1
|
Lai TNH, Trinh TBN, Than TT, Mai NTA, Biuki NM, Eckel B, Eckel VPL, Nguyen TL, Le VP. Antiviral Activity of Plant-Based Additives Against African Swine Fever Virus (ASFV) in Feed Ingredients. Vet Med Sci 2024; 10:e70070. [PMID: 39403003 PMCID: PMC11473970 DOI: 10.1002/vms3.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND African swine fever (ASF) is one of the deadliest swine diseases with haemorrhagic symptoms and a high mortality rate. Plant-derived additives are potential antiviral agents against viruses due to their environmental and user-friendly properties. OBJECTIVES This study aims to evaluate the efficacy of plant-based additives (Phyto.A04 and Phyto.B) compared to an organic acid blend (OAB) in inactivating ASF virus (ASFV) in cell culture and feed. METHODS ASFV-spiked feed was treated with individual or combined additives such as OAB, Phyto.A04 and Phyto.B. The viability of ASFV after treatment of ASFV-spiked feed with additives was then confirmed by both methods, real-time PCR and cell culture. RESULTS The results of the in vitro test with cell cultures showed that all three additives (OAB, Phyto.A04 and Phyto.B) exerted a strong virucidal effect on ASFV in porcine alveolar macrophage cells. OAB at a concentration of 0.3% reduced the virus concentration from 4.48 log10 HAD50/mL after 1 day of treatment (day 1) to 3.29 log10 HAD50/mL after 3 days of treatment (day 3) and remained undetected after 7 days of treatment (day 7). In Phyto.A04 with 1%, the virus was only detectable on day 1 (3.53 log10 HAD50/mL). Phyto.B with 0.01% and 0.05% both showed good efficacy in completely inhibiting virus presence on days 3 and 7. CONCLUSIONS All additives, OAB, Phyto.A04 and Phyto.B, were able to inactivate ASFV in a dose-dependent manner, as confirmed by cell culture and PCR methods. The combination of additives at different concentrations consistently improved the virucidal results.
Collapse
Affiliation(s)
- Thi Ngoc Ha Lai
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| | - Thi Bich Ngoc Trinh
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| | - Thi Tam Than
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| | - Nguyen Tuan Anh Mai
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| | - Niku Moussavi Biuki
- Department of Microbiology and Infectious DiseaseDr. Eckel Animal Nutrition GmbH & Co. KGNiederzissenGermany
| | - Bernhard Eckel
- Department of Microbiology and Infectious DiseaseDr. Eckel Animal Nutrition GmbH & Co. KGNiederzissenGermany
| | - Viktor P. L. Eckel
- Department of Microbiology and Infectious DiseaseDr. Eckel Animal Nutrition GmbH & Co. KGNiederzissenGermany
| | - Thi Lan Nguyen
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| | - Van Phan Le
- College of Veterinary MedicineVietnam National University of Agriculture (VNUA)HanoiVietnam
| |
Collapse
|
2
|
Trinh TBN, Lazenec E, Lai TNH, Matard-Mann M, Phat LT, Morvan A, Delahaye AC, Collén PN, Nguyen TL, Le VP. Antiviral activity of SAFER ®, a commercial acidifying desiccant powder, against African swine fever virus. Front Vet Sci 2024; 11:1245569. [PMID: 39229597 PMCID: PMC11369675 DOI: 10.3389/fvets.2024.1245569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/19/2024] [Indexed: 09/05/2024] Open
Abstract
African swine fever (ASF) is one of the deadliest swine diseases, causing significant economic losses, threatening food security, and limiting pig production in affected countries. In the absence of an effective ASF vaccine, prevention and control of ASF depend mainly on effective biosecurity measures. In this study, the efficacy of SAFER®, a powdered disinfectant containing clay, an acid complex, and the active ingredient thyme essential oil, was tested against the ASF virus. The results showed that ASFV isolate (VNUA/HY/ASF1/Vietnam/2019) was inactivated by 3.5 and 5 Log10HAD50/ml after 20 and 120 min of treatment with SAFER®, respectively. When body fluids contaminated with ASFV, such as blood, saliva, urine, and feces, were treated with SAFER® for 20 min, the ASFV titer was reduced by 1.6, 2.2, 2.0, and 2.2 Log10HAD50/ml, respectively.
Collapse
Affiliation(s)
- Thi Bich Ngoc Trinh
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | | | - Thi Ngoc Ha Lai
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | | | | | | | | | | | - Thi Lan Nguyen
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| | - Van Phan Le
- College of Veterinary Medicine, Vietnam National University of Agriculture (VNUA), Hanoi, Vietnam
| |
Collapse
|
3
|
Imtiaz S, Bilal M, Saleem M. Antimicrobial photodynamic therapy against Escherichia coli by exploiting endogenously produced Protoporphyrin IX- In vitro study. Lasers Med Sci 2024; 39:204. [PMID: 39088059 DOI: 10.1007/s10103-024-04150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Due to antimicrobial drug resistance, there is a growing interest in the development of light based alternative antibacterial therapies. This research work is focused on the inactivation of Escherichia coli (E. coli) by exploiting the absorption bands 405, 505, 542, 580 and 631 nm of its indigenously produced Protoporphyrin IX (PpIX) excited by three LEDs with broad emission bands at 418, 522 and 630 nm and two laser diodes with narrow emission bands at 405 and 635 nm. Fluorescence spectroscopy and plate count method have been employed for studying the inactivation rate of E. coli strain in autoclaved water suspension. It has been found that LEDs at 418, 522 and 630 nm produced pronounced antimicrobial photodynamic effect on E. coli strain comparing laser diodes at 405 and 635 nm, which might be attributed to the overlapping of broad emission bands of LEDs with the absorption bands of PpIX than narrow emission bands of laser diodes. Particular effect of LED at 522 nm has been noticed because its broad emission band overlaps three absorption bands 505, 542 and 580 nm of PpIX. The gold standard plate count method strongly correlates with Fluorescence spectroscopy, making it an innovative tool to administer bacterial inactivation. The experimental results suggested the development of a light source that entirely overlap absorption bands of PpIx to produce a pronounced antimicrobial photodynamic effect, which might become an effective modality for in vivo disinfection of antibiotic resistant microbes in wounds and lesions.
Collapse
Affiliation(s)
- Sana Imtiaz
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan
| | - Muhammad Bilal
- Pakistan Institute of Medical Sciences, Ibn-E-Sina Road, G-8/3, Islamabad, Pakistan
| | - Muhammad Saleem
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, 45650, Islamabad, Pakistan.
| |
Collapse
|
4
|
Hu W, Shimoda H, Tsuchiya Y, Kishi M, Hayasaka D. pH-dependent virucidal effects of weak acids against pathogenic viruses. Trop Med Health 2024; 52:9. [PMID: 38212868 PMCID: PMC10785384 DOI: 10.1186/s41182-023-00573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/24/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Weak acids, such as acetic acid, show virucidal effects against viruses, and disinfectants are considered effective virucidal agents possibly because of their low pH, depending on the proton concentration. This study aimed to evaluate the efficacy of different weak acids (acetic, oxalic, and citric acids) and eligible vinegars under different pH conditions by comparing their inactivation efficacies against enveloped and non-enveloped viruses. METHODS Acetic, oxalic, and citric acids were adjusted to pH values of 2, 4 and 6, respectively. They were also diluted from 1 M to 0.001 M with distilled water. Enveloped influenza A virus (FulV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and non-enveloped feline calicivirus (FCV) were treated with adjusted weak acids for up to 30 min. These viruses were also reacted with white distilled vinegar (WDV) and grain-flavored distilled vinegar (GV) for up to 30 min. Infectious viral titers after the reactions were expressed as plaque-forming units per mL. RESULTS Acetic acid showed virucidal effects against FulV at pH 4, whereas citric and oxalic acids did not. Acetic and citric acids inactivated SARS-CoV-2 at pH 2, whereas oxalic acid did not. All acids showed virucidal effects against FVC at pH 2; however, not at pH 4. The virucidal effects of the serially diluted weak acids were also reflected in the pH-dependent results. WDV and GV significantly reduced FulV titers after 1 min. SARS-CoV-2 was also susceptible to the virucidal effects of WDV and GV; however, the incubation period was extended to 30 min. In contrast, WDV and GV did not significantly inactivate FCV. CONCLUSIONS The inactivation efficacy of weak acids is different even under the same pH conditions, suggesting that the virucidal effect of weak acids is not simply determined by pH, but that additional factors may also influence these effects. Moreover, eligible vinegars, the main component of which is acetic acid, may be potential sanitizers for some enveloped viruses, such as FulV, in the domestic environment.
Collapse
Affiliation(s)
- Weiyin Hu
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan
| | - Yoshihiro Tsuchiya
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi, Aichi, 475-8585, Japan
| | - Mikiya Kishi
- Central Research Institute, Mizkan Holdings Co., Ltd., 2-6 Nakamura-Cho, Handa-Shi, Aichi, 475-8585, Japan
| | - Daisuke Hayasaka
- Laboratory of Veterinary Microbiology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8511, Japan.
| |
Collapse
|
5
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Walczak M, Szymankiewicz K, Rodriguez F, Argilaguet J, Gavrilov B, Żmudzki J, Kochanowski M, Juszkiewicz M, Szczotka-Bochniarz A. Molecular contamination of an animal facility during and after African swine fever virus infection. J Vet Res 2023; 67:503-508. [PMID: 38130453 PMCID: PMC10730545 DOI: 10.2478/jvetres-2023-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The molecular contamination of an animal facility was investigated during and after an infection with highly pathogenic African swine fever virus (ASFV) among domestic pigs. The investigation evaluated the risk of indirect transmission of the disease and indicated points that may facilitate cleaning and disinfection processes. Material and Methods Six domestic pigs were infected oronasally with the highly pathogenic Georgia 2007 strain. Environmental samples from the floors, walls, rubber floor mats, feeders, drinkers, high-efficiency particulate-absorbing filter covers and doors were collected 7 days post infection (dpi), 7 days later and 24 h after disinfection of the facility. The samples were investigated by real-time PCR and in vitro assays to find genetic traces of ASFV and infectious virus. Results Typical clinical outcomes for ASF (i.e. fever, apathy, recumbency and bloody diarrhoea) were observed, and all animals died or required euthanasia before or at 9 dpi. No infectious virus was found in environmental samples at the sampling time points. Genetic traces of ASFV were found in all locations except the doors. The initial virus load was calculated using real-time PCR threshold cycle values and was the highest at the drain. A statistically significant decrease of virus load over time was found on non-porous surfaces mechanically cleaned by water (the floor and drain). Conclusion The gathered data confirmed different routes of virus excretion (oral and nasal, faeces and urine, and aerosol) and showed virus locations and different initial concentrations in the animal facility. Maintaining the facility with mechanical cleaning and using personal protection (gloves) and hand disinfection may efficiently minimise the risk of further virus spread. Together with the results of previously published studies, the present investigations' failure to isolate infectious virus may suggest that if stable environmental conditions are assured, the time needed before the introduction of new herds into previously ASF-affected farm facilities could be shortened and in this way the economic losses caused by the disease outbreak mitigated.
Collapse
Affiliation(s)
- Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | | - Fernando Rodriguez
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- WOAH Collaborating Centre for Emerging and Re-emerging Pig Diseases in Europe, IRTA-CReSA, 08193Barcelona, Spain
| | - Jordi Argilaguet
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- WOAH Collaborating Centre for Emerging and Re-emerging Pig Diseases in Europe, IRTA-CReSA, 08193Barcelona, Spain
| | | | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Maciej Kochanowski
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, 24-100Puławy, Poland
| | | |
Collapse
|
7
|
Juszkiewicz M, Walczak M, Woźniakowski G, Podgórska K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses 2023; 15:2275. [PMID: 38005951 PMCID: PMC10674562 DOI: 10.3390/v15112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
African swine fever is a contagious disease, affecting pigs and wild boars, which poses a major threat to the pig industry worldwide and, therefore, to the agricultural economies of many countries. Despite intensive studies, an effective vaccine against the disease has not yet been developed. Since 2007, ASFV has been circulating in Eastern and Central Europe, covering an increasingly large area. As of 2018, the disease is additionally spreading at an unprecedented scale in Southeast Asia, nearly ruining China's pig-producing sector and generating economic losses of approximately USD 111.2 billion in 2019. ASFV's high resistance to environmental conditions, together with the lack of an approved vaccine, plays a key role in the spread of the disease. Therefore, the biosecurity and disinfection of pig farms are the only effective tools through which to prevent ASFV from entering the farms. The selection of a disinfectant, with research-proven efficacy and proper use, taking into account environmental conditions, exposure time, pH range, and temperature, plays a crucial role in the disinfection process. Despite the significant importance of ASF epizootics, little information is available on the effectiveness of different disinfectants against ASFV. In this review, we have compiled the current knowledge on the transmission, spread, and control of ASF using the principles of biosecurity, with particular attention to disinfection, including a perspective based on Polish experience with ASF control.
Collapse
Affiliation(s)
- Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| | - Grzegorz Woźniakowski
- Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland;
| | - Katarzyna Podgórska
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (K.P.)
| |
Collapse
|
8
|
Zheng W, Xi J, Zi Y, Wang J, Chi Y, Chen M, Zou Q, Tang C, Zhou X. Stability of African swine fever virus genome under different environmental conditions. Vet World 2023; 16:2374-2381. [PMID: 38152254 PMCID: PMC10750735 DOI: 10.14202/vetworld.2023.2374-2381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aim African swine fever (ASF), a globally transmitted viral disease caused by ASF virus (ASFV), can severely damage the global trade economy. Laboratory diagnostic methods, including pathogen and serological detection techniques, are currently used to monitor and control ASF. Because the large double-stranded DNA genome of the mature virus particle is wrapped in a membrane, the stability of ASFV and its genome is maintained in most natural environments. This study aimed to investigate the stability of ASFV under different environmental conditions from both genomic and antibody perspectives, and to provide a theoretical basis for the prevention and elimination of ASFV. Materials and Methods In this study, we used quantitative real-time polymerase chain reaction for pathogen assays and enzyme-linked immunosorbent assay for serological assays to examine the stability of the ASFV genome and antibody, respectively, under different environmental conditions. Results The stability of the ASFV genome and antibody under high-temperature conditions depended on the treatment time. In the pH test, the ASFV genome and antibody remained stable in both acidic and alkaline environments. Disinfection tests revealed that the ASFV genome and antibody were susceptible to standard disinfection methods. Conclusion Collectively, the results demonstrated that the ASFV genome is highly stable in favorable environments but are also susceptible to standard disinfection methods. This study focuses on the stability of the ASFV genome under different conditions and provides various standard disinfection methods for the prevention and control of ASF.
Collapse
Affiliation(s)
- Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen, 529000, China
| |
Collapse
|
9
|
Sykes AL, Galvis JA, O'Hara KC, Corzo C, Machado G. Estimating the effectiveness of control actions on African swine fever transmission in commercial swine populations in the United States. Prev Vet Med 2023; 217:105962. [PMID: 37354739 DOI: 10.1016/j.prevetmed.2023.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/23/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
Given the proximity of African swine fever (ASF) to the U.S., there is an urgent need to better understand the possible dissemination pathways of the virus within the U.S. swine industry and to evaluate mitigation strategies. Here, we extended PigSpread, a farm-level spatially-explicit stochastic compartmental transmission model incorporating six transmission routes including between-farm swine movements, vehicle movements, and local spread, to model the dissemination of ASF. We then examined the effectiveness of control actions similar to the ASF national response plan. The average number of secondary infections during the first 60 days of the outbreak was 49 finisher farms, 17 nursery farms, 5 sow farms, and less than one farm in other production types. The between-farm movements of swine were the predominant route of ASF transmission with an average contribution of 71.1%, while local spread and movement of vehicles were less critical with average contributions of 14.6% and 14.4%. We demonstrated that the combination of quarantine, depopulation, movement restrictions, contact tracing, and enhanced surveillance, was the most effective mitigation strategy, resulting in an average reduction of 79.0% of secondary cases by day 140 of the outbreak. Implementing these control actions led to a median of 495,619 depopulated animals, 357,789 diagnostic tests, and 54,522 movement permits. Our results suggest that the successful elimination of an ASF outbreak is likely to require the deployment of all control actions listed in the ASF national response plan for more than 140 days, as well as estimating the resources needed for depopulation, testing, and movement permits under these controls.
Collapse
Affiliation(s)
- Abagael L Sykes
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jason A Galvis
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kathleen C O'Hara
- US Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Strategy and Policy, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Cesar Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
10
|
Ni Z, Chen L, Yun T, Xie R, Ye W, Hua J, Zhu Y, Zhang C. Inactivation Performance of Pseudorabies Virus as African Swine Fever Virus Surrogate by Four Commercialized Disinfectants. Vaccines (Basel) 2023; 11:vaccines11030579. [PMID: 36992163 DOI: 10.3390/vaccines11030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study was based on similar physicochemical characteristics of pseudorabies virus (PRV) and African swine fever virus (ASFV). A cellular model for evaluation of disinfectants was established with PRV as an alternative marker strain. In the present study, we evaluated the disinfection performance of commonly used commercialized disinfectants on PRV to provide a reference for the selection of good ASFV disinfectants. In addition, the disinfection (anti-virus) performances for four disinfectants were investigated based on the minimum effective concentration, onset time, action time, and operating temperature. Our results demonstrated that glutaraldehyde decamethylammonium bromide solution, peracetic acid solution, sodium dichloroisocyanurate, and povidone-iodine solution effectively inactivated PRV at concentrations 0.1, 0.5, 0.5, and 2.5 g/L on different time points 30, 5, 10, and 10 min, respectively. Specifically, peracetic acid exhibits optimized overall performance. Glutaraldehyde decamethylammonium bromide is cost effective but requires a long action time and the disinfectant activity is severely affected by low temperatures. Furthermore, povidone-iodine rapidly inactivates the virus and is not affected by environmental temperature, but its application is limited by a poor dilution ratio such as for local disinfection of the skin. This study provides a reference for the selection of disinfectants for ASFV.
Collapse
Affiliation(s)
- Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ronghui Xie
- Zhejiang Provincial Center for Animal Disease Control, Hangzhou 310018, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
11
|
Hao J, Liu S, Guo Z, Zhang Y, Zhang W, Li C. Effects of Disinfectants on Larval Growth and Gut Microbial Communities of Black Soldier Fly Larvae. INSECTS 2023; 14:250. [PMID: 36975935 PMCID: PMC10056710 DOI: 10.3390/insects14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The use of the black soldier fly has been demonstrated to be effective in the treatment of swine manure. Since the outbreaks of ASFV, prevention procedures, including manure disinfection, have changed dramatically. Glutaraldehyde (GA) and potassium peroxymonosulfate (PPMS) have been shown to be effective in the prevention of this pathogen and are thus widely used in the disinfection of swine manures, etc. However, research on the effects of disinfectants in manures on the growth of BSFL and gut microbiota is scarce. The goal of this study was to determine the effects of GA and PPMS on BSFL growth, manure reduction, and gut microbiota. In triplicate, 100 larvae were inoculated in 100 g of each type of manure compound (manure containing 1% GA treatment (GT1), manure containing 0.5% GA treatment (GT2), manure containing 1% PPMS treatment (PT1), manure containing 0.5% PPMS treatment (PT2), and manure without disinfectant (control)). After calculating the larval weight and waste reduction, the larval gut was extracted and used to determine the microbial composition. According to the results, the dry weights of the larvae fed PT1-2 (PT1: 86.7 ± 4.2 mg and PT2: 85.3 ± 1.3 mg) were significantly higher than those of the larvae fed GT1-2 (GT1: 72.5 ± 2.1 mg and GT2: 70 ± 2.8 mg) and the control (64.2 ± 5.8 mg). There was a 2.8-4.03% higher waste reduction in PT1-2 than in the control, and the waste reduction in GT1-2 was 7.17-7.87% lower than that in the control. In a gut microbiota analysis, two new genera (Fluviicola and Fusobacterium) were discovered in PT1-2 when compared to GT1-2 and the control. Furthermore, the disinfectants did not reduce the diversity of the microbial community; rather, Shannon indices revealed that the diversities of GT1-2 (GT1: 1.924 ± 0.015; GT2: 1.944 ± 0.016) and PT1 (1.861 ± 0.016) were higher than those of the control (1.738 ± 0.015). Finally, it was found that both disinfectants in swine manures at concentrations of 1% and 0.5% may be beneficial to the complexity and cooperation of BSFL gut microbiota, according to an analysis of microbial interactions.
Collapse
Affiliation(s)
- Jianwei Hao
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Shuang Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Zhixue Guo
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030600, China
| | - Wuping Zhang
- Xinzhou Livestock Development Center, Xinzhou 034000, China
| | - Chujun Li
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Penrith ML, van Heerden J, Pfeiffer DU, Oļševskis E, Depner K, Chenais E. Innovative Research Offers New Hope for Managing African Swine Fever Better in Resource-Limited Smallholder Farming Settings: A Timely Update. Pathogens 2023; 12:355. [PMID: 36839627 PMCID: PMC9963711 DOI: 10.3390/pathogens12020355] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
African swine fever (ASF) in domestic pigs has, since its discovery in Africa more than a century ago, been associated with subsistence pig keeping with low levels of biosecurity. Likewise, smallholder and backyard pig farming in resource-limited settings have been notably affected during the ongoing epidemic in Eastern Europe, Asia, the Pacific, and Caribbean regions. Many challenges to managing ASF in such settings have been identified in the ongoing as well as previous epidemics. Consistent implementation of biosecurity at all nodes in the value chain remains most important for controlling and preventing ASF. Recent research from Asia, Africa, and Europe has provided science-based information that can be of value in overcoming some of the hurdles faced for implementing biosecurity in resource-limited contexts. In this narrative review we examine a selection of these studies elucidating innovative solutions such as shorter boiling times for inactivating ASF virus in swill, participatory planning of interventions for risk mitigation for ASF, better understanding of smallholder pig-keeper perceptions and constraints, modified culling, and safe alternatives for disposal of carcasses of pigs that have died of ASF. The aim of the review is to increase acceptance and implementation of science-based approaches that increase the feasibility of managing, and the possibility to prevent, ASF in resource-limited settings. This could contribute to protecting hundreds of thousands of livelihoods that depend upon pigs and enable small-scale pig production to reach its full potential for poverty alleviation and food security.
Collapse
Affiliation(s)
- Mary-Louise Penrith
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Juanita van Heerden
- Transboundary Animal Diseases, Onderstepoort Veterinary Research, Agricultural Research Council, Pretoria 0110, South Africa
| | - Dirk U. Pfeiffer
- Centre for Applied One Health Research and Policy Advice, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Pathobiology and Population Sciences, Veterinary Epidemiology, Economics, and Public Health Group, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Edvīns Oļševskis
- Food and Veterinary Service, LV-1050 Riga, Latvia
- Institute of Food Safety, Animal Health and Environment, “BIOR“, LV-1076 Riga, Latvia
| | - Klaus Depner
- Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493 Greifswald, Germany
| | - Erika Chenais
- Department of Disease Control and Epidemiology, National Veterinary Institute, S-751 89 Uppsala, Sweden
| |
Collapse
|
13
|
Liu H, Meng F, Nyaruaba R, He P, Hong W, Jiang M, Liu D, Zhou W, Bai D, Yu J, Wei H. A triton X-100 assisted PMAxx-qPCR assay for rapid assessment of infectious African swine fever virus. Front Microbiol 2022; 13:1062544. [PMID: 36545208 PMCID: PMC9760672 DOI: 10.3389/fmicb.2022.1062544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction African Swine Fever (ASF) is a highly infectious disease of pigs, caused by African swine fever virus (ASFV). The lack of vaccines and drugs makes strict disinfection practices to be one of the main measurements to curb the transmission of ASF. Therefore, it is important to assess if all viruses are inactivated after disinfection or after long time exposure in their natural conditions. Currently, the infectivity of ASFV is determined by virus isolation and culture in a biosafety level 3 (BSL-3) laboratory. However, BSL-3 laboratories are not readily available, need skilled expertise and may be time consuming. Methods In this study, a Triton X-100 assisted PMAxx-qPCR method was developed for rapid assessment of infectious ASFV in samples. PMAxx, an improved version of propidium monoazide (PMA), can covalently cross-link with naked ASFV-DNA or DNA inside inactivated ASFV virions under assistance of 0.1% (v/v) TritonX-100, but not with ASFV-DNA inside live virions. Formation of PMAxx-DNA conjugates prevents PCR amplification, leaving only infectious virions to be detected. Under optimum conditions, the limit of detection of the PMAxx-qPCR assay was 2.32log10HAD50/mL of infectious ASFV. Testing different samples showed that the PMAxx-qPCR assay was effective to evaluate intact ASFV virions after treatment by heat or chemical disinfectants and in simulated samples such as swine tissue homogenate, swine saliva swabs, and environmental swabs. However, whole-blood and saliva need to be diluted before testing because they may inhibit the PCR reaction or the cross-linking of PMAxx with DNA. Conclusion The Triton X-100 assisted PMAxx-qPCR assay took less than 3 h from sample to result, offering an easier and faster way for assessing infectious ASFV in samples from places like pig farms and pork markets.
Collapse
Affiliation(s)
- Huan Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Meng
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Raphael Nyaruaba
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ping He
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mengwei Jiang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China
| | - Dongqing Liu
- Comprehensive Agricultural Law Enforcement Bureau, Wuhan, China
| | - Wenhao Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan Bai
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,*Correspondence: Junping Yu,
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,African Swine Fever Regional Laboratory of China (Wuhan), Wuhan, China,Hongping Wei,
| |
Collapse
|
14
|
Beato MS, D’Errico F, Iscaro C, Petrini S, Giammarioli M, Feliziani F. Disinfectants against African Swine Fever: An Updated Review. Viruses 2022; 14:v14071384. [PMID: 35891365 PMCID: PMC9315964 DOI: 10.3390/v14071384] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
African Swine Fever (ASF), a hemorrhagic disease with a high mortality rate in suids, is transmitted via direct and indirect contact with infectious animals and contaminated fomites, respectively. ASF reached Europe in 2014, affecting 14 of the 27 EU countries including, recently, the Italian peninsula. The fast and unprecedented spread of ASF in the EU has highlighted gaps in knowledge regarding transmission mechanisms. Fomites, such as contaminated clothing and footwear, farming tools, equipment and vehicles have been widely reported in the spread of ASF. The absence of available vaccines renders biosecurity measures, cleaning and disinfection procedures an essential control tool, to a greater degree than the others, for the prevention of primary and secondary introductions of ASF in pig farms. In this review, available data on the virucidal activity of chemical compounds as disinfectants against the ASF virus (ASFV) are summarized together with laboratory methods adopted to assess the virucidal activity.
Collapse
|
15
|
Zajac MD, Sangewar N, Lokhandwala S, Bray J, Sang H, McCall J, Bishop RP, Waghela SD, Kumar R, Kim T, Mwangi W. Adenovirus-Vectored African Swine Fever Virus pp220 Induces Robust Antibody, IFN-γ, and CTL Responses in Pigs. Front Vet Sci 2022; 9:921481. [PMID: 35711803 PMCID: PMC9195138 DOI: 10.3389/fvets.2022.921481] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
African Swine Fever Virus (ASFV) poses a serious threat to the pork industry worldwide; however, there is no safe vaccine or treatment available. The development of an efficacious subunit vaccine will require the identification of protective antigens. The ASFV pp220 polyprotein is essential for virus structural integrity. This polyprotein is processed to generate p5, p34, p14, p37, and p150 individual proteins. Immunization of pigs with a cocktail of adenoviruses expressing the proteins induced significant IgG, IFN-γ-secreting cells, and cytotoxic T lymphocyte responses. Four predicted SLA-I binding nonamer peptides, namely p34161−169, p37859−867, p1501363−1371, and p1501463−1471, recalled strong IFN-γ+ PBMC and splenocyte responses. Notably, peptide p34161−169 was recognized by PBMCs isolated from 7/10 pigs and by splenocytes isolated from 8/10 pigs. Peptides p37859−867 and p1501363−1371 stimulated recall IFN-γ+ responses in PBMCs and splenocytes isolated from 8/10 pigs, whereas peptide p1501463−1471 recalled responses in PBMCs and splenocytes isolated from 7/10 to 9/10 pigs, respectively. The results demonstrate that the pp220 polyprotein contains multiple epitopes that induce robust immune responses in pigs. Importantly, these epitopes are 100% conserved among different ASFV genotypes and were predicted to bind multiple SLA-I alleles. The outcomes suggest that pp220 is a promising candidate for inclusion in a prototype subunit vaccine.
Collapse
Affiliation(s)
- Michelle D. Zajac
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Michelle D. Zajac
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Shehnaz Lokhandwala
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jocelyne Bray
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Huldah Sang
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jayden McCall
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Richard P. Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Suryakant D. Waghela
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Rakshith Kumar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Tae Kim
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
- Waithaka Mwangi
| |
Collapse
|
16
|
Modified Vaccinia Virus Ankara as a Potential Biosafety Level 2 Surrogate for African Swine Fever Virus in Disinfectant Efficacy Tests. Pathogens 2022; 11:pathogens11030320. [PMID: 35335644 PMCID: PMC8949558 DOI: 10.3390/pathogens11030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
In South Korea, despite the increase in emerging viral pathogens in the veterinary industry, only efficacy-tested, virus-specific disinfectants are allowed to be used. Moreover, domestic testing of disinfectants for their virucidal efficacies against foreign, malignant, infectious pathogens that are unreported within the country and/or contagious livestock diseases that require special attention regarding public hygiene are legally restricted. Therefore, the Animal and Plant Quarantine Agency (APQA) designed a study to select a potential biosafety level 2 surrogate of African swine fever virus (ASFV) for efficacy testing to improve the disinfectant approval procedures. For this, the modified vaccinia virus Ankara (MVA) was compared to ASFV in terms of its susceptibility to disinfectants. Effective concentrations of active substances of disinfectants (potassium peroxymonosulfate, sodium dichloroisocyanurate, malic acid, citric acid, glutaraldehyde, and benzalkonium chloride) against ASFV and MVA were compared; similarly, efficacies of APQA-listed commercial disinfectants were examined. Tests were performed according to APQA guidelines, and infectivities of ASFV and MVA were confirmed by hemadsorption and cytopathic effect, respectively. The results reveal that the disinfectants are effective against MVA at similar or higher concentrations than those against ASFV, validating the use of MVA as a potential biosafety level 2 surrogate for ASFV in efficacy testing of veterinary disinfectants.
Collapse
|
17
|
Signal-enhanced visual strand exchange amplification detection of African swine fever virus by the introduction of multimeric G-quadruplex/hemin DNAzyme. ANAL SCI 2022; 38:675-682. [DOI: 10.1007/s44211-022-00087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
|
18
|
Rhee C, Kang Y, Han B, Kim YW, Her M, Jeong W, Kim S. Virucidal efficacy of seven active substances in commercial disinfectants used against H9N2 low pathogenic avian influenza virus. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Taesuji M, Rattanamas K, Punyadarsaniya D, Mamom T, Nguyen HT, Ruenphet S. In vitro primary porcine alveolar macrophage cell toxicity and African swine fever virus inactivation using five commercially supply compound disinfectants under various condition. J Vet Med Sci 2021; 83:1800-1804. [PMID: 34645734 PMCID: PMC8636871 DOI: 10.1292/jvms.21-0427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efficacy of African swine fever virus (ASFV) inactivation using five commercially supply compound disinfectants was evaluated under various condition. Virucidal efficacy demonstrated that
products A and E could inactivate at 1:800 within 1 min for both temperatures, while products B, C and D inactivated at 1:400. However, product D could inactivate at 1:800 when the exposure
time was extended to 30 min and effected only 20°C. In addition, the cytotoxicity demonstrated that products A, B, C, D and E did not significantly affect to cell at 1:51,200, 1:12,800,
1:12,800, 1:25,600 and 1:12,800 dilution, respectively. In conclusion, these disinfectants could inactivate ASFV, however, the application of these products should be performed under safety
precautions to prevent cytotoxicity in humans and animals.
Collapse
Affiliation(s)
- Machimaporn Taesuji
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Khate Rattanamas
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Darsaniya Punyadarsaniya
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Thanongsak Mamom
- Pathology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam
| | - Sakchai Ruenphet
- Immunology and Virology Department, Faculty of Veterinary Medicine, Mahanakorn University of Technology, 140 Cheum-Sampan Rd. Nong Chock, Bangkok 10530, Thailand
| |
Collapse
|
20
|
Kosowska A, Barasona JA, Barroso-Arévalo S, Rivera B, Domínguez L, Sánchez-Vizcaíno JM. A new method for sampling African swine fever virus genome and its inactivation in environmental samples. Sci Rep 2021; 11:21560. [PMID: 34732758 PMCID: PMC8566511 DOI: 10.1038/s41598-021-00552-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is currently the most dangerous disease for the global pig industry, causing huge economic losses, due to the lack of effective vaccine or treatment. Only the early detection of ASF virus (ASFV) and proper biosecurity measures are effective to reduce the viral expansion. One of the most widely recognized risks as regards the introduction ASFV into a country is infected animals and contaminated livestock vehicles. In order to improve ASF surveillance, we have assessed the capacity for the detection and inactivation of ASFV genome by using Dry-Sponges (3 M) pre-hydrated with a new surfactant liquid. We sampled different surfaces in ASFV-contaminated facilities, including animal skins, and the results were compared to those obtained using a traditional sampling method. The surfactant liquid successfully inactivated the virus, while ASFV DNA was well preserved for the detection. This is an effective method to systematically recover ASFV DNA from different surfaces and skin, which has a key applied relevance in surveillance of vehicles transporting live animals and greatly improves animal welfare. This method provides an important basis for the detection of ASFV genome that can be assessed without the biosafety requirements of a BSL-3 laboratory at least in ASF-affected countries, which may substantially speed up the early detection of the pathogen.
Collapse
Affiliation(s)
- Aleksandra Kosowska
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose A Barasona
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain.
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain.
| | - Sandra Barroso-Arévalo
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Belén Rivera
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| | - Jose M Sánchez-Vizcaíno
- VISAVET Health Surveillance Center, Complutense University of Madrid, Madrid, Spain
- Department of Animal Health, Faculty of Veterinary, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
21
|
Sovijit W, Taesuji M, Rattanamas K, Punyadarsaniya D, Mamom T, Nguyen HT, Ruenphet S. In vitro cytotoxicity and virucidal efficacy of potassium hydrogen peroxymonosulfate compared to quaternary ammonium compound under various concentrations, exposure times and temperatures against African swine fever virus. Vet World 2021; 14:2936-2940. [PMID: 35017841 PMCID: PMC8743787 DOI: 10.14202/vetworld.2021.2936-2940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIM The selection and proper application of disinfectants are crucial to the prevention of many diseases, so disinfectants must be evaluated before being used for the prevention of African swine fever (ASF). Three disinfectant products belonging to the group of potassium hydrogen peroxymonosulfates, product A and product B, and a quaternary ammonium compound called product C, were examined in vitro for host cell cytotoxicity and the efficacy of ASF virus inactivation. The study parameters included various concentrations, exposure times, temperatures, and degrees of cytotoxicity. MATERIALS AND METHODS Three disinfectant products were evaluated for cytotoxicity using primary porcine alveolar macrophage (PAM) cells at dilutions from 1:200 to 1:51,200. Disinfectants in concentrations of 1:200, 1:400, and 1:800 were prepared, the pH and the virucidal activity were tested. An equal volume of each dilution was mixed with the ASF virus and incubated at room temperature (20°C) or on ice (4°C) for 1 min, 5 min, or 30 min. Hemadsorption (HAD) or rosette formation was observed using an inverted microscope for 5 days after inoculation, and the virus titer was calculated as HAD50/mL. Each treatment and virus control were tested in triplicate, and the titers were reported as means and standard deviations. The reduction factor was used to measure inactivation. RESULTS Products A, B, and C at 1:400, 1:800, and 1:25,600 of dilution, respectively, did not show significant cytotoxic effects on PAM cells. Products A and B could inactivate ASF virus at 1:200 dilution within 5 min after exposure at 4°C. However, at 20°C, the exposure time had to be extended to 30 min to inactivate the virus. Product C could inactivate the virus at 1:400 dilution within 5 min under both temperature conditions, whereas at 1:800 dilution, the exposure time had to be extended to 30 min to completely inactivate the virus at 20°C. CONCLUSION All disinfectants could inactivate ASF virus in various concentrations, under appropriate exposure times and reaction temperatures, and there was no evidence of host cell cytotoxicity. For the control of ASF in pig farms, the appropriate concentration, ambient temperature, and contact time of these disinfectants should be taken into account.
Collapse
Affiliation(s)
- Watcharee Sovijit
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Machimaporn Taesuji
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Khate Rattanamas
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Darsaniya Punyadarsaniya
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Thanongsak Mamom
- Department of Pathology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Sakchai Ruenphet
- Department of Immunology and Virology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| |
Collapse
|
22
|
Tanneberger F, Abd El Wahed A, Fischer M, Blome S, Truyen U. The Efficacy of Disinfection on Modified Vaccinia Ankara and African Swine Fever Virus in Various Forest Soil Types. Viruses 2021; 13:2173. [PMID: 34834979 PMCID: PMC8618179 DOI: 10.3390/v13112173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
African swine fever (ASF) has become a global threat to the pig industry and wild suids. Within Europe, including Germany, affected wild boar populations play a major role. Fencing and carcass removal in combination with the reduction in environmental contamination are key to control further spread. The handling of the ASF virus (ASFV) is restricted to high-containment conditions in Germany. According to the regulation of the German Veterinarian Society (DVG), modified vaccinia Ankara virus (MVAV) is the virus of choice to determine the efficacy of disinfection for enveloped viruses. The aim of this study was to use the MVAV as a guide to select the best possible disinfectant solution and concentration for the inactivation of ASFV in soil. Both viruses were tested simultaneously. In this study, two layers (top and mineral soil) of soil types from six different locations in Saxony, Germany, were collected. The tenacity of ASFV and MVAV were tested at various time points (0.5 to 72 h). The capabilities of different concentrations of peracetic acid and citric acid (approx. 0.1 to 2%) to inactivate the viruses in the selected soil types with spiked high protein load were examined under appropriate containment conditions. Around 2-3 Log10 (TCID50) levels of reduction in the infectivity of both ASFV and MVAV were observed in all soil types starting after two hours. For MVAV, a 4 Log10 loss was recorded after 72 h. A total of 0.1% of peracetic acid (5 L/m2) was sufficient to inactivate the viruses. A 4 log10 reduction in the infectivity of MVAV was noticed by applying 1% citric acid, while a 2 log10 decline was recorded with ASFV. In conclusion, comparing MVAV to ASFV for efficacy screening of disinfectant solutions has revealed many similarities. Peracetic acid reduced the infectivity of both viruses independently of the soil type and the existence of a high organic soiling.
Collapse
Affiliation(s)
- Franziska Tanneberger
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, D-04103 Leipzig, Germany; (F.T.); (A.A.E.W.)
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, D-04103 Leipzig, Germany; (F.T.); (A.A.E.W.)
| | - Melina Fischer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, D-17493 Greifswald-Insel Riems, Germany; (M.F.); (S.B.)
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, D-17493 Greifswald-Insel Riems, Germany; (M.F.); (S.B.)
| | - Uwe Truyen
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 1, D-04103 Leipzig, Germany; (F.T.); (A.A.E.W.)
| |
Collapse
|
23
|
Juszkiewicz M, Walczak M, Woźniakowski G, Szczotka-Bochniarz A. Virucidal Activity of Plant Extracts against African Swine Fever Virus. Pathogens 2021; 10:1357. [PMID: 34832513 PMCID: PMC8624909 DOI: 10.3390/pathogens10111357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
African swine fever is one of the most dangerous and fatal swine diseases, described for the first time roughly a hundred years ago. Even now, there is neither a commercially approved vaccine nor treatment available. The only way to hinder further spread of the disease is by culling the affected herds and applying prevention based mainly on proper biosecurity. Due to growing awareness of the potential ASF threat among pig producers, disinfection processes are considered as one of the most important preventive measures. Currently, a variety of chemical compounds are applied for the disinfection of pig farms. Meanwhile, these chemicals may pose a potential risk, due to their toxic, irritant or corrosive effect. The aim of this study was to determine whether any plant-based natural compounds may show a virucidal effect against ASFV, and simultaneously be depleted of some of the side-effects typical for chemical compounds. Ideally, natural virucidal compounds should be safe for both humans and animals, biodegradable, easily available and inexpensive. Fourteen plant extracts were selected and screened for their virucidal effect against ASFV, using the suspension test inspired by the PN-EN 14675:2015 European Standard procedure. The results of our study showed that most of the tested plant extracts were ineffective against ASFV. Some extracts suspended in a hydroglycolic medium exhibited high virus titre reduction, but it was confirmed that the effect resulted from medium composition. However, a 1.05% peppermint extract showed high effectiveness against ASFV, reducing the virus titre by ≥4 log10, thus demonstrating that natural compounds used as virucidal agents could potentially be used in disinfection procedures, being both effective and harmless to humans and animals.
Collapse
Affiliation(s)
- Małgorzata Juszkiewicz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Marek Walczak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| | - Grzegorz Woźniakowski
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
- Department of Diagnostics and Clinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1 Street, 87-100 Toruń, Poland
| | - Anna Szczotka-Bochniarz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland; (M.W.); (G.W.); (A.S.-B.)
| |
Collapse
|
24
|
African Swine Fever in Wild Boar (Poland 2020): Passive and Active Surveillance Analysis and Further Perspectives. Pathogens 2021; 10:pathogens10091219. [PMID: 34578251 PMCID: PMC8465799 DOI: 10.3390/pathogens10091219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
African swine fever (ASF) is a fatal hemorrhagic disease of wild boar and domestic pigs which has been present in Poland since 2014. By 2020, the ASF virus (ASFV) spread across Central, Eastern and Western Europe (including Germany), and Asian countries (including China, Vietnam, and South Korea). The national ASF eradication and prevention program includes continuous passive (wild boar found dead and road-killed wild boar) and active (hunted wild boar) surveillance. The main goal of this study was to analyze the dynamic of the spread of ASF in the wild boar population across the territory of Poland in 2020. In that year in Poland, in total 6191 ASF-positive wild boar were declared. Most of them were confirmed in a group of animals found dead. The conducted statistical analysis indicates that the highest chance of obtaining an ASF-positive result in wild boar was during the winter months, from January to March, and in December 2020. Despite the biosecurity measures implemented by holdings of domestic pigs, the disease also occurred in 109 pig farms. The role of ASF surveillance in the wild boar population is crucial to apply more effective and tailored measures of disease control and eradication. The most essential measures to maintain sustainable production of domestic pigs in Poland include effective management of the wild boar population, along with strict implementation of biosecurity measures by domestic pig producers.
Collapse
|
25
|
Mazur-Panasiuk N, Botwina P, Kutaj A, Woszczyna D, Pyrc K. Ozone Treatment Is Insufficient to Inactivate SARS-CoV-2 Surrogate under Field Conditions. Antioxidants (Basel) 2021; 10:1480. [PMID: 34573110 PMCID: PMC8470094 DOI: 10.3390/antiox10091480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 caused a worldwide crisis, highlighting the importance of preventive measures in infectious diseases control. SARS-CoV-2 can remain infectious on surfaces for up to several weeks; therefore, proper disinfection is required to mitigate the risk of indirect virus spreading. Gaseous ozone treatment has received particular attention as an easily accessible disinfection tool. In this study, we evaluated the virucidal effectiveness of gaseous ozone treatment (>7.3 ppm, 2 h) on murine hepatitis virus (MHV)-contaminated stainless-steel surface and PBS-suspended virus under field conditions at ambient (21.8%) and high (49.8-54.2%) relative humidity. Surficial virus was soiled with 0.3 g/L of BSA. Parallelly, a half-hour vaporization with 7.3% hydrogen peroxide was performed on contaminated carriers. The obtained results showed that gaseous ozone, whilst quite effective against suspended virus, was insufficient in sanitizing coronavirus contaminated surfaces, especially under low RH. Increased humidity created more favorable conditions for MHV inactivation, resulting in 2.1 log titre reduction. Vaporization with 7.3% hydrogen peroxide presented much better virucidal performance than ozonation in a similar experimental setup, indicating that its application may be more advantageous regarding gaseous disinfection of surfaces contaminated with other coronaviruses, including SARS-CoV-2.
Collapse
Affiliation(s)
- Natalia Mazur-Panasiuk
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (N.M.-P.); (P.B.)
| | - Pawel Botwina
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (N.M.-P.); (P.B.)
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Adrian Kutaj
- Rescue and Fire Fighting Services no. 6, Regional Headquarters of the State Fire Service in Krakow, Aleksandry 2, 30-837 Krakow, Poland; (A.K.); (D.W.)
| | - Damian Woszczyna
- Rescue and Fire Fighting Services no. 6, Regional Headquarters of the State Fire Service in Krakow, Aleksandry 2, 30-837 Krakow, Poland; (A.K.); (D.W.)
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (N.M.-P.); (P.B.)
| |
Collapse
|
26
|
Abstract
A review of African swine fever (ASF) was conducted, including manifestations of disease, its transmission and environmental persistence of ASF virus. Findings on infectious doses of contemporary highly-pathogenic strains isolated from outbreaks in Eastern Europe were included. Published data on disinfectant susceptibility of ASF virus were then compared with similar findings for selected other infectious agents, principally those used in the UK disinfectant approvals tests relating to relevant Disease Orders for the control of notifiable and zoonotic diseases of livestock. These are: swine vesicular disease virus, foot and mouth disease virus, Newcastle disease virus and Salmonella enterica serovar Enteritidis. The comparative data thus obtained, presented in a series of charts, facilitated estimates of efficacy against ASF virus for some UK approved disinfectants when applied at their respective General Orders concentrations. Substantial data gaps were encountered for several disinfectant agents or classes, including peracetic acid, quaternary ammonium compounds and products based on phenols and cresols.
Collapse
Affiliation(s)
- Andrew D Wales
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Vet School Main Building, Daphne Jackson Road, University of Surrey, Guildford GU2 7AL, UK
| | - Robert H Davies
- Department of Bacteriology, Animal and Plant Health Agency, Woodham Lane, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
27
|
Neumann EJ, Hall WF, Dahl J, Hamilton D, Kurian A. Is transportation a risk factor for African swine fever transmission in Australia: a review. Aust Vet J 2021; 99:459-468. [PMID: 34235721 DOI: 10.1111/avj.13106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
African swine fever (ASF) is a viral disease of the pigs that was first described in Africa during the early part of the twentieth century. The disease has periodically occurred outside of Africa, including an ongoing epidemic in Europe and Asia that started in 2007; the disease has never occurred in Australia or New Zealand. Once introduced into a country, spread can occur through direct and indirect routes of transmission. Infected feral pig populations have the potential to act as a long-term reservoir for the virus, making eradication difficult. Just before and throughout the period of clinical signs, ASF virus is shed in oronasal fluids, urine, faeces and blood. This results in contamination of the pig's environment, including flooring, equipment and vehicles. Transportation-related risk factors therefore are likely to play an important role in ASF spread, though evidence thus far has been largely anecdotal. In addition to the existing AUSVETPLAN ASF plan, efforts should be made to improve transportation biosecurity, from the time a pig leaves the farm to its destination. Collection of data that could quantify the capabilities and capacity of Australia to clean and disinfect livestock trucks would help to determine if private and/or public sector investment should be made in this area of biosecurity. No peer-reviewed research was identified that described a specific process for cleaning and disinfecting a livestock truck known to be contaminated with ASF virus, though literature suggests that transportation is an important route of transmission for moving the virus between farms and countries.
Collapse
Affiliation(s)
- E J Neumann
- Riddet Institute, Massey University, Tennent Drive, Palmerston North, 4474, New Zealand
| | - W F Hall
- William Hall and Associates, 114 Swan Drive, Googong, New South Wales, 2620, Australia
| | - J Dahl
- Danish Agriculture and Food Council, Axelborg, Copenhagen V, Denmark
| | - D Hamilton
- South Australian Research and Development Institute, South Australia, 5064, Australia
| | - A Kurian
- Epi-Insight Limited, 17 Main South Road, East Taieri, 9024, New Zealand
| |
Collapse
|
28
|
McCleary S, McCarthy RR, Strong R, Edwards J, Crooke H. Inactivation of African Swine Fever Virus by reagents commonly used in containment laboratories. J Virol Methods 2021; 295:114203. [PMID: 34097940 DOI: 10.1016/j.jviromet.2021.114203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022]
Abstract
Rapid and effective virus inactivation is an essential step for safe diagnostic testing and for research and vaccine development using infectious viruses. We characterised the reduction of African Swine Fever Virus (ASFV) infectivity using Virkon™ S (Lanxess) 1% w/v disinfectant, FACS™ Lysing buffer (BD), and AVL™ buffer (Qiagen), using porcine cell culture. No virus was detected following a 30 s 20:1 v/v mixing ratio of Virkon™ S 1% with high titre ASFV, supporting its effective use as a laboratory surface disinfectant. FACS™ Lysing and AVL™ buffers also inactivated ASFV, permitting safe removal of treated infected samples from high containment facilities.
Collapse
Affiliation(s)
- Stephen McCleary
- Virology Department, Animal Health and Plant Health Agency (APHA), Addlestone, KT15 3NB, United Kingdom.
| | - Ronan R McCarthy
- Virology Department, Animal Health and Plant Health Agency (APHA), Addlestone, KT15 3NB, United Kingdom.
| | - Rebecca Strong
- Virology Department, Animal Health and Plant Health Agency (APHA), Addlestone, KT15 3NB, United Kingdom.
| | - Jane Edwards
- Virology Department, Animal Health and Plant Health Agency (APHA), Addlestone, KT15 3NB, United Kingdom.
| | - Helen Crooke
- Virology Department, Animal Health and Plant Health Agency (APHA), Addlestone, KT15 3NB, United Kingdom.
| |
Collapse
|
29
|
Izquierdo-García LF, Carmona SL, Zuluaga P, Rodríguez G, Dita M, Betancourt M, Soto-Suárez M. Efficacy of Disinfectants against Fusarium oxysporum f. sp. cubense Tropical Race 4 Isolated from La Guajira, Colombia. J Fungi (Basel) 2021; 7:297. [PMID: 33920770 PMCID: PMC8071173 DOI: 10.3390/jof7040297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 01/18/2023] Open
Abstract
Banana, the main export fruit for Colombia, is threatened by Fusarium wilt (FWB), caused by Fusarium oxysporum f. sp. cubense (Foc), tropical race 4 (TR4). Pathogen containment through disinfecting tools, machinery, shoes, and any means that may carry contaminated soil particles with proper disinfectants is at the forefront of disease management. In this study, the biocide efficacy of 10 commercial quaternary ammonium compounds (QACs) products and one based on glutaraldehyde (GA) were evaluated on both reproductive structures (microconidia and macroconidia) and survival spores (chlamydospores) of Foc TR4 (strain 140038) isolated from La Guajira, Colombia. QACs were evaluated at 1200 ppm and two exposure times: <1 and 15 min in the absence or presence of soil. For GA disinfectant, four different concentrations (500, 800, 1200, and 2000 ppm) were evaluated at both contact times in the presence of soil. In the absence of soil, all QACs showed 100% biocidal efficiency against microconidia, macroconidia, and chlamydospores at both <1 and 15 min. The presence of soil decreased the efficacy of disinfectants, but some of them, such as QAC3_1st, QAC7_4th, and QAC5_4th, showed 98%, 98%, and 100% efficacy against Foc TR4 chlamydospores, respectively, after <1 min of contact time. For instance, the GA-based disinfectant was able to eliminate all Foc TR4 propagules after 15 min for all concentrations tested.
Collapse
Affiliation(s)
- Luisa F. Izquierdo-García
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| | - Sandra L. Carmona
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| | - Paola Zuluaga
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| | - Gustavo Rodríguez
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| | - Miguel Dita
- Alliance of Bioversity International and CIAT, Km 17 Recta Cali-Palmira, Cali 763537, Colombia;
| | - Mónica Betancourt
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| | - Mauricio Soto-Suárez
- Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA. C.I Tibaitatá., Km 14 vía Mosquera-Bogotá, Cundinamarca 250047, Colombia; (L.F.I.-G.); (S.L.C.); (P.Z.); (G.R.); (M.B.)
| |
Collapse
|
30
|
Truong QL, Nguyen LT, Babikian HY, Jha RK, Nguyen HT, To TL. Natural oil blend formulation as an anti-African swine fever virus agent in in vitro primary porcine alveolar macrophage culture. Vet World 2021; 14:794-802. [PMID: 33935430 PMCID: PMC8076445 DOI: 10.14202/vetworld.2021.794-802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM African swine fever is one of the severe pathogens of swine. It has a significant impact on production and economics. So far, there are no known remedies, such as vaccines or drugs, reported working successfully. In the present study, the natural oil blend formulation's (NOBF) efficacy was evaluated against ASFV in vitro using porcine alveolar macrophages (PAMs) cells of swine. MATERIALS AND METHODS The capacity of NOBF against the ASFV was tested in vitro. The NOBF combines Eucalyptus globulus, Pinus sylvestris, and Lavandula latifolia. We used a 2-fold serial dilution to test the NOBF formulation dose, that is, 105 HAD50/mL, against purified lethal dose of African swine in primary PAMs cells of swine. The PAM cells survival, real-time polymerase chain reaction (PCR) test, and hemadsorption (HAD) observation were performed to check the NOBF efficacy against ASFV. RESULTS The in vitro trial results demonstrated that NOBF up to dilution 13 or 0.000625 mL deactivates the lethal dose 105 HAD50 of ASFV. There was no HAD (Rosetta formation) up to dilution 12 or 0.00125 mL of NOBF. The Ct value obtained by running real-time PCR of the NOBF group at 96 h post-infection was the same as the initial value or lower (25), whereas the Ct value of positive controls increased several folds (17.84). CONCLUSION The in vitro trial demonstrated that NOBF could deactivate the ASFV. The NOBF has the potential to act as anti-ASFV agent in the field. The next step is to conduct in vivo level trial to determine its efficacy.
Collapse
Affiliation(s)
- Quang Lam Truong
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Lan Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Haig Yousef Babikian
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Rajeev Kumar Jha
- Department of Research and Development, PT. Rhea Natural Sciences, Jakarta, Indonesia
| | - Hoa Thi Nguyen
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thanh Long To
- Key Laboratory of Veterinary Biotechnology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| |
Collapse
|
31
|
Choi H, Chatterjee P, Lichtfouse E, Martel JA, Hwang M, Jinadatha C, Sharma VK. Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1945-1951. [PMID: 33500689 PMCID: PMC7820091 DOI: 10.1007/s10311-021-01180-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/04/2021] [Indexed: 05/18/2023]
Abstract
The coronavirus disease COVID-19 has spread throughout the world and has been declared as a pandemic by the World Health Organization on March 11th, 2020. The COVID-19 is caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). One possible mode of virus transmission is through surfaces in the healthcare settings. This paper reviews currently used disinfection strategies to control SARS-CoV-2 at the healthcare facilities. Chemical disinfectants include hypochlorite, peroxymonosulfate, alcohols, quaternary ammonium compounds, and hydrogen peroxide. Advanced strategies include no-touch techniques such as engineered antimicrobial surfaces and automated room disinfection systems using hydrogen peroxide vapor or ultraviolet light.
Collapse
Affiliation(s)
- Hosoon Choi
- Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Piyali Chatterjee
- Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China
| | - Julie A. Martel
- Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Munok Hwang
- Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Chetan Jinadatha
- Central Texas Veterans Health Care System, 1901 Veterans Memorial Drive, Temple, TX USA
| | - Virender K. Sharma
- Program of the Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
32
|
Patil SS, Suresh KP, Vashist V, Prajapati A, Pattnaik B, Roy P. African swine fever: A permanent threat to Indian pigs. Vet World 2020; 13:2275-2285. [PMID: 33281367 PMCID: PMC7704300 DOI: 10.14202/vetworld.2020.2275-2285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
India has 9 million pigs, of which 45% are in the North eastern (NE) states of India. Viral diseases affecting pigs are a major concern of mortality causing huge loss to the pig farmers. One such disease is African swine fever (ASF) that has already knocked the porous borders of NE states of India. ASF is a highly contagious devastating disease of pigs and wild boars causing 100% mortality. The causative agent African swine fever virus (ASFV) belongs to the genus Asfivirus, family Asfarviridae. Pig is the only species affected by this virus. Soft ticks (Ornithodoros genus) are shown to be reservoir and transmission vectors of ASFV. Transmission is very rapid and quickly engulfs the entire pig population. It is very difficult to differentiate classical swine fever from ASF since clinical symptoms overlap. Infected and in contact pigs should be culled immediately and buried deep, and sheds and premises be disinfected to control the disease. There is no vaccine available commercially. Since its first report in Kenya in 1921, the disease has been reported from the countries in Europe, Russian federation, China, and Myanmar. The disease is a threat to Indian pigs. OIE published the first report of ASF in India on May 21, 2020, wherein, a total of 3701 pigs died from 11 outbreaks (Morbidity - 38.45% and mortality - 33.89%) in Assam and Arunachal Pradesh states of India. ASF is non-zoonotic.
Collapse
Affiliation(s)
- Sharanagouda S. Patil
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | | | - Vikram Vashist
- Department of Animal Husbandry and Veterinary Services, Shimla, Himachal Pradesh, India
| | - Awadhesh Prajapati
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| | - Bramhadev Pattnaik
- One Health Center for Surveillance and Disease Dynamics, AIPH University, Bhubaneswar, Odisha, India
| | - Parimal Roy
- Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, Karnataka, India
| |
Collapse
|