1
|
Moon SH, Park GN, Choe S, Song S, Le VP, Cho YS, An DJ. Molecular and phylogenetic analysis of transmissible gastroenteritis virus strain VET-16, isolated from piglets in Vietnam. Arch Virol 2024; 169:183. [PMID: 39164596 DOI: 10.1007/s00705-024-06101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/17/2024] [Indexed: 08/22/2024]
Abstract
Porcine transmissible gastroenteritis virus (TGEV) is a major pathogen that causes viral enteritis and severe diarrhea in newborn piglets. TGEV strains have been isolated in the USA, Europe, and China, and their molecular characteristics are well known. However, there have been few reports of molecular analysis of TGEV strains isolated in Southeast Asia. In 2016, we isolated TGEV strain VET-16 from fecal samples collected from piglets in Vietnam and determined its complete genome sequence by Sanger sequencing. We found that, while the full genome of the VET-16 strain was 92.4-99.9% identical to those of other TGEV strains, the ORF3 gene showed very little sequence similarity. Phylogenetic analysis suggested that the VET-16 strain belongs to the Purdue subgroup. Comparison of the predicted amino acid (aa) sequence of the spike protein of strain VET-16 with those of other TGEV strains revealed three aa substitutions (V378L, S379T, and D380N) and a 3-aa insertion (F383_F387insWEK) in antigenic site D of the VET-16 strain. Also, a single aa deletion (∆F1413) was found in the transmembrane domain of the spike gene of VET-16. Like the ORF3 gene from the TGEV Miller M60 vaccine strain, the VET-16 strain has a large deletion (∆725 nt) in the ORF3 gene. Previous studies have suggested that these mutations in the spike and ORF3 genes might be associated with a reduction in pathogenicity. The data from this study will facilitate further genetic analysis and research into the evolution of TGEV in pigs in Vietnam.
Collapse
Affiliation(s)
- Soo Hyun Moon
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Gyu-Nam Park
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - SeEun Choe
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Sok Song
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Yun Sang Cho
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea
| | - Dong-Jun An
- Viral Disease Division, Animal and Plant Quarantine Agency, Gimcheon, 9660, Republic of Korea.
| |
Collapse
|
2
|
Bedsted AE, Rasmussen TB, Martinenghi LD, Bøtner A, Nauwynck H, Belsham GJ. Porcine respiratory coronavirus genome sequences; comparisons and relationships to transmissible gastroenteritis viruses. Virology 2024; 595:110072. [PMID: 38599031 DOI: 10.1016/j.virol.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
Porcine respiratory coronavirus (PRCV) was initially detected in Europe, and later in the United States of America (US), in the 1980s. In this study we obtained and compared PRCV sequences from Europe and the US, and investigated how these are related to transmissible gastroenteritis virus (TGEV) sequences. The whole genome sequences of Danish (1/90-DK), Italian (PRCV15087/12 III NPTV Parma), and Belgian PRCV (91V44) strains are presented. These sequences were aligned with nine other PRCV sequences from Europe and the US, and 43 TGEV sequences. Following alignment of the PRCV sequences, it was apparent that multiple amino acid variations in the structural proteins were distinct between the European and US strains. The alignments were used to build phylogenetic trees to infer the evolutionary relationships between the strains. In these trees, the European PRCV strains clustered as a separate group, whereas the US strains of PRCV all clustered with TGEVs.
Collapse
Affiliation(s)
- Amalie Ehlers Bedsted
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Laura D Martinenghi
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark; Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Hans Nauwynck
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, University of Ghent, 9820, Merelbeke, Belgium
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
3
|
Li S, Lu Y, Yang S, Wang C, Yang J, Huang X, Chen G, Shao Y, Li M, Yu H, Fu Y, Liu G. Porcine lung tissue slices: a culture model for PRCV infection and innate immune response investigations. AMB Express 2024; 14:57. [PMID: 38753111 PMCID: PMC11098997 DOI: 10.1186/s13568-024-01717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
Respiratory coronaviruses (RCoVs) significantly threaten human health, necessitating the development of an ex vivo respiratory culture system for investigating RCoVs infection. Here, we successfully generated a porcine precision-cut lung slices (PCLSs) culture system, containing all resident lung cell types in their natural arrangement. Next, this culture system was inoculated with a porcine respiratory coronavirus (PRCV), exhibiting clinical features akin to humans who were infected by SARS-CoV-2. The results demonstrated that PRCV efficiently infected and replicated within PCLSs, targeting ciliated cells in the bronchioles, terminal bronchioles, respiratory bronchioles, and pulmonary alveoli. Additionally, through RNA-Seq analysis of the innate immune response in PCLSs following PRCV infection, expression levels of interferons, inflammatory cytokines and IFN stimulated genes were significantly upregulated. This ex vivo model may not only offer new insights into PRCV infection in the porcine respiratory tract but also serve as a valuable tool for studying human respiratory CoVs infection.
Collapse
Affiliation(s)
- Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Caiying Wang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Xin Huang
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Guohui Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yongheng Shao
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Maolin Li
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Haoyuan Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 XuJiaPing, YanChangBu, ChengGuan District, 730046, Lanzhou, Gansu, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
| |
Collapse
|
4
|
Rawal G, Yim-im W, Aljets E, Halbur PG, Zhang J, Opriessnig T. Porcine Respiratory Coronavirus (PRCV): Isolation and Characterization of a Variant PRCV from USA Pigs. Pathogens 2023; 12:1097. [PMID: 37764905 PMCID: PMC10536027 DOI: 10.3390/pathogens12091097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Porcine respiratory coronavirus (PRCV), a mutant of the transmissible gastroenteritis virus (TGEV), was first reported in Belgium in 1984. PRCV typically replicates and induces mild lesions in the respiratory tract, distinct from the enteric tropism of TGEV. In the past 30 years, PRCV has rarely been studied, and most cited information is on traditional isolates obtained during the 1980s and 1990s. Little is known about the genetic makeup and pathogenicity of recent PRCV isolates. The objective of this study was to obtain a contemporary PRCV isolate from US pigs for genetic characterization. In total, 1245 lung homogenate samples from pigs in various US states were tested via real-time PCR targeting PRCV and TGEV RNA. Overall, PRCV RNA was detected in five samples, and a single isolate (ISU20-92330) was successfully cultured and sequenced for its full-length genome. The isolate clustered with a new group of variant TGEVs and differed in various genomic regions compared to traditional PRCV isolates. Pathogens, such as PRCV, commonly circulate in pig herds without causing major disease. There may be value in tracking genomic changes and regularly updating the diagnostic methods for such viruses to be better prepared for the emergence of variants in ecology and pathogenicity.
Collapse
Affiliation(s)
- Gaurav Rawal
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Wannarat Yim-im
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Ethan Aljets
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Patrick G. Halbur
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
| | - Tanja Opriessnig
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA; (G.R.); (W.Y.-i.); (E.A.); (P.G.H.)
- Vaccines and Diagnostics Department, Moredun Research Institute, Penicuik EH26 0PZ, UK
| |
Collapse
|
5
|
Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int J Mol Sci 2023; 24:ijms24065944. [PMID: 36983017 PMCID: PMC10051235 DOI: 10.3390/ijms24065944] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer-BioNTech and Moderna developed updated bivalent vaccines-Comirnaty and Spikevax-to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.
Collapse
Affiliation(s)
- Miriam Echaide
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Luisa Chocarro de Erauso
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| |
Collapse
|
6
|
Wang PH, Nawal Bahoussi A, Tariq Shah P, Guo YY, Wu C, Xing L. Genetic comparison of transmissible gastroenteritis coronaviruses. Front Vet Sci 2023; 10:1146648. [PMID: 37138909 PMCID: PMC10150923 DOI: 10.3389/fvets.2023.1146648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a porcine coronavirus that threatens animal health and remains elusive despite years of research efforts. The systematical analysis of all available full-length genomes of TGEVs (a total of 43) and porcine respiratory coronaviruses PRCVs (a total of 7) showed that TGEVs fell into two independent evolutionary phylogenetic clades, GI and GII. Viruses circulating in China (until 2021) clustered with the traditional or attenuated vaccine strains within the same evolutionary clades (GI). In contrast, viruses latterly isolated in the USA fell into GII clade. The viruses circulating in China have a lower similarity with that isolated latterly in the USA all through the viral genome. In addition, at least four potential genomic recombination events were identified, three of which occurred in GI clade and one in GII clade. TGEVs circulating in China are distinct from the viruses latterly isolated in the USA at either genomic nucleotide or antigenic levels. Genomic recombination serves as a factor driving the expansion of TGEV genomic diversity.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | | | - Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
- *Correspondence: Li Xing
| |
Collapse
|
7
|
Long-Term Expanding Porcine Airway Organoids Provide Insights into the Pathogenesis and Innate Immunity of Porcine Respiratory Coronavirus Infection. J Virol 2022; 96:e0073822. [PMID: 35762755 PMCID: PMC9327677 DOI: 10.1128/jvi.00738-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Respiratory coronaviruses cause serious health threats to humans and animals. Porcine respiratory coronavirus (PRCoV), a natural transmissible gastroenteritis virus (TGEV) mutant with partial spike deletion, causes mild respiratory disease and is an interesting animal respiratory coronavirus model for human respiratory coronaviruses. However, the absence of robust ex vivo models of porcine airway epithelium hinders an understanding of the pathogenesis of PRCoV infection. Here, we generated long-term porcine airway organoids (AOs) derived from basal epithelial cells, which recapitulate the in vivo airway complicated epithelial cellularity. Both 3D and 2D AOs are permissive for PRCoV infection. Unlike TGEV, which established successful infection in both AOs and intestinal organoids, PRCoV was strongly amplified only in AOs, not intestinal organoids. Furthermore, PRCoV infection in AOs mounted vigorous early type I and III interferon (IFN) responses and upregulated the expression of overzealous inflammatory genes, including pattern recognition receptors (PRRs) and proinflammatory cytokines. Collectively, these data demonstrate that stem-derived porcine AOs can serve as a promising disease model for PRCoV infection and provide a valuable tool to study porcine respiratory infection. IMPORTANCE Porcine respiratory CoV (PRCoV), a natural mutant of TGEV, shows striking pathogenetic similarities to human respiratory CoV infection and provides an interesting animal model for human respiratory CoVs, including SARS-CoV-2. The lack of an in vitro model recapitulating the complicated cellularity and structure of the porcine respiratory tract is a major roadblock for the study of PRCoV infection. Here, we developed long-term 3D airway organoids (AOs) and further established 2D AO monolayer cultures. The resultant 3D and 2D AOs are permissive for PRCoV infection. Notably, PRCoV mediated pronounced IFN and inflammatory responses in AOs, which recapitulated the inflammatory responses associated with PRCoV in vivo infection. Therefore, porcine AOs can be utilized to characterize the pathogenesis of PRCoV and, more broadly, can serve as a universal platform for porcine respiratory infection.
Collapse
|
8
|
Alhamo MA, Boley PA, Liu M, Niu X, Yadav KK, Lee C, Saif LJ, Wang Q, Kenney SP. Characterization of the Cross-Species Transmission Potential for Porcine Deltacoronaviruses Expressing Sparrow Coronavirus Spike Protein in Commercial Poultry. Viruses 2022; 14:1225. [PMID: 35746696 PMCID: PMC9230012 DOI: 10.3390/v14061225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Avian species often serve as transmission vectors and sources of recombination for viral infections due to their ability to travel vast distances and their gregarious behaviors. Recently a novel deltacoronavirus (DCoV) was identified in sparrows. Sparrow deltacoronavirus (SpDCoV), coupled with close contact between sparrows and swine carrying porcine deltacoronavirus (PDCoV) may facilitate recombination of DCoVs resulting in novel CoV variants. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from sparrow coronaviruses (SpCoVs) may enhance infection in poultry. We used recombinant chimeric viruses, which express S protein or the RBD of SpCoV (icPDCoV-SHKU17, and icPDCoV-RBDISU) on the genomic backbone of an infectious clone of PDCoV (icPDCoV). Chimeric viruses were utilized to infect chicken derived DF-1 cells, turkey poults, and embryonated chicken eggs (ECEs) to examine permissiveness, viral replication kinetics, pathogenesis and pathology. We demonstrated that DF-1 cells in addition to the positive control LLC-PK1 cells are susceptible to SpCoV spike- and RBD- recombinant chimeric virus infections. However, the replication of chimeric viruses in DF-1 cells, but not LLC-PK1 cells, was inefficient. Inoculated 8-day-old turkey poults appeared resistant to icPDCoV-, icPDCoV-SHKU17- and icPDCoV-RBDISU virus infections. In 5-day-old ECEs, significant mortality was observed in PDCoV inoculated eggs with less in the spike chimeras, while in 11-day-old ECEs there was no evidence of viral replication, suggesting that PDCoV is better adapted to cross species infection and differentiated ECE cells are not susceptible to PDCoV infection. Collectively, we demonstrate that the SpCoV chimeric viruses are not more infectious in turkeys, nor ECEs than wild type PDCoV. Therefore, understanding the cell and host factors that contribute to resistance to PDCoV and avian-swine chimeric virus infections may aid in the design of novel antiviral therapies against DCoVs.
Collapse
Affiliation(s)
- Moyasar A. Alhamo
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
- UC Davis Institute for Regenerative Cures, Department of Dermatology, School of Medicine, University of California Davis, Sacramento, CA 85817, USA
| | - Patricia A. Boley
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Carolyn Lee
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (M.A.A.); (P.A.B.); (M.L.); (X.N.); (K.K.Y.); (C.L.); (L.J.S.)
| |
Collapse
|
9
|
Zehr JD, Pond SLK, Martin DP, Ceres K, Whittaker GR, Millet JK, Goodman LB, Stanhope MJ. Recent Zoonotic Spillover and Tropism Shift of a Canine Coronavirus Is Associated with Relaxed Selection and Putative Loss of Function in NTD Subdomain of Spike Protein. Viruses 2022; 14:853. [PMID: 35632597 PMCID: PMC9145938 DOI: 10.3390/v14050853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
A canine coronavirus (CCoV) has now been reported from two independent human samples from Malaysia (respiratory, collected in 2017-2018; CCoV-HuPn-2018) and Haiti (urine, collected in 2017); these two viruses were nearly genetically identical. In an effort to identify any novel adaptations associated with this apparent shift in tropism we carried out detailed evolutionary analyses of the spike gene of this virus in the context of related Alphacoronavirus 1 species. The spike 0-domain retains homology to CCoV2b (enteric infections) and Transmissible Gastroenteritis Virus (TGEV; enteric and respiratory). This domain is subject to relaxed selection pressure and an increased rate of molecular evolution. It contains unique amino acid substitutions, including within a region important for sialic acid binding and pathogenesis in TGEV. Overall, the spike gene is extensively recombinant, with a feline coronavirus type II strain serving a prominent role in the recombinant history of the virus. Molecular divergence time for a segment of the gene where temporal signal could be determined, was estimated at around 60 years ago. We hypothesize that the virus had an enteric origin, but that it may be losing that particular tropism, possibly because of mutations in the sialic acid binding region of the spike 0-domain.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA; (J.D.Z.); (S.L.K.P.)
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA; (J.D.Z.); (S.L.K.P.)
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7549, South Africa;
| | - Kristina Ceres
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA; (K.C.); (G.R.W.); (L.B.G.)
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA; (K.C.); (G.R.W.); (L.B.G.)
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jean K. Millet
- Unité de Virologie et Immunologie Moléculaires, UVSQ, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA; (K.C.); (G.R.W.); (L.B.G.)
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14850, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, Cornell University, Ithaca, NY 14853, USA; (K.C.); (G.R.W.); (L.B.G.)
| |
Collapse
|
10
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
Yuan D, Yan Z, Li M, Wang Y, Su M, Sun D. Isolation and Characterization of a Porcine Transmissible Gastroenteritis Coronavirus in Northeast China. Front Vet Sci 2021; 8:611721. [PMID: 33738304 PMCID: PMC7960647 DOI: 10.3389/fvets.2021.611721] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/05/2021] [Indexed: 12/26/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) is a coronavirus (CoV) that is a major pathogenity of viral enteritis and diarrhea in suckling piglets, causing high morbidity and mortality. In this study, a TGEV strain HQ2016 was isolated from northeast China and characterized its genome sequence and pathogenicity. The phylogenetic analysis indicated that the TGEV HQ2016 strain was more similar to the TGEV Purdue cluster than to the Miller cluster. Both recombination and phylogenetic analysis based on each structural and non-structural gene revealed no recombination event in the HQ2016 strain. Experimental infection study using colostrum-deprived newborn piglets successfully showed that the HQ2016 can cause clinical symptoms including anorexia and yellow-to-whitish watery diarrhea, which are characteristics of TGE, in the inoculated piglets 48 h post-inoculation. These results provide valuable information about the evolution of the porcine CoVs.
Collapse
Affiliation(s)
- Dongwei Yuan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.,Daqing Center of Inspection and Testing for Agricultural Products Ministry of Agriculture, Daqing, China
| | - Zihan Yan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingyue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yi Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Niu X, Hou YJ, Jung K, Kong F, Saif LJ, Wang Q. Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses 2021; 13:122. [PMID: 33477379 PMCID: PMC7829776 DOI: 10.3390/v13010122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Abstract
Since the end of 2019, the global COVID-19 outbreak has once again made coronaviruses a hot topic. Vaccines are hoped to be an effective way to stop the spread of the virus. However, there are no clinically approved vaccines available for coronavirus infections. Reverse genetics technology can realize the operation of RNA virus genomes at the DNA level and provide new ideas and strategies for the development of new vaccines. In this review, we systematically describe the role of reverse genetics technology in studying the effects of coronavirus proteins on viral virulence and innate immunity, cell and tissue tropism and antiviral drug screening. An efficient reverse genetics platform is useful for obtaining the ideal attenuated strain to prepare an attenuated live vaccine.
Collapse
|