1
|
Córdoba-Lanús E, Reyes-Batlle M, Domínguez-de-Barros A, Pérez-Pérez P, Rodríguez-Expósito RL, García-Ramos A, Sifaoui I, García-Pérez O, Aneiros-Giraldez G, Piñero JE, Lorenzo-Morales J. Multiplex Real-Time Polymerase Chain Reaction Assay To Detect Acanthamoeba spp., Vermamoeba vermiformis, Naegleria fowleri, and Balamuthia mandrillaris in Different Water Sources. Am J Trop Med Hyg 2024; 111:785-790. [PMID: 39106847 PMCID: PMC11448538 DOI: 10.4269/ajtmh.24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 08/09/2024] Open
Abstract
Free-living amoebae (FLA) are widely distributed in the environment. Among these, Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, and Vermamoeba vermiformis have been reported as human pathogens with health effects ranging from lethal encephalitis to different epithelial disorders. Despite this, FLA still present many diagnostic challenges. The aim of this study was to develop a rapid and efficient multiplex real-time quantitative polymerase chain reaction (qPCR) to simultaneously detect Acanthamoeba spp., N. fowleri, B. mandrillaris, and V. vermiformis in different water sources. For the validation of the qPCR assay, 38 samples (19 tap water and 19 stagnant water sources) were analyzed. The qPCR assay accurately identified the four types of FLA with no cross-reactivity. Considering water samples with results subsequently confirmed by conventional PCR, the multiplex qPCR assay detected 18/38 (47.4%) positive samples (Acanthamoeba spp. in 44.7% and V. vermiformis in 31.6%) and growth in nonnutritive agar (NNA) cultures identified 7/38 (18.4%) positive samples. Of the tap water samples analyzed, 26.3% of samples positive for FLA were detected by growth in NNA culture whereas 31.6% were identified by qPCR. In addition, FLA were detected in 2/19 stagnant water samples (10.5%) by growth in NNA culture and in 12/19 stagnant water samples (63.2%) by qPCR. Neither N. fowleri nor B. mandrillaris was detected in the water samples analyzed. In conclusion, the qPCR developed showed its potential as a rapid tool for detection of Acanthamoeba spp., N. fowleri, B. mandrillaris, and V. vermiformis. Moreover, FLA species were detected in half of the water sources evaluated, suggesting the importance of the surveillance of these potential infectious agents.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Angélica Domínguez-de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | - Patricia Pérez-Pérez
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Rubén L Rodríguez-Expósito
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Alma García-Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | - Inés Sifaoui
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Omar García-Pérez
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Germán Aneiros-Giraldez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
| | - José E Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, La Laguna, Tenerife, Islas Canarias, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Facultad de Ciencias de la Salud, Universidad de La Laguna, Tenerife, Spain
| |
Collapse
|
2
|
Pezeshki A, Tajic S, Farahmandian P, Haniloo A, Mahmmodzadeh A, Niyyati M, Behniafar H. Phylogenetic analysis of Acanthamoeba isolated from soil samples and nasal cavities of patients with malignancy: a public health concern in the northwest of Iran. Trans R Soc Trop Med Hyg 2024; 118:367-375. [PMID: 38240056 DOI: 10.1093/trstmh/trad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/28/2023] [Accepted: 12/22/2023] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The genus Acanthamoeba is reported from various environmental sources and can cause multiple complications, including chronic amoebic aeratitis and amoebic granulomatous encephalitis. This study investigated the presence and genotyping of Acanthamoeba in the soil of parks and patients with malignancies referred to health centers in Zanjan city, Iran. METHODS In this cross-sectional study, 200 soil samples were collected from amusement parks in Zanjan city from September 2017 to May 2018. Samples were cultured on 1.5% non-nutrient agar, and the Acanthamoeba genus was identified using the morphological method. PCR was performed on all positive environmental samples, and six microscopically positive clinical samples belonged to our previous study. DNA sequencing of 18S rRNA was performed to analyze the genetic pattern of some PCR-positive isolates. RESULTS Microscopic results showed that 96 (48%) soil samples were positive. PCR confirmed all positive cases of clinical samples and 84 soil samples. Out of the PCR-positive samples, 20 soil samples and five clinical samples were sequenced successfully. All soil isolates belonged to the T4 genotype, and three and two clinical samples belonged to T4 and T5 genotypes, respectively. CONCLUSION : The presence of Acanthamoeba in both the environment and clinical samples of Zanjan city suggests paying greater attention to the infections caused by it.
Collapse
Affiliation(s)
- Ali Pezeshki
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Shadi Tajic
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Parvin Farahmandian
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Ali Haniloo
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Abbas Mahmmodzadeh
- Department of Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, 45331 Zanjan, Iran
| | - Maryam Niyyati
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, 1701706 Tehran, Iran
| | - Hamed Behniafar
- Department of Medical Parasitology, Sarab Faculty of Medical Sciences, 54731 Sarab, East Azerbaijan, Iran
| |
Collapse
|
3
|
Cardoso IR, de Lima CS, dos Reis RB, Pinto ACA, Pissinatti T, Kugelmeier T, Neto SFDC, da Silva FA, Santos HLC. Occurrence of Free-Living Amoebae in Non-Human Primate Gut. Trop Med Infect Dis 2024; 9:108. [PMID: 38787041 PMCID: PMC11125615 DOI: 10.3390/tropicalmed9050108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 05/25/2024] Open
Abstract
The gut microbiome reflects health and predicts possible disease in hosts. A holistic view of this community is needed, focusing on identifying species and dissecting how species interact with their host and each other, regardless of whether their presence is beneficial, inconsequential, or detrimental. The distribution of gut-associated eukaryotes within and across non-human primates is likely driven by host behavior and ecology. To ascertain the existence of free-living amoebae (FLA) in the gut of wild and captive non-human primates, 101 stool samples were collected and submitted to culture-dependent microscopy examination and DNA sequencing. Free-living amoebae were detected in 45.4% (46/101) of fecal samples analyzed, and their morphological characteristics matched those of Acanthamoeba spp., Vermamoeba spp., heterolobosean amoeboflagellates and fan-shaped amoebae of the family Vannellidae. Sequence analysis of the PCR products revealed that the suspected amoebae are highly homologous (99% identity and 100% query coverage) with Acanthamoeba T4 genotype and Vermamoeba vermiformis amoebae. The results showed a great diversity of amoebae in the non-human primate's microbiome, which may pose a potential risk to the health of NHPs. To our knowledge, this is the first report of free-living amoebae in non-human primates that are naturally infected. However, it is unknown whether gut-borne amoebae exploit a viable ecological niche or are simply transient residents in the gut.
Collapse
Affiliation(s)
- Igor Rodrigues Cardoso
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Clezia Siqueira de Lima
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
- Instituto de Saúde de Nova Friburgo, da Universidade Federal Fluminense, Nova Friburgo 28625-650, Brazil
| | - Rhagner Bonono dos Reis
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| | - Ana Cristina Araujo Pinto
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Thalita Pissinatti
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Tatiana Kugelmeier
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | | | - Fabio Alves da Silva
- Instituto de Ciência e Tecnologia em Biomodelos/FIOCRUZ, Rio de Janeiro 26382-462, Brazil; (A.C.A.P.); (T.P.); (T.K.); (F.A.d.S.)
| | - Helena Lúcia Carneiro Santos
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil; (I.R.C.); (C.S.d.L.); (R.B.d.R.)
| |
Collapse
|
4
|
Ilyas M, Stapleton F, Willcox MDP, Henriquez F, Peguda HK, Rayamajhee B, Zahid T, Petsoglou C, Carnt NA. Epidemiology of and Genetic Factors Associated with Acanthamoeba Keratitis. Pathogens 2024; 13:142. [PMID: 38392880 PMCID: PMC10892102 DOI: 10.3390/pathogens13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Acanthamoeba keratitis (AK) is a severe, rare protozoal infection of the cornea. Acanthamoeba can survive in diverse habitats and at extreme temperatures. AK is mostly seen in contact lens wearers whose lenses have become contaminated or who have a history of water exposure, and in those without contact lens wear who have experienced recent eye trauma involving contaminated soil or water. Infection usually results in severe eye pain, photophobia, inflammation, and corneal epithelial defects. The pathophysiology of this infection is multifactorial, including the production of cytotoxic proteases by Acanthamoeba that degrades the corneal epithelial basement membrane and induces the death of ocular surface cells, resulting in degradation of the collagen-rich corneal stroma. AK can be prevented by avoiding risk factors, which includes avoiding water contact, such as swimming or showering in contact lenses, and wearing protective goggles when working on the land. AK is mostly treated with an antimicrobial therapy of biguanides alone or in combination with diaminidines, although the commercial availability of these medicines is variable. Other than anti-amoeba therapies, targeting host immune pathways in Acanthamoeba disease may lead to the development of vaccines or antibody therapeutics which could transform the management of AK.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | - Fiona Stapleton
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Fiona Henriquez
- School of Health and Life Sciences, The University of the West of Scotland, Glasgow G72 0LH, UK
| | - Hari Kumar Peguda
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Binod Rayamajhee
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
| | - Tasbiha Zahid
- Primary & Secondary Healthcare Department, Punjab 54000, Pakistan; (M.I.)
| | | | - Nicole A. Carnt
- School of Optometry and Vision Science, University of NSW, Sydney, NSW 2052, Australia (H.K.P.)
- Centre for Vision Research, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| |
Collapse
|
5
|
Zhang Y, Xu X, Wei Z, Cao K, Zhang Z, Liang Q. The global epidemiology and clinical diagnosis of Acanthamoeba keratitis. J Infect Public Health 2023; 16:841-852. [PMID: 37030037 DOI: 10.1016/j.jiph.2023.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
Acanthamoeba keratitis is a rare parasitic infection of the cornea that can lead to permanent blindness if not diagnosed and treated promptly. We collected data on the incidences of Acanthamoeba keratitis from 20 countries and calculated an annual incidence of 23,561 cases, with the lowest rates in Tunisia and Belgium, and the highest in India. We analyzed 3755 Acanthamoeba sequences from the GenBank database across Asia, Europe, North America, South America, and Oceania and genotyped them into T1, T2, T3, T4, T5, T10, T11, T12, and T15. Many genotypes possess different characteristics, yet T4 is the most prevalent genotype. As efficient treatment against Acanthamoeba remains lacking, prevention from early diagnosis via staining, PCR, or in vivo confocal microscopy (IVCM) becomes significant for the condition's prognosis. IVCM is the most recommended approach for the early detection of Acanthamoeba. If IVCM is unavailable, PCR should be used as an alternative.
Collapse
Affiliation(s)
- Yuheng Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zhenyu Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Kai Cao
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Zijun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100005, China.
| |
Collapse
|
6
|
The Status of Molecular Analyses of Isolates of Acanthamoeba Maintained by International Culture Collections. Microorganisms 2023; 11:microorganisms11020295. [PMID: 36838260 PMCID: PMC9961329 DOI: 10.3390/microorganisms11020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acanthamoeba is among the most ubiquitous protistan groups in nature. Knowledge of the biological diversity of Acanthamoeba comes in part from the use of strains maintained by the major microbial culture collections, ATCC and CCAP. Standard strains are vital to ensure the comparability of research. The diversity of standard strains of Acanthamoeba in the culture collections is reviewed, emphasizing the extent of genotypic studies based on DNA sequencing of the small subunit ribosomal RNA from the nucleus (18S rRNA gene; Rns) or the mitochondria (16S-like rRNA gene; rns). Over 170 different strains have been maintained at some time by culture centers. DNA sequence information is available for more than 70% of these strains. Determination of the genotypic classification of standard strains within the genus indicates that frequencies of types within culture collections only roughly mirror that from clinical or environmental studies, with significant differences in the frequency of some genotypes. Culture collections include the type of isolate from almost all named species of Acanthamoeba, allowing an evaluation of the validity of species designations. Multiple species are found to share the same Sequence Type, while multiple Sequence Types have been identified for different strains that share the same species name. Issues of sequence reliability and the possibility that a small number of standard strains have been mislabeled when studied are also examined, leading to potential problems for comparative analyses. It is important that all species have reliable genotype designations. The culture collections should be encouraged to assist in completing the molecular inventory of standard strains, while workers in the Acanthamoeba research community should endeavor to ensure that strains representative of genotypes that are missing from the culture collection are provided to the culture centers for preservation.
Collapse
|
7
|
An Insight into the Genome of Pathogenic and Non-Pathogenic Acanthamoeba. Pathogens 2022; 11:pathogens11121558. [PMID: 36558892 PMCID: PMC9783929 DOI: 10.3390/pathogens11121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acanthamoeba are amphizoic amoeba majorly responsible for causing Acanthamoeba keratitis (AK) and Granulomatous amoebic encephalitis (GAE). Despite its ubiquitous nature, the frequency of infections is not high, probably due to the existence of non-pathogenic isolates. The whole-genome sequencing and an annotated genome assembly can unravel the biological functions and help in identifying probable genes related to pathogenicity. METHODS Illumina and Nanopore sequencing were performed for keratitis, encephalitis, and non-pathogenic environmental isolates. Hybrid assembly was prepared for the AK and GAE isolates, while only the Illumina reads were utilized for a non-pathogenic environmental isolate. Protein coding genes were identified using the GeneMark-ES program and BLASTx module of Diamond used for gene prediction. Additionally, the Kyoto Encyclopedia of Genes and Genomes annotation and cluster of orthologous group's annotation using RPS-blast against the CDD database was performed. The subsequent data analysis and validation will help identify probable pathogenic genes. RESULTS The genome assemblies of 9.67, 8.34, and 8.89 GBs were reported for GAE, AK, and non-pathogenic isolate, respectively. KEGG reported 22,946 in GAE, 24,231 in keratitis, and 9367 genes in the environmental isolate. The COG annotation revealed 3232 in GAE, 3403 in keratitis, and 1314 genes in the non-pathogenic isolate. CONCLUSION The present study has attempted to generate de novo hybrid genome assemblies of Acanthamoeba that would help decode the genome of free-living amoeba and will provide genomic data for a better understanding of virulence-related factors.
Collapse
|
8
|
Taghipour T, Rasti S, Saba M, Delavari M, Moosavi GA, Hooshyar H, Eslamirad Z. Molecular detection and genotype identification of Acanthamoeba species from bronchoalveolar lavage of patients with pulmonary symptoms suspected of cancer. J Parasit Dis 2022; 46:1028-1035. [PMID: 36457768 PMCID: PMC9606164 DOI: 10.1007/s12639-022-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
Abstract
Acanthamoeba spp. are the most common free-living amoeba worldwide, inducing life-threatening diseases such as Granulomatous Amoebic Encephalitis, pulmonary infection, and amoebic keratitis. This study aimed to identify the FLA and Acanthamoeba genotypes in patients with pulmonary symptoms suspected of cancer in Kashan's hospitals, Kashan, Iran. This cross-sectional study was conducted on 97 bronchoalveolar lavage samples of patients with respiratory symptoms suspected of lung cancer, who were admitted to the Shahid Beheshti Hospital of Kashan from 2019 to 2020. The samples were cultured onto 1.5% non-nutrient agar enriched with killed Escherichia coli and examined for the presence of FLA. Following amoeba isolation and DNA extraction, Acanthamoeba spp. were determined by Polymerase Chain Reaction using JDP1 and JDP2 primers, which amplified a 490 bp fragment from the 18 S rDNA gene. Eighteen Acanthamoeba isolates were sequenced, and the genotypes were identified. The prevalence of FLA and Acanthamoeba and the relationship between symptoms and demographic variables were analyzed with SPSS Software version 16. The prevalence rates of FLA and Acanthamoeba in the BAL samples was 86.6% and 73.2%, respectively. All Acanthamoeba isolates belonged to the T4 genotype. The most symptoms among Acanthamoeba-positive patients were dyspnea and cough; however, their difference was not statistically significant. The findings indicated the high prevalence of FLA and Acanthamoeba in BAL in the population suspected of cancer in Kashan. Since the T4 genotype is a pathogenic genotype of Acanthamoeba, training health and improving sanitation levels would help to prevent infection.
Collapse
Affiliation(s)
- Tayebeh Taghipour
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sima Rasti
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadali Saba
- Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Delavari
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholam Abbas Moosavi
- Department of Statistics and Public Health, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Hooshyar
- Department of Parasitology and Mycology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Eslamirad
- Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
9
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
10
|
Salazar-Ardiles C, Asserella-Rebollo L, Andrade DC. Free-Living Amoebas in Extreme Environments: The True Survival in our Planet. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2359883. [PMID: 36303587 PMCID: PMC9596261 DOI: 10.1155/2022/2359883] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022]
Abstract
Free-living amoebas (FLAs) are microorganisms, unicellular protozoa widely distributed in nature and present in different environments, such as water or soil; they are maintained in ecosystems and play a fundamental role in the biological control of bacteria, other protozoa, and mushrooms. In particular circumstances, some can reach humans or animals, promoting several health complications. Notably, FLAs are characterized by a robust capacity to survive in extreme environments. However, currently, there is no updated information on the existence and distribution of this protozoan in inhospitable places. Undoubtedly, the cellular physiology of these protozoan microorganisms is very particular. They can resist and live in extreme environments due to their encysting capacity and tolerance to different osmolarities, temperatures, and other environmental factors, which give them excellent adaptative resistance. In this review, we summarized the most relevant evidence related to FLAs and the possible mechanism, which could explain their adaptative capacity to several extreme environments.
Collapse
Affiliation(s)
- Camila Salazar-Ardiles
- Research Center in High Altitude Medicine and Physiology, Biomedical Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile
| | | | - David C. Andrade
- Research Center in High Altitude Medicine and Physiology, Biomedical Department, Faculty of Health Science, University of Antofagasta, Antofagasta, Chile
| |
Collapse
|
11
|
Fani M, Fuerst PA, Mosayebi M, Javadi A, Harandi MF, Saraei M, Badri M, Hajialilo E. Molecular identification and phylogenetic analysis of free-living amoeba in the water resources of Arak, Iran. JOURNAL OF WATER AND HEALTH 2022; 20:1051-1063. [PMID: 35902987 DOI: 10.2166/wh.2022.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The aim of the present study was to detect free-living amoeba (FLA) in the water resources of Arak, Iran using molecular tools. A total of 154 samples were collected from different water supplies. Molecular analyses, sequencing, and phylogenetic study were conducted to confirm the species and genotypes of FLA. Fisher exact test was used to determine the significance. Of 154 water samples, 19 (12.3%) samples were tested positive for FLA. Three genotypes of Acanthamoeba including T4, subtype D, and T5 were identified among the isolates. The pathogenicity assay showed that the isolate of Acanthamoeba in drinking water was highly pathogenic. Three species of Naegleria, including N. australiensis, N. pagei, and N. gruberi were found among the samples. Six isolates of Vermamoeba were identified as V. vermiformis. Meanwhile, three other species including Vannella sp., Vahlkampfia avara, and Stenamoeba polymorpha were also recovered from the water samples. Statistical analysis showed a significant difference between the various water resources contaminated with FLA. This is the first study to reveal the presence of S. polymorpha in water sources in Iran. According to the findings of the present study, health officials should be beware of potential public health impacts of FLA in water resources.
Collapse
Affiliation(s)
- Malihe Fani
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Paul A Fuerst
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mahdi Mosayebi
- Department of Parasitology, Arak University of Medical Sciences, Arak, Iran
| | - Amir Javadi
- Department of Community Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Saraei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Parasitology and Mycology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran E-mail:
| | - Elham Hajialilo
- Department of Parasitology and Mycology, Qazvin University of Medical Sciences, Qazvin, Iran; Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
Lamien-Meda A, Köhsler M, Walochnik J. Real-Time PCR for the Diagnosis of Acanthamoeba Genotype T4. Microorganisms 2022; 10:microorganisms10071307. [PMID: 35889026 PMCID: PMC9325200 DOI: 10.3390/microorganisms10071307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/14/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Acanthamoeba spp. are ubiquitous and opportunistic free-living amoebae (FLA) that can cause Acanthamoeba keratitis and other infections in the human host. A quick and efficient diagnosis is often challenging. Our study aimed to establish a qPCR assay to detect and, at the same time, quantify the predominant Acanthamoeba genotype T4. DNA from clinical corneal scrapings and Acanthamoeba reference strains, including genotypes T3, T4, T5, T6, T10, T11, and T12, were used to develop the new T4 assay and it was compared to published protocols and one commercial kit for evaluation. The T4 assay showed no amplification with Acanthamoeba genotypes T3, T5, T6, T10, T11, and T12. The efficiencies ranged from 92.01 to 97.59% (R2 of 0.9768 to 0.9951). The calculated LOD range was 3.63 to 33.27 cells/µL. The protocol published by Qvarnstrom and colleagues was more sensitive compared to the other assays, and an overall good agreement was observed between the new T4 and the Qvarnstrom assays. We successfully developed and validated a genotype T4 assay that could be run in duplex with the Qvarnstrom assay to reliably and simultaneously diagnose Acanthamoeba genotype T4 and other genotypes from clinical samples.
Collapse
|
13
|
Chan LL, Toh HC, Jaikwang K, Loo EM, Wong JH, Liew YK, Ong KH, Ooi SS. Report of rare genotypes of Acanthamoeba from soil source of the Payeh Maga Highland forest, North-eastern Sarawak, Malaysia. Acta Trop 2022; 229:106372. [PMID: 35182491 DOI: 10.1016/j.actatropica.2022.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
Pathogenic Acanthamoeba species are the causative agents of Acanthamoeba keratitis and granulomatous amoebic encephalitis. Members of this amoeba genus are ubiquitous in the environments. In Malaysia, most environmental studies performed to date have targeted the detection and characterisation of Acanthamoeba sp. in different water sources, dust and soil samples collected near human habitats. However, no local study has yet to examine these amoebae in a forest, an isolated terrestrial environment, where human activity is relatively scarce. Further, there are also limited studies to investigate the same globally. The current study reported the isolation, morphological and genotypic characterisations of eleven Acanthamoeba sp. isolated from soils of the Payeh Maga Highland forest, Sarawak, Malaysia. Morphological analysis revealed that nine isolates belonged to Group II, whereas two isolates belonged to Group III as defined by the criteria of Pussard and Pons. The phylogenetic analysis based on complete 18S rRNA gene sequences showed that the isolates belonged to the rare T1 (six isolates), T6 (two isolates) and T13 (three isolates) genotypes. To the best of our knowledge, this is the first report about the detection of T6 Acanthamoeba sp. in this country. Overall, the current findings have enriched the knowledge pertaining to the occurrence, morphological and genotypic characteristics of Acanthamoeba sp. in an isolated terrestrial environment of Malaysia.
Collapse
Affiliation(s)
- Li-Li Chan
- Microbiology and Immunology Department, Pathology Division, School of Medicine, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur.
| | - Hiu-Ching Toh
- Biomedical Science, School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| | - Kantiya Jaikwang
- Biomedical Science, School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| | - Ee-Mun Loo
- Biomedical Science, School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| | - Jia-Haw Wong
- Biomedical Science, School of Health Sciences, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| | - Yun-Khoon Liew
- Life Science, School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| | - Kian-Huat Ong
- Faculty of Agricultural Science and Forestry, Universiti Putra Malaysia Bintulu Sarawak Campus, Jalan Nyabau, 97008 Bintulu, Sarawak Malaysia
| | - Soo-Shen Ooi
- Institute for Research, Development and Innovation, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Federal Territory of Kuala Lumpur
| |
Collapse
|
14
|
A Comparative Genomic Approach to Determine the Virulence Factors and Horizontal Gene Transfer Events of Clinical Acanthamoeba Isolates. Microbiol Spectr 2022; 10:e0002522. [PMID: 35416714 PMCID: PMC9045148 DOI: 10.1128/spectrum.00025-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acanthamoeba species are among the most ubiquitous protists that are widespread in soil and water and act as both a replicative niche and vectors for dispersal. They are the most important human intracellular pathogens, causing Acanthamoeba keratitis (AK) and severely damaging the human cornea. The sympatric lifestyle within the host and amoeba-resisting microorganisms (ARMs) promotes horizontal gene transfer (HGT). However, the genomic diversity of only A. castellanii and A. polyphaga has been widely studied, and the pathogenic mechanisms remain unknown. Thus, we examined 7 clinically pathogenic strains by comparative genomic, phylogenetic, and rhizome gene mosaicism analyses to explore amoeba-symbiont interactions that possibly contribute to pathogenesis. Genetic characterization and phylogenetic analysis showed differences in functional characteristics between the "open" state of T3 and T4 isolates, which may contribute to the differences in virulence and pathogenicity. Through comparative genomic analysis, we identified potential genes related to virulence, such as metalloprotease, laminin-binding protein, and HSP, that were specific to the genus Acanthamoeba. Then, analysis of putative sequence trafficking between Acanthamoeba and Pandoraviruses or Acanthamoeba castellanii medusaviruses provided the best hits with viral genes; among bacteria, Pseudomonas had the most significant numbers. The most parsimonious evolutionary scenarios were between Acanthamoeba and endosymbionts; nevertheless, in most cases, the scenarios are more complex. In addition, the differences in exchanged genes were limited to the same family. In brief, this study provided extensive data to suggest the existence of HGT between Acanthamoeba and ARMs, explaining the occurrence of diseases and challenging Darwin's concept of eukaryotic evolution. IMPORTANCE Acanthamoeba has the ability to cause serious blinding keratitis. Although the prevalence of this phenomenon has increased in recent years, our knowledge of the underlying opportunistic pathogenic mechanism maybe remains incomplete. In this study, we highlighted the importance of Pseudomonas in the pathogenesis pathway using comprehensive a whole genomics approach of clinical isolates. The horizontal gene transfer events help to explain how endosymbionts contribute Acanthamoeba to act as an opportunistic pathogen. Our study opens up several potential avenues for future research on the differences in pathogenicity and interactions among clinical strains.
Collapse
|
15
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
16
|
Arab-Mazar Z, Niyyati M, Javanmard E, Kamali M, Lasjerdi Z, Rahmati Roodsari S. Molecular identification of Acanthamoeba genotypes isolated from oral cavity of heart transplant patients in Iran. Transpl Infect Dis 2021; 23:e13744. [PMID: 34614256 DOI: 10.1111/tid.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Heart transplant is one of the accepted treatments for some patients with advanced heart failure. Of note, transplant surgeries may cause different infections and complications for patients during the post-transplant period. A wide variety of opportunistic organisms caused these infections including bacteria, fungi, viruses, and protozoa particularly Free-living amoebae (FLA). This study aims to study the presence of pathogenic FLA from the oral cavity of post-heart transplant recipients. METHODS Throat swabs were collected from 80 patients who underwent post-heart transplant surgery. All swabs were immediately cultured in non-nutrient agar (2%). PCR and sequencing of 18S rRNA gene (DF3 region) of Acanthamoeba isolates were performed using genus-specific primers. Genetic associations among sequenced genotypes inferred by the 18S rRNA gene obtained by MEGA X and a phylogenetic tree were constructed using the maximum likelihood algorithm and Kimura 2-parameter model. RESULTS Out of 80 samples collected from post-heart transplant patients, six (7.5%) samples showed positive outgrowth of Acanthamoeba based on the page key and sequencing of the DF3 region. Sequence similarity of ASA1 by basic local alignment search tool(n) showed that five isolates (ANHT1, ANHT2, ANHT3, ANHT4, and ANHT5) belonged to Acanthamoeba T5 genotype corresponding to A. lenticulata and one strain (ANHT6) belonged to the T4 genotype. CONCLUSION To the best of our knowledge for the first time, a comprehensive study of Acanthamoeba genotypes isolated from throat samples of heart transplant recipients is described. Heart transplantation patients can be colonized by FLA and are therefore at risk of developing an invasive infection. Physicians' awareness of central nervous system infections related to FLAs and preventive and control measures of patients with compromised immune status due to heart transplant surgery are of utmost importance.
Collapse
Affiliation(s)
- Zahra Arab-Mazar
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Niyyati
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Javanmard
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Lasjerdi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Rahmati Roodsari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Norouzi M, Saberi R, Niyyati M, Lorenzo-Morales J, Mirjalali H, Fatemi M, Javanmard E, Karamati SA. Molecular Identification of Pathogenic Free-Living Amoeba from Household Biofilm Samples in Iran: A Risk Factor for Acanthamoeba Keratitis. Microorganisms 2021; 9:microorganisms9102098. [PMID: 34683419 PMCID: PMC8537737 DOI: 10.3390/microorganisms9102098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Free-living amoeba (FLA) are ubiquitously distributed in the environment. However, they are also the causative agents of opportunistic infections in humans and other animals. A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. Moreover, FLA have been detected in various biofilms around the world. Therefore, the present study aimed to check for presence of FLA in samples from household biofilms in Iran and to characterize them at the molecular level. A total of 69 biofilm samples collected from showerheads, kitchen areas, and bathroom sinks were analyzed. Positive samples for FLA were characterized at the morphological and molecular levels. Furthermore, the results of morphology analysis indicated that 26.08% (18/69) of biofilm samples were positive for Acanthamoeba spp., Vermamoeba genus, and Vahlkampfiids. According to sequence analysis, five strains of Acanthamoeba isolates related to the T4 genotype and two strains belonged to the T2 genotype. In addition, the pathogenic potential of Acanthamoeba-positive isolates was conducted using the tolerance ability test. The results of BLASTn of Vermamoeba sequences were similar to what was expected for Vermamoeba vermiformis. The above-mentioned reasons revealed that the relative high contamination of household biofilm samples with FLA may pose a risk for people using soft contact lenses and for patients with traumatic cataract. Our finding proposes that filtration should be performed in shower heads and indicates the need to monitor people at increased risk of Acanthamoeba keratitis.
Collapse
Affiliation(s)
- Maryam Norouzi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran; (M.N.); (M.F.)
| | - Reza Saberi
- Department of Medical Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48175, Iran;
| | - Maryam Niyyati
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran
- Correspondence: or
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Spain;
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), 28006 Madrid, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran;
| | - Marziye Fatemi
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran; (M.N.); (M.F.)
| | - Ehsan Javanmard
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 14114, Iran;
| | - Seyed Ahmad Karamati
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran 57169, Iran;
| |
Collapse
|
18
|
Sousa-Ramos D, Reyes-Batlle M, Bellini NK, Rodríguez-Expósito RL, Piñero JE, Lorenzo-Morales J. Free-Living Amoebae in Soil Samples from Santiago Island, Cape Verde. Microorganisms 2021; 9:microorganisms9071460. [PMID: 34361894 PMCID: PMC8306126 DOI: 10.3390/microorganisms9071460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Free-Living Amoebae (FLA) are widely distributed protozoa, which contain some groups considered as pathogenic microorganisms. These members are able to produce several opportunistic diseases including epithelial disorders, such as keratitis and fatal encephalitis. Even though they have been reported in numerous sources, such as soils, dust and water, there is no legislation related to the presence of these protozoa in soil-related environments worldwide. Therefore, there are no established prevention or disinfection protocols to advise the population regarding FLA infections or eliminate these microorganisms from human-related environments to date. Acanthamoeba spp. are the most common FLA isolated in soil samples, which is also the most common genera found in clinical cases. Thus, the aim of the present study was to evaluate the presence of potentially pathogenic FLA in human-related soil samples of Santiago Island, Cabo Verde. A total of 26 soil samples were seeded in non-nutrient agar plates (2%), incubated at 26 °C, and monitored daily to evaluate the presence of FLA. DNA was extracted from those plates on which there was suspected FLA growth, and PCR amplification of the 18S rRNA gene was carried out. A total of 17 from the 26 analysed samples were positive for FLA, where Acanthamoeba is the most abundant isolated genus (14/17; 82.4%), with the T4 genotype being the most common (13/14; 92.9%), followed by the T5 genotype, A. lenticulata (1/14; 7.1%). Moreover, Vermamoeba vermiformis, Stenamoeba dejonckheerei and Vannella pentlandi were isolated in three other samples. To the best of our knowledge, this is the first report of FLA presence in Cape Verde and the first report of V. vermiformis in beach sand worldwide.
Collapse
Affiliation(s)
- Djeniffer Sousa-Ramos
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| | - Natália K. Bellini
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos 13560-590, SP, Brazil
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez s/n, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (D.S.-R.); (N.K.B.); (R.L.R.-E.)
- Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), Universidad de Salamanca, 37008 Salamanca, Spain
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Correspondence: (M.R.-B.); (J.E.P.); (J.L.-M.)
| |
Collapse
|
19
|
Rodriguez-Anaya LZ, Félix-Sastré ÁJ, Lares-Villa F, Lares-Jiménez LF, Gonzalez-Galaviz JR. Application of the omics sciences to the study of Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris: current status and future projections. Parasite 2021; 28:36. [PMID: 33843581 PMCID: PMC8040595 DOI: 10.1051/parasite/2021033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this review, we focus on the sequenced genomes of the pathogens Naegleria fowleri, Acanthamoeba spp. and Balamuthia mandrillaris, and the remarkable discoveries regarding the pathogenicity and genetic information of these organisms, using techniques related to the various omics branches like genomics, transcriptomics, and proteomics. Currently, novel data produced through comparative genomics analyses and both differential gene and protein expression in these free-living amoebas have allowed for breakthroughs to identify genes unique to N. fowleri, genes with active transcriptional activity, and their differential expression in conditions of modified virulence. Furthermore, orthologous genes of the various nuclear genomes within the Naegleria and Acanthamoeba genera have been clustered. The proteome of B. mandrillaris has been reconstructed through transcriptome data, and its mitochondrial genome structure has been thoroughly described with a unique characteristic that has come to light: a type I intron with the capacity of interrupting genes through its self-splicing ribozymes activity. With the integration of data derived from the diverse omic sciences, there is a potential approximation that reflects the molecular complexity required for the identification of virulence factors, as well as crucial information regarding the comprehension of the molecular mechanisms with which these interact. Altogether, these breakthroughs could contribute to radical advances in both the fields of therapy design and medical diagnosis in the foreseeable future.
Collapse
Affiliation(s)
| | - Ángel Josué Félix-Sastré
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora Ciudad Obregón 85000 Sonora México
| | | |
Collapse
|
20
|
Kot K, Łanocha-Arendarczyk N, Kosik-Bogacka D. Immunopathogenicity of Acanthamoeba spp. in the Brain and Lungs. Int J Mol Sci 2021; 22:1261. [PMID: 33514026 PMCID: PMC7865479 DOI: 10.3390/ijms22031261] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Free-living amoebas, including Acanthamoeba spp., are widely distributed in soil, water, and air. They are capable of causing granulomatous amebic encephalitis, Acanthamoeba pneumonia, Acanthamoeba keratitis, and disseminated acanthamoebiasis. Despite low occurrence worldwide, the mortality rate of Acanthamoeba spp. infections is very high, especially in immunosuppressed hosts. Acanthamoeba infections are a medical problem, owing to limited improvement in diagnostics and treatment, which is associated with incomplete knowledge of pathophysiology, pathogenesis, and the host immune response against Acanthamoeba spp. infection. The aim of this review is to present the biochemical and molecular mechanisms of Acanthamoeba spp.-host interactions, including the expression of Toll-like receptors, mechanisms of an immune response, the activity of metalloproteinases, the secretion of antioxidant enzymes, and the expression and activity of cyclooxygenases. We show the relationship between Acanthamoeba spp. and the host at the cellular level and host defense reactions that lead to changes in the selected host's organs.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (K.K.); (N.Ł.-A.)
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
21
|
Angelici MC, Walochnik J, Calderaro A, Saxinger L, Dacks JB. Free-living amoebae and other neglected protistan pathogens: Health emergency signals? Eur J Protistol 2020; 77:125760. [PMID: 33340850 DOI: 10.1016/j.ejop.2020.125760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 02/08/2023]
Abstract
Protistan parasites have an undisputed global health impact. However, outside of a few key exceptions, e.g. the agent of malaria, most of these infectious agents are neglected as important health threats. The Symposium entitled "Free-living amoebae and neglected pathogenic protozoa: health emergency signals?" held at the European Congress of Protistology in Rome, July 2019, brought together researchers addressing scientific and clinical questions about some of these fascinating organisms. Topics presented included the molecular basis of pathogenicity in Acanthamoeba; genomics of Naegleria fowleri; and epidemiology of poorly diagnosed enteric protistan species, including Giardia, Cryptosporidium, Blastocystis, Dientamoeba. The Symposium aim was to excite the audience about the opportunities and challenges of research in these underexplored organisms and to underline the public health implications of currently under-appreciated protistan infections. The major take home message is that any knowledge that we gain about these organisms will allow us to better address them, in terms of monitoring and treatment, as sources of future health emergencies.
Collapse
Affiliation(s)
| | - Julia Walochnik
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lynora Saxinger
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Alberta, Canada
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Alberta, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences České Budějovice, Czech Republic.
| |
Collapse
|
22
|
Khorsandi Rafsanjani M, Hajialilo E, Saraei M, Alizadeh SA, Javadi A. Isolation and Molecular Identification of Acanthamoeba and Naegleria from Agricultural Water Canal in Qazvin, Iran. IRANIAN JOURNAL OF PARASITOLOGY 2020; 15:393-402. [PMID: 33082804 PMCID: PMC7548464 DOI: 10.18502/ijpa.v15i3.4204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Free-living amoeba (FLA) are widely distributed in different environmental sources. The most genera of the amoeba are Acanthamoeba, Naegleria and Vermamoeba. The most common consequences of the infections in immune-deficient and immuno-competent persons are amoebic encephalitis and keratitis. The aim of this study was to investigate the presence of Acanthamoeba spp. and Naegleria spp., isolated from the main agricultural water canal in Qazvin. Methods: Totally, 120 water specimens were collected and later the specimens were cultured and cloned to identify positive samples. PCR amplification and sequencing were carried out to identify the isolated species as well as the genotypes of amoeba. Results: According to morphological surveys, 41.7% (50/120) of water specimens were positive for FLA. Molecular analysis revealed that 68.6% and 31.4% of Acanthamoeba specimens were identified as T3 and T4 genotypes, respectively. Also, two species of Naegleria named as N. lovaniensis (57.1%) and Naegleria sp. (42.8%) were identified. The results of pathogenicity assays demonstrated that 38.5% of T3 and 61.5% of T4 genotypes of Acanthamoeba were highly pathogenic parasites. Conclusion: The water flowing in the agricultural canal of the area is contaminated with potential pathogenic FLA, therefore, it is recommended that more attention to be paid towards proper treatment of water sources to prevent possible risk of the disease.
Collapse
Affiliation(s)
| | - Elham Hajialilo
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Parasitology and Mycology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehrzad Saraei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Parasitology and Mycology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Safar Ali Alizadeh
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amir Javadi
- Department of Social Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|