1
|
Yao M, Ren A, Yang X, Chen L, Wang X, van der Meer W, van Loosdrecht MCM, Liu G, Pabst M. Unveiling the influence of heating temperature on biofilm formation in shower hoses through multi-omics. WATER RESEARCH 2024; 268:122704. [PMID: 39481332 DOI: 10.1016/j.watres.2024.122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Shower systems provide unique environments that are conducive to biofilm formation and the proliferation of pathogens. The water heating temperature is a delicate decision that can impact microbial growth, balancing safety and energy consumption. This study investigated the impact of different heating temperatures (39 °C, 45 °C, 51 °C and 58 °C) on the shower hose biofilm (exposed to a final water temperature of 39 °C) using controlled full-scale shower setups. Whole metagenome sequencing and metaproteomics were employed to unveil the microbial composition and protein expression profiles. Overall, the genes and enzymes associated with disinfectant resistance and biofilm formation appeared largely unaffected. However, metagenomic analysis revealed a sharp decline in the number of total (86,371 to 34,550) and unique genes (32,279 to 137) with the increase in hot water temperature, indicating a significant reduction of overall microbial complexity. None of the unique proteins were detected in the proteomics experiments, suggesting smaller variation among biofilms on the proteome level compared to genomic data. Furthermore, out of 43 pathogens detected by metagenomics, only 5 could actually be detected by metaproteomics. Most interestingly, our study indicates that 45 °C heating temperature may represent an optimal balance. It minimizes active biomass (ATP) and reduces the presence of pathogens while saving heating energy. Our study offered new insights into the impact of heating temperature on shower hose biofilm formation and proposed optimal parameters that ensure biosafety while conserving energy.
Collapse
Affiliation(s)
- Mingchen Yao
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Anran Ren
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Yang
- Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), College of Environmental Science and Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Lihua Chen
- Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands
| | - Xun Wang
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Walter van der Meer
- Membrane Science and Technology, Faculty of Science and Technology, Twente University, the Netherlands
| | | | - Gang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, China; Sanitary engineering, Department of Water management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands.
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
2
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
3
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Pruden A, Edwards MA. Influence of pipe materials on in-building disinfection of P. aeruginosa and A. baumannii in simulated hot water plumbing. WATER RESEARCH X 2023; 21:100189. [PMID: 38098877 PMCID: PMC10719577 DOI: 10.1016/j.wroa.2023.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/20/2023] [Accepted: 06/12/2023] [Indexed: 12/17/2023]
Abstract
A framework is needed to account for interactive effects of plumbing materials and disinfectants on opportunistic pathogens (OPs) in building water systems. Here we evaluated free chlorine, monochloramine, chlorine dioxide, and copper-silver ionization (CSI) for controlling Pseudomonas aeruginosa and Acinetobacter baumannii as two representative OPs that colonize hot water plumbing, in tests using polyvinylchloride (PVC), copper-PVC, and iron-PVC convectively-mixed pipe reactors (CMPRs). Pipe materials vulnerable to corrosion (i.e., iron and copper) altered the pH, dissolved oxygen, and disinfectant levels in a manner that influenced growth trends of the two OPs and total bacteria. P. aeruginosa grew well in PVC CMPRs, poorly in iron-PVC CMPRs, and was best controlled by CSI disinfection, whereas A. baumannii showed the opposite trend for pipe material and was better controlled by chlorine and chlorine dioxide. Various scenarios were identified in which pipe material and disinfectant can interact to either hinder or accelerate growth of OPs, illustrating the difficulties of controlling OPs in portions of plumbing systems experiencing warm, stagnant water.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Mattheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Myra D. Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA, 24061
| |
Collapse
|
4
|
Grimard-Conea M, Prévost M. Controlling Legionella pneumophila in Showerheads: Combination of Remedial Intervention and Preventative Flushing. Microorganisms 2023; 11:1361. [PMID: 37374862 DOI: 10.3390/microorganisms11061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Shock chlorination and remedial flushing are suggested to address Legionella pneumophila (Lp) contamination in buildings or during their (re)commissioning. However, data on general microbial measurements (adenosine tri-phosphate [ATP], total cell counts [TCC]), and the abundance of Lp are lacking to support their temporary implementation with variable water demands. In this study, the weekly short-term (3-week) impact of shock chlorination (20-25 mg/L free chlorine, 16 h) or remedial flushing (5-min flush) combined with distinct flushing regimes (daily, weekly, stagnant) was investigated in duplicates of showerheads in two shower systems. Results showed that the combination of stagnation and shock chlorination prompted biomass regrowth, with ATP and TCC in the first draws reaching large regrowth factors of 4.31-7.07-fold and 3.51-5.68-fold, respectively, from baseline values. Contrastingly, remedial flushing followed by stagnation generally resulted in complete or larger regrowth in Lp culturability and gene copies (gc). Irrespective of the intervention, daily flushed showerheads resulted in significantly (p < 0.05) lower ATP and TCC, as well as lower Lp concentrations than weekly flushes, in general. Nonetheless, Lp persisted at concentrations ranging from 11 to 223 as the most probable number per liter (MPN/L) and in the same order of magnitude (103-104 gc/L) than baseline values after remedial flushing, despite daily/weekly flushing, unlike shock chlorination which suppressed Lp culturability (down 3-log) for two weeks and gene copies by 1-log. This study provides insights on the most optimal short-term combination of remedial and preventative strategies that can be considered pending the implementation of suitable engineering controls or building-wide treatment.
Collapse
Affiliation(s)
- Marianne Grimard-Conea
- Industrial Chair in Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| | - Michèle Prévost
- Industrial Chair in Drinking Water, Department of Civil, Mining and Geological Engineering, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
5
|
Logan-Jackson AR, Batista MD, Healy W, Ullah T, Whelton AJ, Bartrand TA, Proctor C. A Critical Review on the Factors that Influence Opportunistic Premise Plumbing Pathogens: From Building Entry to Fixtures in Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6360-6372. [PMID: 37036108 DOI: 10.1021/acs.est.2c04277] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Residential buildings provide unique conditions for opportunistic premise plumbing pathogen (OPPP) exposure via aerosolized water droplets produced by showerheads, faucets, and tubs. The objective of this review was to critically evaluate the existing literature that assessed the impact of potentially enhancing conditions to OPPP occurrence associated with residential plumbing and to point out knowledge gaps. Comprehensive studies on the topic were found to be lacking. Major knowledge gaps identified include the assessment of OPPP growth in the residential plumbing, from building entry to fixtures, and evaluation of the extent of the impact of typical residential plumbing design (e.g., trunk and branch and manifold), components (e.g., valves and fixtures), water heater types and temperature setting of operation, and common pipe materials (copper, PEX, and PVC/CPVC). In addition, impacts of the current plumbing code requirements on OPPP responses have not been assessed by any study and a lack of guidelines for OPPP risk management in residences was identified. Finally, the research required to expand knowledge on OPPP amplification in residences was discussed.
Collapse
Affiliation(s)
- Alshae' R Logan-Jackson
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Marylia Duarte Batista
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - William Healy
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Tania Ullah
- Building Energy and Environment Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrew J Whelton
- Lyles School of Civil Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Timothy A Bartrand
- Environmental Science, Policy, and Research Institute, Bala Cynwyd, Pennsylvania 19004, United States
| | - Caitlin Proctor
- Agricultural and Biological Engineering, Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Cavallaro A, Rhoads WJ, Huwiler SG, Stachler E, Hammes F. Potential probiotic approaches to control Legionella in engineered aquatic ecosystems. FEMS Microbiol Ecol 2022; 98:6604835. [PMID: 35679082 PMCID: PMC9333994 DOI: 10.1093/femsec/fiac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Opportunistic pathogens belonging to the genus Legionella are among the most reported waterborne-associated pathogens in industrialized countries. Legionella colonize a variety of engineered aquatic ecosystems and persist in biofilms where they interact with a multitude of other resident microorganisms. In this review, we assess how some of these interactions could be used to develop a biological-driven “probiotic” control approach against Legionella. We focus on: (i) mechanisms limiting the ability of Legionella to establish and replicate within some of their natural protozoan hosts; (ii) exploitative and interference competitive interactions between Legionella and other microorganisms; and (iii) the potential of predatory bacteria and phages against Legionella. This field is still emergent, and we therefore specifically highlight research for future investigations, and propose perspectives on the feasibility and public acceptance of a potential probiotic approach.
Collapse
Affiliation(s)
- Alessio Cavallaro
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.,Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - William J Rhoads
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Simona G Huwiler
- Department of Plant and Microbial Biology, University of Zurich, 8008 Zurich, Switzerland
| | - Elyse Stachler
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Song Y, Pruden A, Edwards MA, Rhoads WJ. Natural Organic Matter, Orthophosphate, pH, and Growth Phase Can Limit Copper Antimicrobial Efficacy for Legionella in Drinking Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1759-1768. [PMID: 33428375 DOI: 10.1021/acs.est.0c06804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is a promising antimicrobial for premise plumbing, where ions can be dosed directly via copper silver ionization or released naturally via corrosion of Cu pipes, but Cu sometimes inhibits and other times stimulates Legionella growth. Our overarching hypothesis was that water chemistry and growth phase control the net effect of Cu on Legionella. The combined effects of pH, phosphate concentration, and natural organic matter (NOM) were comprehensively examined over a range of conditions relevant to drinking water in bench-scale pure culture experiments, illuminating the effects of Cu speciation and precipitation. It was found that cupric ions (Cu2+) were drastically reduced at pH > 7.0 or in the presence of ligand-forming phosphates or NOM. Further, exponential phase L. pneumophila were 2.5× more susceptible to Cu toxicity relative to early stationary phase cultures. While Cu2+ ion was the most effective biocidal form of Cu, other inorganic ligands also had some biocidal impacts. A comparison of 33 large drinking water utilities' field-data from 1990 and 2018 showed that Cu2+ levels likely decreased more dramatically (>10×) than did the total or soluble Cu (2×) over recent decades. The overall findings aid in improving the efficacy of Cu as an actively dosed or passively released antimicrobial against L. pneumophila.
Collapse
Affiliation(s)
- Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - William J Rhoads
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, 418 Durham Hall, Blacksburg, Virginia 24061, United States
- Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| |
Collapse
|
8
|
Management of Microbiological Contamination of the Water Network of a Newly Built Hospital Pavilion. Pathogens 2021; 10:pathogens10010075. [PMID: 33467059 PMCID: PMC7829805 DOI: 10.3390/pathogens10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/28/2022] Open
Abstract
The good installation, as well as commissioning plan, of a water network is a crucial step in reducing the risk of waterborne diseases. The aim of this study was to monitor the microbiological quality of water from a newly built pavilion before it commenced operation. Overall, 91 water samples were tested for coliforms, Escherichia coli, enterococci, Pseudomonas aeruginosa and Legionella at three different times: T0 (without any water treatment), T1 (after treatment with hydrogen peroxide and silver ions at initial concentration of 20 mg/L and after flushing of water for 20 min/day for seven successive days) and T2 (15 days later). Coliforms were detected in 47.3% of samples at T0, 36.3% at T1 and 4.4% at T2. E. coli was isolated in 4.4% of the samples only at T1, while enterococci appeared in 12.1% of the samples at T1 and in 2.2% at T2. P. aeruginosa was isolated in 50.5% of the samples at T0, 29.7% at T1 and 1.1% at T2. Legionella pneumophila serogroup 8 was isolated in 80.2% of the samples at T0, 36.3% at T1 and 2.2% at T2. Our results confirmed the need for a water safety plan in new hospital pavilions to prevent the risk of waterborne diseases.
Collapse
|
9
|
Martin RL, Harrison K, Proctor CR, Martin A, Williams K, Pruden A, Edwards MA. Chlorine Disinfection of Legionella spp., L. pneumophila, and Acanthamoeba under Warm Water Premise Plumbing Conditions. Microorganisms 2020; 8:E1452. [PMID: 32971988 PMCID: PMC7563980 DOI: 10.3390/microorganisms8091452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 11/30/2022] Open
Abstract
Premise plumbing conditions can contribute to low chlorine or chloramine disinfectant residuals and reactions that encourage opportunistic pathogen growth and create risk of Legionnaires' Disease outbreaks. This bench-scale study investigated the growth of Legionella spp. and Acanthamoeba in direct contact with premise plumbing materials-glass-only control, cross-linked polyethylene (PEX) pipe, magnesium anode rods, iron pipe, iron oxide, pH 10, or a combination of factors. Simulated glass water heaters (SGWHs) were colonized by Legionella pneumophila and exposed to a sequence of 0, 0.1, 0.25, and 0.5 mg/L chlorine or chloramine, at two levels of total organic carbon (TOC), over 8 weeks. Legionella pneumophila thrived in the presence of the magnesium anode by itself and or combination with other factors. In most cases, 0.5 mg/L Cl2 caused a significant rapid reduction of L. pneumophila, Legionella spp., or total bacteria (16S rRNA) gene copy numbers, but at higher TOC (>1.0 mg C/L), a chlorine residual of 0.5 mg/L Cl2 was not effective. Notably, Acanthamoeba was not significantly reduced by the 0.5 mg/L chlorine dose.
Collapse
Affiliation(s)
- Rebekah L. Martin
- Department of Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA;
| | - Kara Harrison
- Internal Medicine Residency Program, University of Virginia, Charlottesville, VA 22904, USA;
| | - Caitlin R. Proctor
- Department of Environmental and Ecological Engineering, Department of Civil Engineering, Department of Materials Engineering, Department of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Amanda Martin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Krista Williams
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| | - Marc A. Edwards
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24450, USA; (A.M.); (K.W.); (A.P.)
| |
Collapse
|
10
|
Spencer MS, Cullom AC, Rhoads WJ, Pruden A, Edwards MA. Replicable simulation of distal hot water premise plumbing using convectively-mixed pipe reactors. PLoS One 2020; 15:e0238385. [PMID: 32936810 PMCID: PMC7494094 DOI: 10.1371/journal.pone.0238385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
A lack of replicable test systems that realistically simulate hot water premise plumbing conditions at the laboratory-scale is an obstacle to identifying key factors that support growth of opportunistic pathogens (OPs) and opportunities to stem disease transmission. Here we developed the convectively-mixed pipe reactor (CMPR) as a simple reproducible system, consisting of off-the-shelf plumbing materials, that self-mixes through natural convective currents and enables testing of multiple, replicated, and realistic premise plumbing conditions in parallel. A 10-week validation study was conducted, comparing three pipe materials (PVC, PVC-copper, and PVC-iron; n = 18 each) to stagnant control pipes without convective mixing (n = 3 each). Replicate CMPRs were found to yield consistent water chemistry as a function of pipe material, with differences becoming less discernable by week 9. Temperature, an overarching factor known to control OP growth, was consistently maintained across all 54 CMPRs, with a coefficient of variation <2%. Dissolved oxygen (DO) remained lower in PVC-iron (1.96 ± 0.29 mg/L) than in PVC (5.71 ± 0.22 mg/L) or PVC-copper (5.90 ± 0.38 mg/L) CMPRs as expected due to corrosion. Further, DO in PVC-iron CMPRs was 33% of that observed in corresponding stagnant pipes (6.03 ± 0.33 mg/L), demonstrating the important role of internal convective mixing in stimulating corrosion and microbiological respiration. 16S rRNA gene amplicon sequencing indicated that both bulk water (Padonis = 0.001, R2 = 0.222, Pbetadis = 0.785) and biofilm (Padonis = 0.001, R2 = 0.119, Pbetadis = 0.827) microbial communities differed between CMPR versus stagnant pipes, consistent with creation of a distinct ecological niche. Overall, CMPRs can provide a more realistic simulation of certain aspects of premise plumbing than reactors commonly applied in prior research, at a fraction of the cost, space, and water demand of large pilot-scale rigs.
Collapse
Affiliation(s)
- M. Storme Spencer
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Abraham C. Cullom
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - William J. Rhoads
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Marc A. Edwards
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Interactive Effects of Copper Pipe, Stagnation, Corrosion Control, and Disinfectant Residual Influenced Reduction of Legionella pneumophila during Simulations of the Flint Water Crisis. Pathogens 2020; 9:pathogens9090730. [PMID: 32899686 PMCID: PMC7559348 DOI: 10.3390/pathogens9090730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/28/2023] Open
Abstract
Flint, MI experienced two outbreaks of Legionnaires' Disease (LD) during the summers of 2014 and 2015, coinciding with use of Flint River as a drinking water source without corrosion control. Using simulated distribution systems (SDSs) followed by stagnant simulated premise (i.e., building) plumbing reactors (SPPRs) containing cross-linked polyethylene (PEX) or copper pipe, we reproduced trends in water chemistry and Legionella proliferation observed in the field when Flint River versus Detroit water were used before, during, and after the outbreak. Specifically, due to high chlorine demand in the SDSs, SPPRs with treated Flint River water were chlorine deficient and had elevated L. pneumophila numbers in the PEX condition. SPPRs with Detroit water, which had lower chlorine demand and higher residual chlorine, lost all culturable L. pneumophila within two months. L. pneumophila also diminished more rapidly with time in Flint River SPPRs with copper pipe, presumably due to the bacteriostatic properties of elevated copper concentrations caused by lack of corrosion control and stagnation. This study confirms hypothesized mechanisms by which the switch in water chemistry, pipe materials, and different flow patterns in Flint premise plumbing may have contributed to observed LD outbreak patterns.
Collapse
|
12
|
Oder M, Koklič T, Umek P, Podlipec R, Štrancar J, Dobeic M. Photocatalytic biocidal effect of copper doped TiO2 nanotube coated surfaces under laminar flow, illuminated with UVA light on Legionella pneumophila. PLoS One 2020; 15:e0227574. [PMID: 31940328 PMCID: PMC6961935 DOI: 10.1371/journal.pone.0227574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila can cause a potentially fatal form of humane pneumonia (Legionnaires' disease), which is most problematic in immunocompromised and in elderly people. Legionella species is present at low concentrations in soil, natural and artificial aquatic systems and is therefore constantly entering man-made water systems. The environment temperature for it's ideal growth range is between 32 and 42°C, thus hot water pipes represent ideal environment for spread of Legionella. The bacteria are dormant below 20°C and do not survive above 60°C. The primary method used to control the risk from Legionella is therefore water temperature control. There are several other effective treatments to prevent growth of Legionella in water systems, however current disinfection methods can be applied only intermittently thus allowing Legionella to grow in between treatments. Here we present an alternative disinfection method based on antibacterial coatings with Cu-TiO2 nanotubes deposited on preformed surfaces. In the experiment the microbiocidal efficiency of submicron coatings on polystyrene to the bacterium of the genus Legionella pneumophila with a potential use in a water supply system was tested. The treatment thus constantly prevents growth of Legionella pneumophila in presence of water at room temperature. Here we show that 24-hour illumination with low power UVA light source (15 W/m2 UVA illumination) of copper doped TiO2 nanotube coated surfaces is effective in preventing growth of Legionella pneumophila. Microbiocidal effects of Cu-TiO2 nanotube coatings were dependent on the flow of the medium and the intensity of UV-A light. It was determined that tested submicron coatings have microbiocidal effects specially in a non-flow or low-flow conditions, as in higher flow rates, probably to a greater possibility of Legionella pneumophila sedimentation on the coated polystyrene surfaces, meanwhile no significant differences among bacteria reduction was noted regarding to non or low flow of medium.
Collapse
Affiliation(s)
- Martina Oder
- Department of Sanitary Engineering, University of Ljubljana, Faculty of Health Sciences, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Polona Umek
- Laboratory of Biophysics, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Rok Podlipec
- Laboratory of Biophysics, “Jožef Stefan” Institute, Ljubljana, Slovenia
- Helmholz Zentrum Dresden Rossendorf, Ion Beam Center, Dresden, Germany
| | - Janez Štrancar
- Laboratory of Biophysics, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Martin Dobeic
- Institute of Food Safety Feed and Environment, University of Ljubljana, Veterinary Faculty, Ljubljana, Slovenia
| |
Collapse
|
13
|
Water Quality as a Predictor of Legionella Positivity of Building Water Systems. Pathogens 2019; 8:pathogens8040295. [PMID: 31847120 PMCID: PMC6963558 DOI: 10.3390/pathogens8040295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Testing drinking water systems for the presence of Legionella colonization is a proactive approach to assess and reduce the risk of Legionnaires’ disease. Previous studies suggest that there may be a link between Legionella positivity in the hot water return line or certain water quality parameters (temperature, free chlorine residual, etc.) with distal site Legionella positivity. It has been suggested that these measurements could be used as a surrogate for testing for Legionella in building water systems. We evaluated the relationship between hot water return line Legionella positivity and other water quality parameters and Legionella colonization in premise plumbing systems by testing 269 samples from domestic cold and hot water samples in 28 buildings. The hot water return line Legionella positivity and distal site positivity only demonstrated a 77.8% concordance rate. Hot water return line Legionella positivity compared to distal site positivity had a sensitivity of 55% and a specificity of 96%. There was poor correlation and a low positive predictive value between the hot water return line and distal outlet positivity. There was no correlation between Legionella distal site positivity and total bacteria (heterotrophic plate count), pH, free chlorine, calcium, magnesium, zinc, manganese, copper, temperature, total organic carbon, or incoming cold-water chlorine concentration. These findings suggest that hot water return line Legionella positivity and other water quality parameters are not predictive of distal site positivity and should not be used alone to determine the building’s Legionella colonization rate and effectiveness of water management programs.
Collapse
|
14
|
van der Lugt W, Euser SM, Bruin JP, den Boer JW, Yzerman EPF. Wide-scale study of 206 buildings in the Netherlands from 2011 to 2015 to determine the effect of drinking water management plans on the presence of Legionella spp. WATER RESEARCH 2019; 161:581-589. [PMID: 31238223 DOI: 10.1016/j.watres.2019.06.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 06/13/2019] [Accepted: 06/16/2019] [Indexed: 05/25/2023]
Abstract
Previous analysis of the Dutch National Legionella Outbreak Detection Program 2002-2012 has shown that buildings required to maintain a Legionella control plan for their drinking water installation are more likely to test positive for Legionella spp. Than buildings without such a plan (38% versus 22% of samples). To clarify this discrepancy, we analysed the results of mandatory water sample testing conducted as part of risk assessments in 206 buildings in the Netherlands from 2011 to 2015. Of the 6171 samples analysed, 16.2% exceeded the Dutch drinking water standard for Legionella spp. of 100 CFU/litre. In buildings with ≤50 tap points, the average percentage of samples containing ≥100 CFU/litre was 28.2%, and from buildings with >50 tap points, it was 12.2%. Analysis of serial samples (taken every 6 months) from each building showed that 33.2% of all buildings tested positive for at least one sample every 6 months. The overall increase was 4.4% per year. Analysis of Legionella subgroups showed that while the majority of positive samples contained L. non-pneumophila (96.9%), some samples did contain L. pneumophila serogroup 1 (1.0%) and serogroups 2-14 (2.1%). Our data suggest that the Dutch mandatory risk assessment and drinking water management plan is not sufficiently effective in preventing the proliferation of Legionella spp. and may even contribute to proliferation. This analysis should now be expanded to include other areas of the Netherlands in order to understand the geographical differences that we observed in our results, and why smaller buildings appear to be more likely to test positive for Legionella spp.
Collapse
Affiliation(s)
| | - Sjoerd M Euser
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Jacob P Bruin
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Jeroen W den Boer
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| | - Ed P F Yzerman
- Regional Public Health Laboratory Kennemerland, Boerhaavelaan 26, 2035, RC, Haarlem, the Netherlands
| |
Collapse
|
15
|
Bope A, Weir MH, Pruden A, Morowitz M, Mitchell J, Dannemiller KC. Translating research to policy at the NCSE 2017 symposium "Microbiology of the Built Environment: Implications for Health and Design". MICROBIOME 2018; 6:160. [PMID: 30219094 PMCID: PMC6138931 DOI: 10.1186/s40168-018-0552-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/05/2018] [Indexed: 05/05/2023]
Abstract
Here, we summarize a symposium entitled "Microbiology of the Built Environment: Implications for Health and Design" that was presented at the National Council for Science and the Environment (NCSE) 17th National Conference and Global Forum in January 2017. We covered topics including indoor microbial exposures and childhood asthma, the influence of hospital design on neonatal development, the role of the microbiome in our premise (i.e., building) plumbing systems, antibiotic resistance, and quantitative microbial risk assessment. This symposium engaged the broader scientific and policy communities in a discussion to increase awareness of this critical research area and translate findings to practice.
Collapse
Affiliation(s)
- Ashleigh Bope
- Environmental Science Graduate Program, Ohio State University, Columbus, OH, 43210, USA
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Mark H Weir
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Michael Morowitz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Karen C Dannemiller
- Department of Civil, Environmental & Geodetic Engineering, College of Engineering, Ohio State University, Columbus, OH, 43210, USA.
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Proctor CR, Reimann M, Vriens B, Hammes F. Biofilms in shower hoses. WATER RESEARCH 2018; 131:274-286. [PMID: 29304381 DOI: 10.1016/j.watres.2017.12.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 05/25/2023]
Abstract
Shower hoses offer an excellent bacterial growth environment in close proximity to a critical end-user exposure route within building drinking water plumbing. However, the health risks associated with and processes underlying the development of biofilms in shower hoses are poorly studied. In a global survey, biofilms from 78 shower hoses from 11 countries were characterized in terms of cell concentration (4.1 × 104-5.8 × 108 cells/cm2), metal accumulation (including iron, lead, and copper), and microbiome composition (including presence of potential opportunistic pathogens). In countries using disinfectant, biofilms had on average lower cell concentrations and diversity. Metal accumulation (up to 5 μg-Fe/cm2, 75 ng-Pb/cm2, and 460 ng-Cu/cm2) seemed to be partially responsible for discoloration in biofilms, and likely originated from other pipes upstream in the building. While some genera that may contain potential opportunistic pathogens (Legionella, detected in 21/78 shower hoses) were positively correlated with biofilm cell concentration, others (Mycobacterium, Pseudomonas) had surprisingly non-existent or negative correlations with biofilm cell concentrations. In a controlled study, 15 identical shower hoses were installed for the same time period in the same country, and both stagnant and flowing water samples were collected. Ecological theory of dispersal and selection helped to explain microbiome composition and diversity of different sample types. Shower hose age was related to metal accumulation but not biofilm cell concentration, while frequency of use appeared to influence biofilm cell concentration. This study shows that shower hose biofilms are clearly a critical element of building drinking water plumbing, and a potential target for building drinking water plumbing monitoring.
Collapse
Affiliation(s)
- Caitlin R Proctor
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Mauro Reimann
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Bas Vriens
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Frederik Hammes
- Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
17
|
Ji P, Rhoads WJ, Edwards MA, Pruden A. Effect of heat shock on hot water plumbing microbiota and Legionella pneumophila control. MICROBIOME 2018; 6:30. [PMID: 29426363 PMCID: PMC5807837 DOI: 10.1186/s40168-018-0406-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat shock is a potential control strategy for Legionella pneumophila in hot water plumbing systems. However, it is not consistently effective, with little understanding of its influence on the broader plumbing microbiome. Here, we employed a lab-scale recirculating hot water plumbing rig to compare the pre- and post-"heat shock" (i.e., 40 → 60 → 40 °C) microbiota at distal taps. In addition, we used a second plumbing rig to represent a well-managed system at 60 °C and conducted a "control" sampling at 60 °C, subsequently reducing the temperature to 40 °C to observe the effects on Legionella and the microbiota under a simulated "thermal disruption" scenario. RESULTS According to 16S rRNA gene amplicon sequencing, in the heat shock scenario, there was no significant difference or statistically significant, but small, difference in the microbial community composition at the distal taps pre- versus post-heat shock (both biofilm and water; weighted and unweighted UniFrac distance matrices). While heat shock did lead to decreased total bacteria numbers at distal taps, it did not measurably alter the richness or evenness of the microbiota. Quantitative PCR measurements demonstrated that L. pneumophila relative abundance at distal taps also was not significantly different at 2-month post-heat shock relative to the pre-heat shock condition, while relative abundance of Vermamoeba vermiformis, a known Legionella host, did increase. In the thermal disruption scenario, relative abundance of planktonic L. pneumophila (quantitative PCR data) increased to levels comparable to those observed in the heat shock scenario within 2 months of switching long-term operation at 60 to 40 °C. Overall, water use frequency and water heater temperature set point exhibited a stronger effect than one-time heat shock on the microbial composition and Legionella levels at distal taps. CONCLUSIONS While heat shock may be effective for instantaneous Legionella control and reduction in total bacteria numbers, water heater temperature set point and water use frequency are more promising factors for long-term Legionella and microbial community control, illustrating the importance of maintaining consistent elevated temperatures in the system relative to short-term heat shock.
Collapse
Affiliation(s)
- Pan Ji
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - William J Rhoads
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
18
|
Rhoads WJ, Garner E, Ji P, Zhu N, Parks J, Schwake DO, Pruden A, Edwards MA. Distribution System Operational Deficiencies Coincide with Reported Legionnaires' Disease Clusters in Flint, Michigan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11986-11995. [PMID: 28849909 DOI: 10.1021/acs.est.7b01589] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We hypothesize that the increase in reported Legionnaires' disease from June 2014 to November 2015 in Genesee County, MI (where Flint is located) was directly linked to the switch to corrosive Flint River water from noncorrosive Detroit water from April 2014 to October 2015. To address the lack of epidemiological data linking the drinking water supplies to disease incidence, we gathered physiochemical and biological water quality data from 2010 to 2016 to evaluate characteristics of the Flint River water that were potentially conducive to Legionella growth. The treated Flint River water was 8.6 times more corrosive than Detroit water in short-term testing, releasing more iron, which is a key Legionella nutrient, while also directly causing disinfectant to decay more rapidly. The Flint River water source was also 0.8-6.7 °C warmer in summer months than Detroit water and exceeded the minimum Legionella growth temperature of 20 °C more frequently (average number of days per year for Detroit was 63 versus that for the Flint River, which was 157). The corrosive water also led to 1.3-2.2 times more water main breaks in 2014-2015 compared to 2010-2013; such disruptions have been associated with outbreaks in other locales. Importantly, Legionella spp. and Legionella pneumophila decreased after switching back to Detroit water, in terms of both gene markers and culturability, when August and October 2015 were compared to November 2016.
Collapse
Affiliation(s)
- William J Rhoads
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Pan Ji
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Ni Zhu
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Jeffrey Parks
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - David Otto Schwake
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Tech , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
19
|
Gusnaniar N, Sjollema J, Nuryastuti T, Peterson BW, van de Belt-Gritter B, de Jong ED, van der Mei HC, Busscher HJ. Structural changes in S. epidermidis biofilms after transmission between stainless steel surfaces. BIOFOULING 2017; 33:712-721. [PMID: 28868925 DOI: 10.1080/08927014.2017.1360870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Transmission is a main route for bacterial contamination, involving bacterial detachment from a donor and adhesion to receiver surfaces. This work aimed to compare transmission of an extracellular polymeric substance (EPS) producing and a non-EPS producing Staphylococcus epidermidis strain from biofilms on stainless steel. After transmission, donor surfaces remained fully covered with biofilm, indicating transmission through cohesive failure in the biofilm. Counter to the numbers of biofilm bacteria, the donor and receiver biofilm thicknesses did not add up to the pre-transmission donor biofilm thickness, suggesting more compact biofilms after transmission, especially for non-EPS producing staphylococci. Accordingly, staphylococcal density per unit biofilm volume had increased from 0.20 to 0.52 μm-3 for transmission of the non-EPS producing strain under high contact pressure. The EPS producing strain had similar densities before and after transmission (0.17 μm-3). This suggests three phases in biofilm transmission: (1) compression, (2) separation and (3) relaxation of biofilm structure to its pre-transmission density in EPS-rich biofilms.
Collapse
Affiliation(s)
- Niar Gusnaniar
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Jelmer Sjollema
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Titik Nuryastuti
- b Faculty of Medicine, Department of Microbiology , Universitas Gadjah Mada , Yogyakarta , Indonesia
| | - Brandon W Peterson
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Betsy van de Belt-Gritter
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Ed D de Jong
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Henny C van der Mei
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| | - Henk J Busscher
- a Department of Biomedical Engineering , University of Groningen and University Medical Center Groningen , Groningen , the Netherlands
| |
Collapse
|
20
|
Rhoads WJ, Pruden A, Edwards MA. Interactive Effects of Corrosion, Copper, and Chloramines on Legionella and Mycobacteria in Hot Water Plumbing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7065-7075. [PMID: 28513143 DOI: 10.1021/acs.est.6b05616] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complexities associated with drinking water plumbing systems can result in undesirable interactions among plumbing components that undermine engineering controls for opportunistic pathogens (OPs). In this study, we examine the effects of plumbing system materials and two commonly applied disinfectants, copper and chloramines, on water chemistry and the growth of Legionella and mycobacteria across a transect of bench- and pilot-scale hot water experiments carried out with the same municipal water supply. We discovered that copper released from corrosion of plumbing materials can initiate evolution of >1100 times more hydrogen (H2) from water heater sacrificial anode rods than does presence of copper dosed as soluble cupric ions. H2 is a favorable electron donor for autotrophs and causes fixation of organic carbon that could serve as a nutrient for OPs. Dosed cupric ions acted as a disinfectant in stratified stagnant pipes, inhibiting culturable Legionella and biofilm formation, but promoted Legionella growth in pipes subject to convective mixing. This difference was presumably due to continuous delivery of nutrients to biofilm on the pipes under convective mixing conditions. Chloramines eliminated culturable Legionella and prevented L. pneumophila from recolonizing biofilms, but M. avium gene numbers increased by 0.14-0.76 logs in the bulk water and were unaffected in the biofilm. This study provides practical confirmation of past discrepancies in the literature regarding the variable effects of copper on Legionella growth, and confirms prior reports of trade-offs between Legionella and mycobacteria if chloramines are applied as secondary disinfectant residual.
Collapse
Affiliation(s)
- William J Rhoads
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University , 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
21
|
Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME JOURNAL 2017; 11:1318-1330. [PMID: 28282040 PMCID: PMC5437349 DOI: 10.1038/ismej.2017.14] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/28/2016] [Accepted: 01/22/2017] [Indexed: 01/06/2023]
Abstract
Hot water plumbing is an important conduit of microbes into the indoor environment and can increase risk of opportunistic pathogens (for example, Legionella pneumophila). We examined the combined effects of water heater temperature (39, 42, 48, 51 and 58 °C), pipe orientation (upward/downward), and water use frequency (21, 3 and 1 flush per week) on the microbial composition at the tap using a pilot-scale pipe rig. 16S rRNA gene amplicon sequencing indicated that bulk water and corresponding biofilm typically had distinct taxonomic compositions (R2Adonis=0.246, PAdonis=0.001), yet similar predicted functions based on PICRUSt analysis (R2Adonis=0.087, PAdonis=0.001). Although a prior study had identified 51 °C under low water use frequency to enrich Legionella at the tap, here we reveal that 51 °C is also a threshold above which there are marked effects of the combined influences of temperature, pipe orientation, and use frequency on taxonomic and functional composition. A positive association was noted between relative abundances of Legionella and mitochondrial DNA of Vermamoeba, a genus of amoebae that can enhance virulence and facilitate replication of some pathogens. This study takes a step towards intentional control of the plumbing microbiome and highlights the importance of microbial ecology in governing pathogen proliferation.
Collapse
|
22
|
Combination of Heat Shock and Enhanced Thermal Regime to Control the Growth of a Persistent Legionella pneumophila Strain. Pathogens 2016; 5:pathogens5020035. [PMID: 27092528 PMCID: PMC4931386 DOI: 10.3390/pathogens5020035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022] Open
Abstract
Following nosocomial cases of Legionella pneumophila, the investigation of a hot water system revealed that 81.5% of sampled taps were positive for L. pneumophila, despite the presence of protective levels of copper in the water. A significant reduction of L. pneumophila counts was observed by culture after heat shock disinfection. The following corrective measures were implemented to control L. pneumophila: increasing the hot water temperature (55 to 60 °C), flushing taps weekly with hot water, removing excess lengths of piping and maintaining a water temperature of 55 °C throughout the system. A gradual reduction in L. pneumophila counts was observed using the culture method and qPCR in the 18 months after implementation of the corrective measures. However, low level contamination was retained in areas with hydraulic deficiencies, highlighting the importance of maintaining a good thermal regime at all points within the system to control the population of L. pneumophila.
Collapse
|