Yoshioka Y. An inactivated whole-virion vaccine for Enterovirus D68 adjuvanted with CpG ODN or AddaVax elicits potent protective immunity in mice. Vaccine 2024; 42:2463-2474. [PMID: 38472067 DOI: 10.1016/j.vaccine.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024]
Abstract
Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, β-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.
Collapse
Affiliation(s)
- Kota Senpuku
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikako Kataoka-Nakamura
- The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Kunishima
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshiro Hirai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and DDS, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
11
|
Mariotti D, Bettini A, Meschi S, Notari S, Francalancia M, Tartaglia E, Lapa D, Specchiarello E, Girardi E, Matusali G, Maggi F. Effect of chemical and physical agents on monkeypox virus infectivity and downstream research applications. Virology 2024; 592:109993. [PMID: 38244323 DOI: 10.1016/j.virol.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The 2022 global spread of Monkeypox Virus (MPXV) underlined the need to investigate safe-handling procedures of clinical and research samples. Here we evaluated the efficiency in reducing MPXV infectious titer of Triton X-100 (0.1 and 0.2%), UV-C irradiation (15 or 30 min), and heat (56 °C 30 min or 70 °C 5 min). The treatment of MPXV at 70 °C resulted in the strongest decrease of MPXV infectious titer (5.4 Log TCID50/mL), 56 °C and UV-C had a lighter impact (3.9 and 4.3Log), Triton X-100 was less efficient (1.8-2.5Log). Notably, SARS-CoV-2 was much more susceptible to Triton X-100 (4.0 Log decrease). UV-C had the highest impact on MPXV DNA detection by PCR (2.2-4.3 Ct value increase); protein detection by ELISA was dramatically impaired by heating. Overall, UV-C and heating were more effective in lowering MPXV infectious titer but their impact on nucleic acids or protein detection assays must be considered.
Collapse
Affiliation(s)
- Davide Mariotti
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Aurora Bettini
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Massimo Francalancia
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Daniele Lapa
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Eliana Specchiarello
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy.
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases "Lazzaro Spallanzani" IRCCS, Via Portuense 292, 00149, Rome, Italy
| |
Collapse
|
12
|
Schulze K, Weber U, Schuy C, Durante M, Guzmán CA. Influenza Virus Inactivated by Heavy Ion Beam Irradiation Stimulates Antigen-Specific Immune Responses. Pharmaceutics 2024; 16:465. [PMID: 38675126 PMCID: PMC11054185 DOI: 10.3390/pharmaceutics16040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has made clear the need for effective and rapid vaccine development methods. Conventional inactivated virus vaccines, together with new technologies like vector and mRNA vaccines, were the first to be rolled out. However, the traditional methods used for virus inactivation can affect surface-exposed antigen, thereby reducing vaccine efficacy. Gamma rays have been used in the past to inactivate viruses. We recently proposed that high-energy heavy ions may be more suitable as an inactivation method because they increase the damage ratio between the viral nucleic acid and surface proteins. Here, we demonstrate that irradiation of the influenza virus using heavy ion beams constitutes a suitable method to develop effective vaccines, since immunization of mice by the intranasal route with the inactivated virus resulted in the stimulation of strong antigen-specific humoral and cellular immune responses.
Collapse
Affiliation(s)
- Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| | - Ulrich Weber
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Fachbereich Mathematik, Naturwissenschaften und Informatik, Technische Hochschule Mittelhessen, 35390 Gießen, Germany
| | - Christoph Schuy
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; (U.W.); (C.S.); (M.D.)
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Department of Physics “Ettore Pancini”, University Federico II, 80138 Naples, Italy
| | - Carlos Alberto Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Zentrum für Infektionsforschung (HZI), 38124 Braunschweig, Germany;
| |
Collapse
|
13
|
Torii S, Gouttenoire J, Kumar K, Antanasijevic A, Kohn T. Influence of Amino Acid Substitutions in Capsid Proteins of Coxsackievirus B5 on Free Chlorine and Thermal Inactivation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5279-5289. [PMID: 38488515 PMCID: PMC10976892 DOI: 10.1021/acs.est.3c10409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
The sensitivity of enteroviruses to disinfectants varies among genetically similar variants and coincides with amino acid changes in capsid proteins, although the effect of individual substitutions remains unknown. Here, we employed reverse genetics to investigate how amino acid substitutions in coxsackievirus B5 (CVB5) capsid proteins affect the virus' sensitivity to free chlorine and heat treatment. Of ten amino acid changes observed in CVB5 variants with free chlorine resistance, none significantly reduced the chlorine sensitivity, indicating a minor role of the capsid composition in chlorine sensitivity of CVB5. Conversely, a subset of these amino acid changes located at the C-terminal region of viral protein 1 led to reduced heat sensitivity. Cryo-electron microscopy revealed that these changes affect the assembly of intermediate viral states (altered and empty particles), suggesting that the mechanism for reduced heat sensitivity could be related to improved molecular packing of CVB5, resulting in greater stability or altered dynamics of virus uncoating during infection.
Collapse
Affiliation(s)
- Shotaro Torii
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division
of Gastroenterology and Hepatology, Lausanne
University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Kiruthika Kumar
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aleksandar Antanasijevic
- Virology
and Structural Immunology Laboratory, School of Life Sciences, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tamar Kohn
- Laboratory
of Environmental Chemistry, School of Architecture, Civil and Environmental
Engineering (ENAC), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Chaki SP, Kahl-McDonagh MM, Neuman BW, Zuelke KA. Validating the inactivation of viral pathogens with a focus on SARS-CoV-2 to safely transfer samples from high-containment laboratories. Front Cell Infect Microbiol 2024; 14:1292467. [PMID: 38510962 PMCID: PMC10951993 DOI: 10.3389/fcimb.2024.1292467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Pathogen leak from a high-containment laboratory seriously threatens human safety, animal welfare, and environmental security. Transportation of pathogens from a higher (BSL4 or BSL3) to a lower (BSL2) containment laboratory for downstream experimentation requires complete pathogen inactivation. Validation of pathogen inactivation is necessary to ensure safety during transportation. This study established a validation strategy for virus inactivation. Methods SARS-CoV-2 wild type, delta, and omicron variants underwent heat treatment at 95°C for 10 minutes using either a hot water bath or a thermocycler. To validate the inactivation process, heat-treated viruses, and untreated control samples were incubated with A549-hACE2 and Vero E6-TMPRSS2-T2A-ACE2 cells. The cells were monitored for up to 72 hours for any cytopathic effects, visually and under a microscope, and for virus genome replication via RT-qPCR. The quality of post-treated samples was assessed for suitability in downstream molecular testing applications. Results Heat treatment at 95°C for 10 minutes effectively inactivated SARS-CoV-2 variants. The absence of cytopathic effects, coupled with the inability of virus genome replication, validated the efficacy of the inactivation process. Furthermore, the heat-treated samples proved to be qualified for COVID-19 antigen testing, RT-qPCR, and whole-genome sequencing. Discussion By ensuring the safety of sample transportation for downstream experimentation, this validation approach enhances biosecurity measures. Considerations for potential limitations, comparisons with existing inactivation methods, and broader implications of the findings are discussed.
Collapse
Affiliation(s)
- Sankar Prasad Chaki
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| | - Melissa M. Kahl-McDonagh
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| | - Benjamin W. Neuman
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
- Department of Biological Sciences, Texas A&M University, College Station, TX, United States
- Department of Molecular Pathogenesis and Immunology, Texas A&M University, College Station, TX, United States
| | - Kurt A. Zuelke
- Global Health Research Complex, Division of Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
15
|
Lauritsen CJ, Trinh IV, Desai SP, Clancey E, Murrell AE, Rambaran S, Chandra S, Elliott DH, Smira AR, Mo Z, Stone AE, Agbodji A, Dugas CM, Satou R, Pridjian G, Longo S, Ley SH, Robinson JE, Norton EB, Piedimonte G, Gunn BM. Passive antibody transfer from pregnant women to their fetus are maximized after SARS-CoV-2 vaccination irrespective of prior infection. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100189. [PMID: 38268538 PMCID: PMC10805668 DOI: 10.1016/j.jacig.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 01/26/2024]
Abstract
Background Pregnancy is associated with a higher risk of adverse symptoms and outcomes for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection for both mother and neonate. Antibodies can provide protection against SARS-CoV-2 infection and are induced in pregnant women after vaccination or infection. Passive transfer of these antibodies from mother to fetus in utero may provide protection to the neonate against infection. However, it is unclear whether the magnitude or quality and kinetics of maternally derived fetal antibodies differs in the context of maternal infection or vaccination. Objective We aimed to determine whether antibodies transferred from maternal to fetus differed in quality or quantity between infection- or vaccination-induced humoral immune responses. Methods We evaluated 93 paired maternal and neonatal umbilical cord blood plasma samples collected between October 2020 and February 2022 from a birth cohort of pregnant women from New Orleans, Louisiana, with histories of SARS-CoV-2 infection and/or vaccination. Plasma was profiled for the levels of spike-specific antibodies and induction of antiviral humoral immune functions, including neutralization and Fc-mediated innate immune effector functions. Responses were compared between 4 groups according to maternal infection and vaccination. Results We found that SARS-CoV-2 vaccination or infection during pregnancy increased the levels of antiviral antibodies compared to naive subjects. Vaccinated mothers and cord samples had the highest anti-spike antibody levels and antiviral function independent of the time of vaccination during pregnancy. Conclusions These results show that the most effective passive transfer of functional antibodies against SARS-CoV-2 in utero is achieved through vaccination, highlighting the importance of vaccination in pregnant women.
Collapse
Affiliation(s)
- Cody J. Lauritsen
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - Ivy V. Trinh
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, La
| | - Srushti P. Desai
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Erin Clancey
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - Amelie E. Murrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, La
| | - Saraswatie Rambaran
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, La
| | - Sruti Chandra
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Ashley R. Smira
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Zhiyin Mo
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Addison E. Stone
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, La
| | - Ayitevi Agbodji
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Courtney M. Dugas
- Department of Physiology, Tulane University School of Medicine, New Orleans, La
| | - Ryousuke Satou
- Department of Physiology, Tulane University School of Medicine, New Orleans, La
| | - Gabriella Pridjian
- Department of Obstetrics and Gynecology, Tulane University School of Medicine, New Orleans, La
| | | | - Sylvia H. Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Elizabeth B. Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, La
| | - Giovanni Piedimonte
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| |
Collapse
|
16
|
Shi H, Ross TM. Inactivated recombinant influenza vaccine: the promising direction for the next generation of influenza vaccine. Expert Rev Vaccines 2024; 23:409-418. [PMID: 38509022 PMCID: PMC11056089 DOI: 10.1080/14760584.2024.2333338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Vaccination is the most effective method to control the prevalence of seasonal influenza and the most widely used influenza vaccine is the inactivated influenza vaccine (IIV). Each season, the influenza vaccine must be updated to be most effective against current circulating variants. Therefore, developing a universal influenza vaccine (UIV) that can elicit both broad and durable protection is of the utmost importance. AREA COVERED This review summarizes and compares the available influenza vaccines in the market and inactivation methods used for manufacturing IIVs. Then, we discuss the latest progress of the UIV development in the IIV format and the challenges to address for moving these vaccine candidates to clinical trials and commercialization. The literature search was based on the Centers for Disease Control and Prevention (CDC) and the PubMed databases. EXPERT OPINION The unmet need for UIV is the primary aim of developing the next generation of influenza vaccines. The IIV has high antigenicity and a refined manufacturing process compared to most other formats. Developing the UIV in IIV format is a promising direction with advanced biomolecular technologies and next-generation adjuvant. It also inspires the development of universal vaccines for other infectious diseases.
Collapse
Affiliation(s)
- Hua Shi
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL, USA
- Department of Infection Biology, Lehner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
17
|
Sulejmanovic T, Schnug J, Philipp HC. Veterinary Autogenous Vaccines for Poultry in Europe-Many Ways to Crack an Egg. Avian Dis 2024; 67:456-466. [PMID: 38300664 DOI: 10.1637/aviandiseases-d-23-99991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 02/02/2024]
Abstract
In the past decade, European animal farming has increasingly used autogenous vaccines for the prevention of nonnotifiable diseases. In Europe, these vaccines are exclusively inactivated bacterial and viral vaccines, with a set of specific regulations that differentiate them from conventional vaccines. The highest number of applications most likely occurs in poultry, as these animal species are farmed in the highest numbers compared with other types of food-producing animals. In 2019, autogenous vaccines came within the scope of harmonized European regulation for the first time, although many important aspects are still missing and need to be further developed. Consequently, several important legal provisions remain in national legislations and can vary tremendously between different member states of the European Union. The inclusion of autogenous vaccines in the management of certain diseases of poultry is justified by the nonavailability of licensed vaccines and the evolution and diversity of antigens in the field that are not covered by licensed vaccines. In addition, these vaccines aid in reducing the use of antibiotics. The methods for isolating and typing pathogenic isolates to obtain relevant antigens are pathogen specific and require a careful approach based on clinical evidence. Manufacturing processes are optimized according to regulatory standards, and they represent the most critical factor influencing the quality of autogenous vaccines and their placement on the market. This review presents the important requirements for manufacturing autogenous vaccines for poultry in addition to the relevant regulatory considerations. The results from a survey of several European Union member states regarding specific provisions within their national legislations are also presented.
Collapse
Affiliation(s)
- Tarik Sulejmanovic
- Vaxxinova Autogenous Vaccines GmbH, Anton-Flettner-Strasse 6, 27472 Cuxhaven, Germany,
| | - Jana Schnug
- Vaxxinova Autogenous Vaccines GmbH, Anton-Flettner-Strasse 6, 27472 Cuxhaven, Germany
| | | |
Collapse
|
18
|
Wyler E. Single-Cell RNA-Sequencing of RVFV Infection. Methods Mol Biol 2024; 2824:361-372. [PMID: 39039423 DOI: 10.1007/978-1-0716-3926-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
On the RNA level, viral infections are characterized by perturbations in the host cell transcriptome as well as the development of viral genetic information. Investigating the abundance and dynamic of RNA molecules can provide ample information to understand many aspects of the infection, from viral replication to pathogenesis. A key aspect therein is the resolution of the data, as infections are generally highly heterogeneous. Even in simple model systems such as cell lines, viral infections happen in a very asynchronous way. Quantifying RNAs at single-cell resolution can therefore substantially increase our understanding of these processes.Whereas measuring the RNA in bulk, that is, in samples containing thousands to hundreds of thousands of cells, is established and widely used since many years, methods for studying not only just a few different RNAs in individual cells became widely available only recently. Here, I outline and compare current concepts and methodologies for using single-cell RNA-sequencing to study virus infections. This covers sample preparation, cell preservation, biosafety considerations, and various experimental methods, with a special focus on the aspects that are important for studying virus infections. Since there is not "the one" method for doing single-cell RNA-sequencing, I will not provide a detailed protocol. Rather, this chapter should serve as a primer for getting started with single-cell RNA-sequencing experiments of virus infections and discusses the criteria that allow readers to choose the best procedures for their specific research question.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Helmholtz Association, Berlin, Germany.
| |
Collapse
|
19
|
Islam A, Rahman MZ, Hassan MM, Epstein JH, Klaassen M. Determinants for the presence of avian influenza virus in live bird markets in Bangladesh: Towards an easy fix of a looming one health issue. One Health 2023; 17:100643. [PMID: 38024264 PMCID: PMC10665153 DOI: 10.1016/j.onehlt.2023.100643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Highly pathogenic avian influenza virus subtype H5N1 endangers poultry, wildlife, and human health and is enzootic in large parts of Asia, with live bird markets (LBMs) as putative hotspots for their maintenance, amplification, and spread. To mitigate the extent of these and other avian influenza viruses (AIV) of concern, we aimed to increase our quantitative understanding of the factors determining the presence of avian influenza virus in LBM stalls. Between 2016 and 2017, we collected fecal or offal samples from 1008 stalls in 113 LBMs across the Dhaka and Rajshahi districts in Bangladesh. For each stall, samples were pooled and tested for the AIV matrix gene, followed by H5 and H9 subtyping using rRT-PCR. We detected Influenza A viral RNA in 49% of the stalls. Of the AIV positive samples, 52% and 24% were determined to be H5 and H9 viruses, respectively, which are both subtypes of considerable health concern. We used generalized linear mixed effect modelling to study AIV presence in individual stalls within LBMs as a function of 13 out of the 20 risk factors identified by FAO. We found that small and feasible improvements in cleaning and disinfection frequency, installing running water in stalls, and not mixing different breeds of chicken in the same cages had large impacts on the presence of AIV in stalls (Odds ratios 0.03-0.05). Next, cleaning vehicles used in poultry transport, not selling waterfowl with chickens in the same stall, buying stock directly from commercial farms, separating sick birds from healthy ones, and avoiding access by wild birds like house crows, also had major effects on lowering the risk of stalls having AIV (Odds ratios 0.16-0.33). These findings can be directly used in developing practical and affordable measures to reduce the prevalence of AIV in LBMs. Also, in settings with limited resources like Bangladesh, such mitigation may significantly contribute to reducing AIV circulation amongst poultry and spillover to wildlife and humans.
Collapse
Affiliation(s)
- Ariful Islam
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
- EcoHealth Alliance, New York, NY 10018, USA
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Marcel Klaassen
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
20
|
Duytschaever G, Ströher PR, Fonseca K, van der Meer F, Melin AD. Effectiveness of TRIzol in Inactivating Animal Pathogens. APPLIED BIOSAFETY 2023; 28:230-241. [PMID: 38090354 PMCID: PMC10712369 DOI: 10.1089/apb.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Introduction Safe handling of biological samples sourced from wild ecosystems is a pressing concern for scientists in disparate fields, including ecology and evolution, OneHealth initiatives, bioresources, geography, veterinary medicine, conservation, and many others. This is especially relevant given the growing global research community and collaborative networks that often span international borders. Treatments to inactivate potential pathogens of concern during transportation and analysis of biospecimens while preserving molecular structures of interest are necessary. Objective We provide a detailed resource on the effectiveness and limitations of TRIzol™ Reagent, a product commonly used in molecular biology to inactivate bacterial and viral pathogens found in wild animals. Methods By literature review, we evaluate the mode of action of TRIzol Reagent and its main components on bacterial and viral structures. We also synthesize peer-reviewed literature on the effectiveness of TRIzol in inactivating a broad range of infectious bacteria and viruses. Key Findings TRIzol Reagent inactivation is based on phenol, chaotropic salts, and sodium acetate. We find evidence of widespread efficacy in deactivating bacteria and a broad range of enveloped viruses. The efficacy against a subset of potential pathogens, including some nonenveloped viruses, remains uncertain. Conclusion Available evidence suggests that TRIzol Reagent is effective in inactivating a broad spectrum of bacteria and viruses from cells, tissues, and liquids in biological samples when the matrices are exposed to at least 10 min at room temperature to the reagent. We highlight areas that require additional research and discuss implications for laboratory protocols.
Collapse
Affiliation(s)
- Gwen Duytschaever
- Department of Anthropology and Archaeology; Calgary, Alberta, Canada
| | | | - Kevin Fonseca
- Alberta Provincial Laboratory for Public Health; Calgary, Alberta, Canada
| | | | - Amanda D. Melin
- Department of Anthropology and Archaeology; Calgary, Alberta, Canada
- Department of Medical Genetics; and Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Crimean Congo Haemorrhagic Fever Virus and Lassa Virus. APPLIED BIOSAFETY 2023; 28:216-229. [PMID: 38090357 PMCID: PMC10712363 DOI: 10.1089/apb.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Introduction Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control, Abuja and Prevention, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
22
|
Zhdanov DD, Ivin YY, Shishparenok AN, Kraevskiy SV, Kanashenko SL, Agafonova LE, Shumyantseva VV, Gnedenko OV, Pinyaeva AN, Kovpak AA, Ishmukhametov AA, Archakov AI. Perspectives for the creation of a new type of vaccine preparations based on pseudovirus particles using polio vaccine as an example. BIOMEDITSINSKAIA KHIMIIA 2023; 69:253-280. [PMID: 37937429 DOI: 10.18097/pbmc20236905253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Traditional antiviral vaccines are currently created by inactivating the virus chemically, most often using formaldehyde or β-propiolactone. These approaches are not optimal since they negatively affect the safety of the antigenic determinants of the inactivated particles and require additional purification stages. The most promising platforms for creating vaccines are based on pseudoviruses, i.e., viruses that have completely preserved the outer shell (capsid), while losing the ability to reproduce owing to the destruction of the genome. The irradiation of viruses with electron beam is the optimal way to create pseudoviral particles. In this review, with the example of the poliovirus, the main algorithms that can be applied to characterize pseudoviral particles functionally and structurally in the process of creating a vaccine preparation are presented. These algorithms are, namely, the analysis of the degree of genome destruction and coimmunogenicity. The structure of the poliovirus and methods of its inactivation are considered. Methods for assessing residual infectivity and immunogenicity are proposed for the functional characterization of pseudoviruses. Genome integrity analysis approaches, atomic force and electron microscopy, surface plasmon resonance, and bioelectrochemical methods are crucial to structural characterization of the pseudovirus particles.
Collapse
Affiliation(s)
- D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Yu Yu Ivin
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Gnedenko
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Pinyaeva
- Institute of Biomedical Chemistry, Moscow, Russia; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A A Kovpak
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
23
|
Das A, Ahmed Z, Xu L, Jia W. Assessment and verification of chemical inactivation of peste des petits ruminants virus by virus isolation following virus capture using Nanotrap magnetic virus particles. Microbiol Spectr 2023; 11:e0068923. [PMID: 37655907 PMCID: PMC10580900 DOI: 10.1128/spectrum.00689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/28/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Research including diagnosis on highly contagious viruses at the molecular level such as PCR and next-generation sequencing requires complete inactivation of the virus to ensure biosafety and biosecurity so that any accidental release of the virus does not compromise the safety of the susceptible population and the environment. In this work, peste des petits ruminants virus (PPRV) was inactivated with chemical agents, and the virus inactivation was confirmed by virus isolation (VI) using Vero cells. Since the chemical agents are cytotoxic, inactivated virus (PPRV) was diluted 1:100 to neutralize cytotoxicity, and the residual viruses (if any) were captured using Nanotrap magnetic virus particles (NMVPs). The NMVPs and the captured viruses were subjected to VI. No CPE was observed, indicating complete inactivation, and the results were further supported by real-time RT-PCR. This new protocol to verify virus inactivation can be applicable to other viruses.
Collapse
Affiliation(s)
- Amaresh Das
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Zaheer Ahmed
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Lizhe Xu
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| | - Wei Jia
- US Department of Agriculture, Animal and Plant Health Inspection Service, National Veterinary Services Laboratories, Foreign Animal Disease Diagnostic Laboratory, Reagents and Vaccine Services Section, Plum Island Animal Disease Center, Orient Point, New York, USA
| |
Collapse
|
24
|
de Lima LF, Ferreira AL, Awasthi S, Torres MD, Friedman HM, Cohen GH, de Araujo WR, de la Fuente-Nunez C. Rapid and accurate detection of herpes simplex virus type 2 using a low-cost electrochemical biosensor. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101513. [PMID: 38239491 PMCID: PMC10795591 DOI: 10.1016/j.xcrp.2023.101513] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herpes simplex virus type 2 (HSV-2) infection, which is almost exclusively sexually transmitted, causes genital herpes. Although this lifelong and incurable infection is extremely widespread, currently there is no readily available diagnostic device that accurately detects HSV-2 antigens to a satisfactory degree. Here, we report an ultrasensitive electrochemical device that detects HSV-2 antigens within 9 min and costs just $1 (USD) to manufacture. The electrochemical biosensor is biofunctionalized with the human cellular receptor nectin-1 and detects the glycoprotein gD2, which is present within the HSV-2 viral envelope. The performance of the device is tested in a guinea pig model that mimics human biofluids, yielding 88.9% sensitivity, 100.0% specificity, and 95.0% accuracy under these conditions, with a limit of detection of 0.019 fg mL-1 for gD2 protein and 0.057 PFU mL-1 for titered viral samples. Importantly, no cross-reactions with other viruses were detected, indicating the adequate robustness and selectivity of the sensor. Our low-cost technology could facilitate more frequent testing for HSV-2.
Collapse
Affiliation(s)
- Lucas F. de Lima
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - André L. Ferreira
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
- These authors contributed equally
| | - Sita Awasthi
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo D.T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Harvey M. Friedman
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary H. Cohen
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William R. de Araujo
- Portable Chemical Sensors Lab, Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas – UNICAMP, Campinas, Sã o Paulo, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
25
|
Pezzotti G, Ohgitani E, Ikegami S, Shin-Ya M, Adachi T, Yamamoto T, Kanamura N, Marin E, Zhu W, Okuma K, Mazda O. Instantaneous Inactivation of Herpes Simplex Virus by Silicon Nitride Bioceramics. Int J Mol Sci 2023; 24:12657. [PMID: 37628838 PMCID: PMC10454075 DOI: 10.3390/ijms241612657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrolytic reactions taking place at the surface of a silicon nitride (Si3N4) bioceramic were found to induce instantaneous inactivation of Human herpesvirus 1 (HHV-1, also known as Herpes simplex virus 1 or HSV-1). Si3N4 is a non-oxide ceramic compound with strong antibacterial and antiviral properties that has been proven safe for human cells. HSV-1 is a double-stranded DNA virus that infects a variety of host tissues through a lytic and latent cycle. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of HSV-1 DNA after instantaneous contact with Si3N4 showed that ammonia and its nitrogen radical byproducts, produced upon Si3N4 hydrolysis, directly reacted with viral proteins and fragmented the virus DNA, irreversibly damaging its structure. A comparison carried out upon testing HSV-1 against ZrO2 particles under identical experimental conditions showed a significantly weaker (but not null) antiviral effect, which was attributed to oxygen radical influence. The results of this study extend the effectiveness of Si3N4's antiviral properties beyond their previously proven efficacy against a large variety of single-stranded enveloped and non-enveloped RNA viruses. Possible applications include the development of antiviral creams or gels and oral rinses to exploit an extremely efficient, localized, and instantaneous viral reduction by means of a safe and more effective alternative to conventional antiviral creams. Upon incorporating a minor fraction of micrometric Si3N4 particles into polymeric matrices, antiherpetic devices could be fabricated, which would effectively impede viral reactivation and enable high local effectiveness for extended periods of time.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (S.I.); (W.Z.)
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.)
| | - Saki Ikegami
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (S.I.); (W.Z.)
| | - Masaharu Shin-Ya
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.)
| | - Tetsuya Adachi
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (S.I.); (W.Z.)
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (T.Y.); (N.K.)
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan; (S.I.); (W.Z.)
| | - Kazu Okuma
- Department of Microbiology, School of Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (E.O.); (M.S.-Y.); (T.A.)
| |
Collapse
|
26
|
Chattopadhyay A, Jailani AAK, Mandal B. Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness. Vaccines (Basel) 2023; 11:1347. [PMID: 37631915 PMCID: PMC10458178 DOI: 10.3390/vaccines11081347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
After two years since the declaration of COVID-19 as a pandemic by the World Health Organization (WHO), more than six million deaths have occurred due to SARS-CoV-2, leading to an unprecedented disruption of the global economy. Fortunately, within a year, a wide range of vaccines, including pathogen-based inactivated and live-attenuated vaccines, replicating and non-replicating vector-based vaccines, nucleic acid (DNA and mRNA)-based vaccines, and protein-based subunit and virus-like particle (VLP)-based vaccines, have been developed to mitigate the severe impacts of the COVID-19 pandemic. These vaccines have proven highly effective in reducing the severity of illness and preventing deaths. However, the availability and supply of COVID-19 vaccines have become an issue due to the prioritization of vaccine distribution in most countries. Additionally, as the virus continues to mutate and spread, questions have arisen regarding the effectiveness of vaccines against new strains of SARS-CoV-2 that can evade host immunity. The urgent need for booster doses to enhance immunity has been recognized. The scarcity of "safe and effective" vaccines has exacerbated global inequalities in terms of vaccine coverage. The development of COVID-19 vaccines has fallen short of the expectations set forth in 2020 and 2021. Furthermore, the equitable distribution of vaccines at the global and national levels remains a challenge, particularly in developing countries. In such circumstances, the exigency of plant virus-based vaccines has become apparent as a means to overcome supply shortages through fast manufacturing processes and to enable quick and convenient distribution to millions of people without the reliance on a cold chain system. Moreover, plant virus-based vaccines have demonstrated both safety and efficacy in eliciting robust cellular immunogenicity against COVID-19 pathogens. This review aims to shed light on the advantages and disadvantages of different types of vaccines developed against SARS-CoV-2 and provide an update on the current status of plant-based vaccines in the fight against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anirudha Chattopadhyay
- Pulses Research Station, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar 385506, India;
| | - A. Abdul Kader Jailani
- Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
27
|
Seeburg U, Urda L, Otte F, Lett MJ, Caimi S, Mittelholzer C, Klimkait T. Virus Inactivation by Formaldehyde and Common Lysis Buffers. Viruses 2023; 15:1693. [PMID: 37632035 PMCID: PMC10458352 DOI: 10.3390/v15081693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous mammalian viruses are routinely analyzed in clinical diagnostic laboratories around the globe or serve as indispensable model systems in viral research. Potentially infectious viral entities are handled as blood, biopsies, or cell and tissue culture samples. Countless protocols describe methods for virus fixation and inactivation, yet for many, a formal proof of safety and completeness of inactivation remains to be shown. While modern nucleic acid extraction methods work quite effectively, data are largely lacking on possible residual viral infectivity, e.g., when assessed after extended culture times, which maximizes the sensitivity for low levels of residual infectiousness. Therefore, we examined the potency and completeness of inactivation procedures on virus-containing specimens when applying commonly used fixatives like formaldehyde or nucleic acid extraction/lysis buffers. Typical representatives of different virus classes, including RNA and DNA viruses, enveloped and non-enveloped, such as adenovirus, enterovirus, lentivirus, and coronavirus, were used, and the reduction in the in vitro infectiousness was assessed for standard protocols. Overall, a 30-minute incubation with formaldehyde at room temperature effectively inactivated all tested enveloped and non-enveloped viruses. Full inactivation of HIV-1 and ECHO-11 was also achieved with all buffers in the test, whereas for SARS-CoV-2 and AdV-5, only five of the seven lysis buffers were fully effective under the tested conditions.
Collapse
|
28
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
Affiliation(s)
| | | | | | - Renata Carvalho Pereira
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Renata Tourinho Santos
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | | | - Gisela Freitas Trindade
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Viviane Silva Gomes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | | | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Noemi Rovaris Gardinali
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Müller
- Pre-Clinical Trials Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Luma da Cruz Moura
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela Santos Esteves
- Recombinant Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Waleska Dias Schwarcz
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sotiris Missailidis
- Institute of Technology in Immunobiologicals, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Ygara da Silva Mendes
- Virological Technology Laboratory, Bio-Manguinhos/FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | | |
Collapse
|
29
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
30
|
Feng YX, Hu H, Wong YY, Yao X, He ML. Microneedles: An Emerging Vaccine Delivery Tool and a Prospective Solution to the Challenges of SARS-CoV-2 Mass Vaccination. Pharmaceutics 2023; 15:pharmaceutics15051349. [PMID: 37242591 DOI: 10.3390/pharmaceutics15051349] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Vaccination is an effective measure to prevent infectious diseases. Protective immunity is induced when the immune system is exposed to a vaccine formulation with appropriate immunogenicity. However, traditional injection vaccination is always accompanied by fear and severe pain. As an emerging vaccine delivery tool, microneedles overcome the problems associated with routine needle vaccination, which can effectively deliver vaccines rich in antigen-presenting cells (APCs) to the epidermis and dermis painlessly, inducing a strong immune response. In addition, microneedles have the advantages of avoiding cold chain storage and have the flexibility of self-operation, which can solve the logistics and delivery obstacles of vaccines, covering the vaccination of the special population more easily and conveniently. Examples include people in rural areas with restricted vaccine storage facilities and medical professionals, elderly and disabled people with limited mobility, infants and young children afraid of pain. Currently, in the late stage of fighting against COVID-19, the main task is to increase the coverage of vaccines, especially for special populations. To address this challenge, microneedle-based vaccines have great potential to increase global vaccination rates and save many lives. This review describes the current progress of microneedles as a vaccine delivery system and its prospects in achieving mass vaccination against SARS-CoV-2.
Collapse
Affiliation(s)
- Ya-Xiu Feng
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Huan Hu
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yu-Yuen Wong
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xi Yao
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Liang He
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- CityU Shenzhen Research Institute, Shenzhen 518071, China
| |
Collapse
|
31
|
Kumar S, Yadav D, Singh D, Shakya K, Rathi B, Poonam. Recent developments on Junin virus, a causative agent for Argentine haemorrhagic fever. Rev Med Virol 2023; 33:e2419. [PMID: 36635519 DOI: 10.1002/rmv.2419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
Junin virus consists of ribonucleic acid as the genome and is responsible for a rapidly changing tendency of the virus. The virus is accountable for ailments in the human body and causes Argentine Haemorrhagic Fever (AHF). The infection is may be transmitted through contact between an infected animal/host and a person, and later between person to person. Prevention of outbreaks of AHF in humans can be a tough practice, as their occurrence is infrequent and unpredictable. In this review, recent information from the past 5 years available on the Junin virus including the risk of its emergence, infectious agents, its pathogenesis in humans, available diagnostic and therapeutic approaches, and disease management has been summarised. Altogether, this article would be highly significant in understanding the mechanistic basis behind virus interaction and other processes during the life cycle. Currently, no specific therapeutic options are available to treat the Junin virus infection. The information covered in this review could be important for finding possible treatment options for Junin virus infections.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Dharna Yadav
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Divya Singh
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Kriti Shakya
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Brijesh Rathi
- Department of Chemistry, Har Gobind Khorana Centre for Chemical Biology, Hansraj College, University of Delhi, Delhi, India.,Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, India
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India.,Delhi School of Public Health, Institute of Eminence, University of Delhi, Delhi, India
| |
Collapse
|
32
|
Higuchi S, Satou T, Uchida Y. Hand-held virus concentration method using a hollow fiber filter module. MethodsX 2023; 10:102126. [PMID: 36970019 PMCID: PMC10036919 DOI: 10.1016/j.mex.2023.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
A virus concentration method is required for viral vaccine manufacturing and virus-related research. However, concentration methods, such as ultracentrifugation, often require capital investment. We report a simple and easy-to-use handheld syringe method for virus concentration using a hollow fiber (HF) filter module, which can be applicable to viruses of different sizes, without incorporating any special machines or reagents. This virus concentration method does not use pumps, which might cause shear stress for virus particles; therefore, it is useful for stress-sensitive virus particles, and virus-like particles, as well as other proteins. The clarified harvest of flavivirus (Zika virus) was concentrated using an HF filter module and compared with a centrifugal ultrafiltration device (CUD) for demonstration of the HF filter method. The HF filter method achieved concentration of the virus solution in less time than the CUD. The yield comparison of the recovered virus solution indicated that recovery from the developed method was comparable to using the CUD, and infectivity was maintained throughout.•The Zika virus was concentrated from 200 mL to 5 mL within 45 min using the HF filter and handheld syringe module method.•The handheld HF filter method may be applicable to stress-sensitive viruses and proteins of different sizes.•The virus concentration process should be conducted in a safety cabinet, which is preferred for virus containment.
Collapse
|
33
|
Kordyukova LV, Moiseenko AV, Serebryakova MV, Shuklina MA, Sergeeva MV, Lioznov DA, Shanko AV. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine. Viruses 2023; 15:v15020480. [PMID: 36851694 PMCID: PMC9961907 DOI: 10.3390/v15020480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inactivated vaccines are promising tools for tackling the COVID-19 pandemic. We applied several protocols for SARS-CoV-2 inactivation (by β-propiolactone, formaldehyde, and UV radiation) and examined the morphology of viral spikes, protein composition of the preparations, and their immunoreactivity in ELISA using two panels of sera collected from convalescents and people vaccinated by Sputnik V. Transmission electron microscopy (TEM) allowed us to distinguish wider flail-like spikes (supposedly the S-protein's pre-fusion conformation) from narrower needle-like ones (the post-fusion state). While the flails were present in all preparations studied, the needles were highly abundant in the β-propiolactone-inactivated samples only. Structural proteins S, N, and M of SARS-CoV-2 were detected via mass spectrometry. Formaldehyde and UV-inactivated samples demonstrated the highest affinity/immunoreactivity against the convalescent sera, while β-propiolactone (1:2000, 36 h) and UV-inactivated ones were more active against the sera of people vaccinated with Sputnik V. A higher concentration of β-propiolactone (1:1000, 2 h) led to a loss of antigenic affinity for both serum panels. Thus, although we did not analyze native SARS-CoV-2 for biosafety reasons, our comparative approach helped to exclude some destructive inactivation conditions and select suitable variants for future animal research. We believe that TEM is a valuable tool for inactivated COVID-19 vaccine quality control during the downstream manufacturing process.
Collapse
Affiliation(s)
- Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| | - Andrey V. Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina A. Shuklina
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Maria V. Sergeeva
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Dmitry A. Lioznov
- WHO National Influenza Center, Smorodintsev Research Institute of Influenza, 197376 Saint-Petersburg, Russia
| | - Andrei V. Shanko
- R&D Department, FORT LLC, 119435 Moscow, Russia
- Correspondence: (L.V.K.); (A.V.S.)
| |
Collapse
|
34
|
Jung E, Mao C, Bhatia M, Koellhoffer EC, Fiering SN, Steinmetz NF. Inactivated Cowpea Mosaic Virus for In Situ Vaccination: Differential Efficacy of Formalin vs UV-Inactivated Formulations. Mol Pharm 2023; 20:500-507. [PMID: 36399598 PMCID: PMC9812890 DOI: 10.1021/acs.molpharmaceut.2c00744] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.
Collapse
Affiliation(s)
| | | | - Misha Bhatia
- Department of Nanoengineering, University of, California San Diego, La Jolla, California 92093, United, States
| | - Edward C. Koellhoffer
- Radiology, University of California San Diego, La Jolla, California 92093, United States
| | - Steven N. Fiering
- Department of Microbiology and, Immunology and Dartmouth Cancer Center, Dartmouth, Geisel School of Medicine, Hanover, New Hampshire 03755, United States
| | - Nicole F. Steinmetz
- Department of Nanoengineering, Radiology, Bioengineering, Moores Cancer Center, Center for Nano-Immuno Engineering, and Institute for Materials, Design and Discovery, University of California San Diego, La, Jolla, California 92093, United States
| |
Collapse
|
35
|
Islam A, Islam S, Islam M, Hossain ME, Munro S, Samad MA, Rahman MK, Shirin T, Flora MS, Hassan MM, Rahman MZ, Epstein JH. Prevalence and risk factors for avian influenza virus (H5 and H9) contamination in peri-urban and rural live bird markets in Bangladesh. Front Public Health 2023; 11:1148994. [PMID: 37151580 PMCID: PMC10158979 DOI: 10.3389/fpubh.2023.1148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Avian influenza viruses (AIV) have been frequently detected in live bird markets (LBMs) around the world, primarily in urban areas, and have the ability to spillover to other species, including humans. Despite frequent detection of AIV in urban LBMs, the contamination of AIV on environmental surfaces in rural and peri-urban LBMs in Bangladesh is poorly documented. Therefore, we conducted this study to determine the prevalence of AIV subtypes within a subset of peri-urban and rural LBMs in Bangladesh and to further identify associated risk factors. Between 2017 and 2018, we collected faecal and offal samples from 200 stalls in 63 LBMs across four sub-districts. We tested the samples for the AIV matrix gene (M-gene) followed by H5, H7, and H9 subtypes using real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). We performed a descriptive analysis of market cleanliness and sanitation practices in order to further elucidate the relationship between LBM biosecurity and AIV subtypes by species, sample types, and landscape. Subsequently, we conducted a univariate analysis and a generalized linear mixed model (GLMM) to determine the risk factors associated with AIV contamination at individual stalls within LBMs. Our findings indicate that practices related to hygiene and the circulation of AIV significantly differed between rural and peri-urban live bird markets. 42.5% (95% CI: 35.56-49.67) of stalls were positive for AIV. A/H5, A/H9, and A HA/Untyped were detected in 10.5% (95% CI: 6.62-15.60), 9% (95% CI: 5.42-13.85), and 24.0% (95% CI: 18.26-30.53) of stalls respectively, with no detection of A/H7. Significantly higher levels of AIV were found in the Sonali chicken strain compared to the exotic broiler, and in offal samples compared to fecal samples. In the GLMM analysis, we identified several significant risk factors associated with AIV contamination in LBMs at the stall level. These include: landscape (AOR: 3.02; 95% CI: 1.18-7.72), the number of chicken breeds present (AOR: 2.4; 95% CI: 1.01-5.67), source of birds (AOR: 2.35; 95% CI: 1.0-5.53), separation of sick birds (AOR: 3.04; 95% CI: 1.34-6.92), disposal of waste/dead birds (AOR: 3.16; 95% CI: 1.41-7.05), cleaning agent (AOR: 5.99; 95% CI: 2.26-15.82), access of dogs (AOR: 2.52; 95% CI: 1.12-5.7), wild birds observed on site (AOR: 2.31; 95% CI: 1.01-5.3). The study further revealed a substantial prevalence of AIV with H5 and H9 subtypes in peri-urban and rural LBMs. The inadequate biosecurity measures at poultry stalls in Bangladesh increase the risk of AIV transmission from poultry to humans. To prevent the spread of AIV to humans and wild birds, we suggest implementing regular surveillance at live bird markets and enhancing biosecurity practices in peri-urban and rural areas in Bangladesh.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY, United States
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Geelong Waurn Ponds, VIC, Australia
- *Correspondence: Ariful Islam,
| | - Shariful Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Monjurul Islam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sarah Munro
- EcoHealth Alliance, New York, NY, United States
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Md. Kaisar Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, Brisbane, QLD, Australia
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | |
Collapse
|
36
|
Contributions of vibrational spectroscopy to virology: A review. CLINICAL SPECTROSCOPY 2022; 4:100022. [PMCID: PMC9093054 DOI: 10.1016/j.clispe.2022.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970 s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review considers the history of the application of vibrational spectroscopic techniques to the characterisation of the morphology and chemical compositions of viruses, their attachment to, uptake by and replication in cells, and their potential for the detection of viruses in population screening, and in infection response monitoring applications. Particular consideration is devoted to recent efforts in the detection of severe acute respiratory syndrome coronavirus 2, and monitoring COVID-19.
Collapse
|
37
|
Zhang S, Gao L, Wang P, Ma Y, Wang X, Wen J, Cheng Y, Liu C, Zhang C, Liu C, Yan Y, Zhao C. A minimally manipulated preservation and virus inactivation method for amnion/chorion. Front Bioeng Biotechnol 2022; 10:952498. [PMID: 36032718 PMCID: PMC9403546 DOI: 10.3389/fbioe.2022.952498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Allogeneic amnion tissues have been widely used in tissue repair and regeneration, especially a remarkable trend of clinical uses in chronic wound repair. The virus inactivation procedures are necessary and required to be verified for the clinical use and approval of biological products. Cobalt-60 (Co-60) or electron-beam (e-beam) is the common procedure for virus and bacterial reduction, but the excessive dose of irradiation was reported to be harmful to biological products. Herein, we present a riboflavin (RB)-ultraviolet light (UV) method for virus inactivation of amnion and chorion tissues. We used the standard in vitro limiting dilution assay to test the viral reduction capacity of the RB-UV method on amnion or chorion tissues loaded with four types of model viruses. We found RB-UV was a very effective procedure for inactivating viruses of amnion and chorion tissues, which could be used as a complementary method to Co-60 irradiation. In addition, we also screened the washing solutions and drying methods for the retention of growth factors.
Collapse
Affiliation(s)
- Shang Zhang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
- *Correspondence: Shang Zhang,
| | - Lichang Gao
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Pin Wang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Yuyan Ma
- Department of Gynecology and Obstetrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoliang Wang
- Liangchen Biotechnology (Suzhou) Co., Ltd., Suzhou, China
| | - Jie Wen
- Liangchen Biotechnology (Suzhou) Co., Ltd., Suzhou, China
| | - Yu Cheng
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Changlin Liu
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Chunxia Zhang
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Changfeng Liu
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Yongli Yan
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| | - Chengru Zhao
- Success Bio-Tech Co., Ltd., Biomedical Material Engineering Laboratory of Shandong Province, Jinan, China
| |
Collapse
|
38
|
de Castro Barbosa E, de Souza Andrade A, Duarte MM, Faria G, de Melo Iani FC, Ataide ACZ, Cunha LM, Duarte CG, Fialho SL, Caldas S. Influence of SARS-CoV-2 inactivation by different chemical reagents on the humoral response evaluated in a murine model. Mol Immunol 2022; 147:199-208. [PMID: 35644072 PMCID: PMC9125173 DOI: 10.1016/j.molimm.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023]
Abstract
Viral inactivation for antibody induction purposes, among other applications, should ensure biosafety, completely avoiding the risk of infectivity, and preserving viral immunogenicity. β-propiolactone (BPL) is one of the most used reagents for viral inactivation, despite its high toxicity and recent difficulties related to importation, experienced in Brazil during the SARS-CoV-2 pandemic. In this context, the main objectives of this work were to test different inactivation procedures for SARS-CoV-2 and to evaluate the induction of neutralizing antibodies in mice immunized with antigenic preparations obtained after viral treatment with formaldehyde (FDE), glutaraldehyde (GDE), peroxide hydrogen (H2O2), as well as with viral proteins extract (VPE), in parallel with BPL. Verification of viral inactivation was performed by subsequent incubations of the inactivated virus in Vero cells, followed by cytopathic effect and lysis plaques observation, as well as by quantification of RNA load using reverse transcription-quantitative real time polymerase chain reaction. Once viral inactivation was confirmed, cell culture supernatants were concentrated and purified. In addition, an aliquot inactivated by BPL was also subjected to viral protein extraction (VPE). The different antigens were prepared using a previously developed microemulsion as adjuvant, and were administered in a four-dose immunization protocol. Antibody production was comparatively evaluated by ELISA and Plaque Reduction Neutralization Tests (PRNT). All immunogens evaluated showed some level of IgG anti-SARS-CoV-2 antibodies in the ELISA assay, with the highest levels presented by the group immunized with FDE-inactivated viral antigen. In the PRNT results, except for VPE-antigen, all other immunogens evaluated induced some level of neutralizing anti-SARS-CoV-2 antibodies, and the FDE-antigen stood out again with the most expressive values. Taken together, the present work shows that FDE can be an efficient and affordable alternative to BPL for the production of inactivated SARS-CoV-2 viral antigen.
Collapse
Affiliation(s)
- Emerson de Castro Barbosa
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil; Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Adriana de Souza Andrade
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Myrian Morato Duarte
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Gilson Faria
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Felipe Campos de Melo Iani
- Serviço de Virologia e Riquetsioses, Diretoria do Instituto Octávio Magalhães, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Ana Caroline Zampiroli Ataide
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil
| | - Lucas Maciel Cunha
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Clara Guerra Duarte
- Serviço de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sílvia Ligorio Fialho
- Serviço de Desenvolvimento Tecnológico Farmacêutico, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Sérgio Caldas
- Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, MG, 30510010, Brazil.
| |
Collapse
|
39
|
Arango-Rodríguez ML, Solarte-David VA, Becerra-Bayona SM, Callegari E, Paez MD, Sossa CL, Vera MEO, Mateus LC, Eduardo Serrano S, Ardila-Roa AK, Viviescas LTG. Role of mesenchymal stromal cells derivatives in diabetic foot ulcers: a controlled randomized phase 1/2 clinical trial. Cytotherapy 2022; 24:1035-1048. [PMID: 36084965 DOI: 10.1016/j.jcyt.2022.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Diabetes-related foot complications have been identified as the most common isolated cause of morbidity among patients with diabetes and the leading cause of amputation. Therefore, new strategies to stimulate skin regeneration may provide a novel therapeutic approach to reduce non-healing ulcer disease. Recently, we demonstrated in proof-of-concept in humans that administration of allogeneic bone marrow mesenchymal stromal cellss derivatives (allo-hBM-MSCDs) is effective in a similar way to the use of allogeneic bone marrow mesenchymal stromal cellss (allo-hBM-MSCs) in grade 2 diabetic foot ulcers (DFUs). AIM To assess the safety and efficacy profile of the allo-hBM-MSCDs relative to the conventional approach (PolyMen® dressing) in 1/2 clinical trial phases in patients with grade 1 and 2 DFUs. METHODS In the present study, we used 2 doses of allo-hBM-MSCDs (1 mL) or 1 dose of allo-hBM-MSCs (1 × 106 cells) intradermally injected around wounds and assessed their safety and effectiveness, relative to the conventional approach (PolyMem dressing). Allo-hBM-MSCDs and allo-hBM-MSCs were produced in a certified Good Manufacturing Practice-type Laboratory. Patients with grade 1 and 2 DFUs were randomized to receive allo-hBM-MSCDs (n=12), allo-hBM-MSCs (n=6) or conventional treatment (PolyMem dressing) (n=10). The wound-healing process was macroscopically evaluated until the complete closure of the ulcers. RESULTS No adverse events were reported. Patients with grade 1 and 2 DFUs treated with either allo-hBM-MSCDs or allo-hBM-MSCs, achieved greater percentages of wound closure, enhanced skin regeneration in shorter times and a greater ulcer-free survival relative to the patients who received conventional treatment. Finally, through proteomic analysis, we elucidated the proteins and growth factors that are secreted by allo-hBM-MSCs and relevant to the wound-healing process. In addition, by combining proteomics with Gene Ontology analysis, we comprehensively classified secreted proteins on both biological process and molecular function. CONCLUSIONS In this phase 1/2 trial, our cumulative results suggest that 2 doses of allo-hBM-MSCDs combined with a wound dressing are a safe and effective treatment for grade 1 and 2 DFUs.
Collapse
Affiliation(s)
- Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia.
| | - Víctor Alfonso Solarte-David
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Facultad de Ingeniería, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia 680003
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Eduardo Callegari
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Maria D Paez
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Claudia L Sossa
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia; Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153 Floridablanca, Colombia
| | | | - Ligia C Mateus
- Fundación Oftalmológica de Santander Carlos Ardila Lulle Floridablanca, Colombia
| | - Sergio Eduardo Serrano
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| | - Lady T Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia
| |
Collapse
|