1
|
Machuca A, Peñalver GA, Garcia RAF, Martinez-Lopez A, Castillo-Lluva S, Garcia-Calvo E, Luque-Garcia JL. Advancing rhodium nanoparticle-based photodynamic cancer therapy: quantitative proteomics and in vivo assessment reveal mechanisms targeting tumor metabolism, progression and drug resistance. J Mater Chem B 2024. [PMID: 39453320 DOI: 10.1039/d4tb01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Rhodium nanoparticles have been recently discovered as good photosensitizers with great potential in cancer photodynamic therapy by effectively inducing cytotoxicity in cancer cells under near-infrared laser. This study evaluates the molecular mechanisms underlying such antitumoral effect through quantitative proteomics. The results revealed that rhodium nanoparticle-based photodynamic therapy disrupts tumor metabolism by downregulating key proteins involved in ATP synthesis and mitochondrial function, leading to compromised energy production. The treatment also induces oxidative stress and apoptosis while targeting the invasion capacity of cancer cells. Additionally, key proteins involved in drug resistance are also affected, demonstrating the efficacy of the treatment in a multi-drug resistant cell line. In vivo evaluation using a chicken embryo model also confirmed the effectiveness of the proposed therapy in reducing tumor growth without affecting embryo viability.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Gabriel A Peñalver
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | | | - Angelica Martinez-Lopez
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Jose L Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
2
|
Heidari F, Raoufi Z, Abdollahi S, Asl HZ. Antibiotic delivery in the presence of green AgNPs using multifunctional bilayer carrageenan nanofiber/sodium alginate nanohydrogel for rapid control of wound infections. Int J Biol Macromol 2024; 277:134109. [PMID: 39048003 DOI: 10.1016/j.ijbiomac.2024.134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study constructed bilayer nano-hydrogels using solvent casting and electrospinning techniques. The first layer consisted of a hydrogel containing sodium alginate and gellan gum, while the second layer was a carrageenan/polyvinyl alcohol nanofibrous membrane. The nanohydrogels were prepared with different doses of doxycycline antibiotic (0.12, 0.06, 0.03 g) and a fixed amount of silver nanoparticles (0.012 g), which were synthesized using the green method including Capparis spinosa leaf extract. The films were tested for their mechanical properties, swelling behavior, XRD, and FTIR, and their morphology was characterized using SEM. The biological properties of the nanohydrogels were also extensively assayed. X-ray diffraction analysis showed peak 111 for silver nanoparticles. Incorporating silver nanoparticles significantly enhanced nanohydrogels' mechanical and antibacterial properties and improved their ability to heal wounds. Nanohydrogels exhibited biodegradability, biocompatibility, anti-inflammatory properties (57.63 %), and high cell viability (>85 %) in laboratory conditions. The study confirmed that wound dressings containing doxycycline with controlled release are highly effective against pathogenic bacteria and prevent the formation of biofilms (92 %). The rats in-vivo study demonstrated that 100 % wound closure was achieved in nanohydrogels containing SA/GG/PVA/CAR/AgNPs/DOX0.12 after 14 days. The films could potentially lead to the development of new treatments against bacterial infections and inflammatory conditions of wounds.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
3
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Cavalu S, Saber S, Ramadan A, Elmorsy EA, Hamad RS, Abdel-Reheim MA, Youssef ME. Unveiling citicoline's mechanisms and clinical relevance in the treatment of neuroinflammatory disorders. FASEB J 2024; 38:e70030. [PMID: 39221499 DOI: 10.1096/fj.202400823r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Citicoline, a compound produced naturally in small amounts in the human body, assumes a pivotal role in phosphatidylcholine synthesis, a dynamic constituent of membranes of neurons. Across diverse models of brain injury and neurodegeneration, citicoline has demonstrated its potential through neuroprotective and anti-inflammatory effects. This review aims to elucidate citicoline's anti-inflammatory mechanism and its clinical implications in conditions such as ischemic stroke, head trauma, glaucoma, and age-associated memory impairment. Citicoline's anti-inflammatory prowess is rooted in its ability to stabilize cellular membranes, thereby curbing the excessive release of glutamate-a pro-inflammatory neurotransmitter. Moreover, it actively diminishes free radicals and inflammatory cytokines productions, which could otherwise harm neurons and incite neuroinflammation. It also exhibits the potential to modulate microglia activity, the brain's resident immune cells, and hinder the activation of NF-κB, a transcription factor governing inflammatory genes. Clinical trials have subjected citicoline to rigorous scrutiny in patients grappling with acute ischemic stroke, head trauma, glaucoma, and age-related memory impairment. While findings from these trials are mixed, numerous studies suggest that citicoline could confer improvements in neurological function, disability reduction, expedited recovery, and cognitive decline prevention within these cohorts. Additionally, citicoline boasts a favorable safety profile and high tolerability. In summary, citicoline stands as a promising agent, wielding both neuroprotective and anti-inflammatory potential across a spectrum of neurological conditions. However, further research is imperative to delineate the optimal dosage, treatment duration, and underlying mechanisms. Moreover, identifying specific patient subgroups most likely to reap the benefits of citicoline as a new therapy remains a critical avenue for exploration.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Asmaa Ramadan
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
5
|
Zhou X, Wang M, Sun M, Yao N. HSPB8 attenuates lipopolysaccharide‑mediated acute lung injury in A549 cells by activating mitophagy. Mol Med Rep 2024; 30:171. [PMID: 39054966 PMCID: PMC11294906 DOI: 10.3892/mmr.2024.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sepsis is a life‑threatening multiple organ failure disease caused by an uncontrolled inflammatory response and can progress to acute lung injury (ALI). Heat‑shock protein B8 (HSPB8) serves a cytoprotective role in multiple types of diseases; however, to the best of our knowledge, the regulatory role of HSPB8 in sepsis‑induced ALI remains unclear. A549 human alveolar type II epithelial cells were treated with lipopolysaccharide (LPS) for 24 h to simulate a sepsis‑induced ALI model. Cell transfection was performed to overexpress HSPB8, and cells were treated with mitochondrial division inhibitor‑1 (Mdivi‑1) for 2 h before LPS induction to assess the underlying mechanism. Protein expression was evaluated using western blotting and an immunofluorescence assay. Cytokines were examined using ELISA assay kits and antioxidant enzymes were examined using their detection kits. Cell apoptosis was detected using flow cytometry. The mitochondrial membrane potential was detected by JC‑1 staining. HSPB8 was upregulated in A549 cells treated with LPS and HSPB8 overexpression attenuated LPS‑induced inflammatory cytokine levels, oxidative stress and apoptosis in A549 cells. LPS inhibited mitophagy and reduced the mitochondrial membrane potential in A549 cells, which was partly inhibited by HSPB8 overexpression. Furthermore, Mdivi‑1 decreased the inhibitory effect of HSPB8 on the inflammatory response, oxidative stress and apoptosis in LPS‑treated A549 cells. In conclusion, HSPB8 overexpression attenuated the LPS‑mediated inflammatory response, oxidative stress and apoptosis in A549 cells by promoting mitophagy, indicating HSPB8 as a potential therapeutic target in sepsis‑induced ALI.
Collapse
Affiliation(s)
- Xinjian Zhou
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Minpeng Wang
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Menghan Sun
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Nana Yao
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| |
Collapse
|
6
|
Koner D, Snaitang R, Das KC, Saha N. Molecular characterization of heat shock protein 70 and 90 genes and their expression analysis in air-breathing magur catfish (Clarias magur) while exposed to zinc oxide nanoparticles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024:10.1007/s10695-024-01397-4. [PMID: 39180596 DOI: 10.1007/s10695-024-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
The air-breathing magur catfish (Clarias magur) are frequently challenged with high environmental pollutants, including that of various metal nanoparticles (NPs) in their natural habitats. Heat shock proteins (HSPs) are essential molecular chaperones for preserving intracellular protein homeostasis in eukaryotic cells. In aquatic animals, HSPs are known to play important defensive roles associated with various environmental stress-related cellular damages. In the present investigation, we characterized the molecular and structural organization of distinct HSPs and their potential induction of HSP genes in multiple magur catfish tissues while exposed to ZnO NPs for 14 days. The sequence alignment of four HSP genes (hsp70, hsc70, hsp90a, and hsp90b) of magur catfish demonstrated evolutionary parallels with bony fishes and total conservation of active sites across the amphibia, fish, and mammals. From the architectural analysis of HSP70, HSC70, HSP90a, and HSP90b proteins, a structural similarity with mammals was observed, suggesting the functional resemblances of the studied HSPs in chaperone mechanisms. In the examined tissues, the mRNAs of HSP genes expressed constitutively. Exposure of C. magur to ZnO NPs (10 mg/L) in situ led to a considerable increase in the levels of mRNAs for several HSP genes and translated proteins, with HSP70 exhibiting the highest level of expression. Thus, it can be contemplated that HSPs may be involved in defending the magur catfish against the ZnO NP- and other metal NP-mediated cellular damages. The results provide new insights into the involvement of HSP machinery during adaptation to the ZnO NP-induced stress in magur catfish.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Kanhu Charan Das
- Bioinformatics Centre, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
7
|
Bolat I, Terim–Kapakin KA, Apaydin Yildirim B, Manavoğlu Kirman E. Protective effect of Helichrysum plicatum on head shock protein inflammation and apoptosis in Gentamicin induced nephrotoxicity. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2024; XXXIV:1-9. [DOI: 10.52973/rcfcv-e34388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Gentamicin (GM) is an aminoglycoside antibiotic the most common used in the treatment of infectious diseases in humans and animals. However, GM causes damage to many tissues and organs in the body, especially the kidneys. Helichrysum plicatum (Hp), native to the Balkans and Anatolia, is a plant used in various diseases such as diabetes, liver and kidney damage. In this study, Male Spraque Dawley rats (n=36 and 200–250 g) were randomly divided into 6 experimental groups: Group 1: Control; received normal saline (intraperitoneally –i.p.–), Group 2: Hp (100 mg·kg–1 day i.p.), Group 3: Hp (200 mg·kg–1 day i.p.), Group 4: GM (80 mg·kg–1 day i.p.), Group 5: GM 80 + Hp 100 (mg·kg–1 day i.p.), and Group 6: GM 80 + Hp 200 (mg·kg–1 day i.p.). Then kidney tissue samples were collected for evaluations. All of our results showed that Hp (100 mg·kg–1 day) reduced the levels of pro–inflammatory cytokines such as IL–8, IL–6, and TNF– while increasing the level of anti–inflammatory cytokine IL–10. It was also observed that Hp reduced the expressions of the caspase3, NOS and Heat shock proteins such as Hsp27 and Hsp70. With this study, we have shown that Hp probably due to its chemical properties has a protective effect against GM induced nephrototoxicity by reducing the values stated above to normal values.
Collapse
Affiliation(s)
- Ismail Bolat
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| | | | - Betul Apaydin Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Departments of Biochemistry. Erzurum, Türkiye
| | - Esra Manavoğlu Kirman
- Atatürk University, Faculty of Veterinary Medicine, Departments of Pathology. Erzurum, Türkiye
| |
Collapse
|
8
|
Zhu H, Huang D, Wang J, Zhao Y, Sun L. Viral Mimicking Polyplexes as Hierarchical Unpacking Vectors for Rheumatoid Arthritis Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402888. [PMID: 38923874 PMCID: PMC11348054 DOI: 10.1002/advs.202402888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Nano-delivery systems hold great promise for the treatment of rheumatoid arthritis (RA). Current research efforts are primarily focused on enhancing their targeting capabilities and efficacy. Here, this study proposes a novel viral-mimicking ternary polyplexes system for the controlled delivery of the anti-inflammatory drug Cyclosporin A (CsA) to effectively treat RA. The ternary polyplexes consist of a nanogel core loaded with CsA and a hyaluronic acid shell, which facilitates CD44-mediated targeting. By mimicking the Trojan Horse strategy employed by viruses, these polyplexes undergo a stepwise process of deshielding and disintegration within the inflamed joints. This process leads to the release of CsA within the cells and the scavenging of pathogenic factors. This study demonstrates that these viral-mimicking ternary polyplexes exhibit rapid targeting, high accumulation, and prolonged persistence in the joints of RA mice. As a result, they effectively reduce inflammation and alleviate symptoms. These results highlight the potential of viral-mimicking ternary polyplexes as a promising therapeutic approach for the targeted and programmed delivery of drugs to treat not only RA but also other autoimmune diseases.
Collapse
Affiliation(s)
- Haofang Zhu
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022P.R. China
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan RoadNanjing210008P. R. China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan RoadNanjing210008P. R. China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan RoadNanjing210008P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan RoadNanjing210008P. R. China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast University2 SipailouNanjing210096P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022P.R. China
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical School321 Zhongshan RoadNanjing210008P. R. China
| |
Collapse
|
9
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
10
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
11
|
Kizir D, Karaman M, Demir Y, Ceylan H. Effect of tannic acid on doxorubicin-induced cellular stress: Expression levels of heat shock genes in rat spleen. Biotechnol Appl Biochem 2024. [PMID: 38945802 DOI: 10.1002/bab.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
Doxorubicin (DOX), an anthracycline group antibiotic, has been extensively employed as a potent chemotherapeutic agent for treating solid and hematopoietic tumors in humans. Amid exposure to diverse stress conditions, living organisms swiftly initiate the synthesis of heat shock proteins (HSPs), a set of highly conserved proteins. Tannic acid (TA) has garnered increasing study attention due to its special chemical properties, health benefits, and wide availability. This study's primary aim is to elucidate the impact of DOX and TA on the expression levels of Hsp90aa1, Hspa1a, Hspa4, and Hspa5 in the spleen tissues of rats. Sprague Dawley rats (Rattus norvegicus, male, 9-10 weeks old, 180 ± 20 g) were randomly divided into 4 groups: control, DOX (30 mg/kg cumulative), TA (50 mg/kg), and DOX + TA (5 mg/kg and 50 mg/kg, respectively). Subsequently, spleen tissues were collected from rats, and complementary DNA libraries were generated after the application process. The quantitative real-time PCR method was used to detect and quantify the mRNA expression changes of the Hsp90aa1, Hspa1a, Hspa4, and Hspa5 genes our results showed that the mRNA expressions of the targeted genes were up-regulated in rat spleen tissues exposed to DOX. However, this increase was remarkably suppressed by TA treatment. These findings suggest that TA may serve as a protective agent, mitigating the toxic effects of DOX in the rat spleen.
Collapse
Affiliation(s)
- Duygu Kizir
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Melike Karaman
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Yeliz Demir
- Nihat Delibalta Göle Vocational High School, Department of Pharmacy Services, Ardahan University, Ardahan, Turkey
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
12
|
Guo Y, Li B, Xie H, Wu C, Wang G, Yao K, Li L. The therapeutic efficacy of different configuration nano-polydopamine drug carrier systems with photothermal synergy against head and neck squamous cell carcinoma. Regen Biomater 2024; 11:rbae073. [PMID: 39027362 PMCID: PMC11256922 DOI: 10.1093/rb/rbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/20/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignant tumor worldwide. Considering its special anatomical site and the progressive resistance to chemotherapy drugs, the development of more effective, minimally invasive and precise treatment methods is urgently needed. Nanomaterials, given their special properties, can be used as drug carrier systems to improve the therapeutic effect and reduce the adverse effects. The drug carrier systems with photothermal effect can promote the killing of cancer cells and help overcome drug resistance through heat stress. We selected dopamine, a simple raw material, and designed and synthesized three different configurations of nano-polydopamine (nPDA) nanomaterials, including nPDA balls, nPDA plates and porous nPDA balls. In addition to the self-polymerization and self-assembly, nPDA has high photothermal conversion efficiency and can be easily modified. Moreover, we loaded cisplatin into three different configurations of nPDA, creating nPDA-cis (the nano-drug carrier system with cisplatin), and comparatively studied the properties and antitumor effects of all the nPDA and nPDA-cis materials in vitro and nPDA-cis in vivo. We found that the photothermal effect of the nPDA-cis balls drug carrier system had synergistic effect with cisplatin, resulting in excellent antitumor effect and good clinical application prospects. The comparison of the three different configurations of drug carrier systems suggested the importance of optimizing the spatial configuration design and examining the physical and chemical properties in the future development of nano-drug carrier systems. In this study, we also noted the duality and complexity of the influences of heat stress on tumors in vitro and in vivo. The specific mechanisms and the synergy with chemotherapy and immunotherapy will be an important research direction in the future.
Collapse
Affiliation(s)
- Yuhao Guo
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Stomatology, Xinqiao Hospital of Army Medical University, Chongqing 400037,China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| | - Guixue Wang
- State and Local Joint Engineering Laboratory, Bioengineering College of Chongqing University, Chongqing 400044,China
| | - Kexin Yao
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044,China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041,China
| |
Collapse
|
13
|
Garriga F, Maside C, Padilla L, Recuero S, Rodríguez-Gil JE, Yeste M. Heat shock protein 70 kDa (HSP70) is involved in the maintenance of pig sperm function throughout liquid storage at 17 °C. Sci Rep 2024; 14:13383. [PMID: 38862610 PMCID: PMC11166661 DOI: 10.1038/s41598-024-64488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
At present, liquid storage is the most efficient method for pig semen preservation. This approach relies upon reducing sperm metabolism, allowing for the maintenance of cell lifespan. In this context, the study of proteins that could protect sperm during liquid storage is of high relevance. The 70 kDa Heat Shock Protein (HSP70) is an anti-apoptotic protein that has been reported to be relevant to sperm survival. Thus, we explored the role of HSP70 during prolonged storage of pig semen at 17 °C. Six semen pools were incubated with YM-1 (0, 0.05, 0.1 and 0.2 μM), an HSP70 inhibitor, and stored at 17 °C for 21 days. On days 0, 4, 10, 14 and 21, sperm quality and function were evaluated through flow cytometry and Computer-Assisted Sperm Analysis (CASA), and HSP70 activity and chromatin condensation were also determined. While inhibition of HSP70 increased progressive motility, Ca2+ and Reactive Oxygen Species (ROS) levels, and mitochondrial activity during the first 10 days of storage, it had a detrimental effect on sperm motility after 14 and 21 days. In spite of this, sperm viability was not altered. We can conclude that HSP70 contributes to the liquid storage of pig semen because it keeps mitochondrial activity low, which is needed for the maintenance of sperm function.
Collapse
Affiliation(s)
- Ferran Garriga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain
| | - Carolina Maside
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain
| | - Lorena Padilla
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain
| | - Sandra Recuero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003, Girona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
14
|
Lattos A, Makri V, Papadopoulos DK, Gourzioti E, Pagonis C, Georgoulis I, Karagiannis D, Theodorou JA, Michaelidis B, Giantsis IA, Feidantsis K. Molecular characterization of Lernathropus kroyeri from intensive aquaculture and pathophysiology of infested sea bass. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109576. [PMID: 38670414 DOI: 10.1016/j.fsi.2024.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
The copepod Lernathropus kroyeri constitutes one of the major parasites for the Mediterranean aquaculture, infesting the sea bass Dicentrarchus labrax causing thus disruptions of growth performance and occasionally mortalities. Despite the large spread and the high frequency of this parasite in mariculture farms of Eastern Mediterranean, L. kroyeri genetic profile from aquaculture as well as the pathophysiological response of D. labrax have not been studied so far. Keeping this in mind, in the present study we investigated the L. kroyeri infestation on D. labrax from two farms in Greece, examining both healthy and heavy parasitized individuals. Assays included histopathology, phylogenetic reconstruction of the parasite and physiological response of the fish by the means of antioxidant, inflammatory metabolic and stress related gene expression analysis at both mRNA and protein levels. Genetic analysis indicated that L. kroyeri composes a monophyletic group, highly phylogenetically distant from other congeneric groups. Heavy infested D. labrax witnessed a significantly increased immune response that further led to oxidative stress and metabolic alterations. Overall, our results demonstrate the, seasonally independent, high infestation of this parasitic copepods, which continue to affect Mediterranean intensive aquaculture systems.
Collapse
Affiliation(s)
- Athanasios Lattos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Vasiliki Makri
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios K Papadopoulos
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Evgenia Gourzioti
- Department of Aquaculture and Fish Diseases, School of Health Sciences, University of Thessaly, GR-43100, Karditsa, Greece
| | - Charalampos Pagonis
- Department of Aquaculture and Fish Diseases, School of Health Sciences, University of Thessaly, GR-43100, Karditsa, Greece
| | - Ioannis Georgoulis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitrios Karagiannis
- Laboratory of Ichthyology - Culture and Pathology of Aquatic Animals, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - John A Theodorou
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece
| | - Basile Michaelidis
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioannis A Giantsis
- Department of Animal Science, Forestry and Natural Environment, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Department of Fisheries and Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece.
| |
Collapse
|
15
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
16
|
Deng B, He X, Wang Z, Kang J, Zhang G, Li L, Kang X. HSP70 protects PC12 cells against TBHP-induced apoptosis and oxidative stress by activating the Nrf2/HO-1 signaling pathway. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00924-0. [PMID: 38807023 DOI: 10.1007/s11626-024-00924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
HSP70 exhibits neuroprotective, antioxidant, and anti-apoptotic properties, which are crucial in preventing spinal cord injury (SCI) induced by oxidative stress and apoptosis. In this study, we assessed the potential protective effects and underlying mechanisms of HSP70 on tert-butyl hydroperoxide (TBHP)-damaged PC12 cells in an in vitro model of SCI. To establish the model, PC12 cells were subjected to oxidative damage induced by TBHP, followed by overexpression of HSP70. Cell viability was assessed using the CCK8 kit, intracellular reactive oxygen species level was evaluated using a commercial kit, cell apoptosis was detected using the Annexin V-APC/7-ADD Apoptosis Detection Kit, and the oxidative stress level was determined using SOD and MDA assay kits. Western blot analysis was used to detect the expression levels of Bax, cleaved caspase-3, and Bcl-2 proteins. Furthermore, immunofluorescence staining and Western bolt were used to detect the expression levels of proteins associated with the Nrf2/HO-1 signaling pathway. We found that HSP70 overexpression reduced apoptosis and oxidative stress in TBHP-induced PC12 cells. Furthermore, it activated the Nrf2/HO-1 signaling pathway. In addition, the Nrf2 inhibitor ML385 attenuated the protective effects of HSP70 on TBHP-induced PC12 cells. In conclusion, HSP70 can partially alleviate TBHP-induced apoptosis and oxidative stress in PC12 cells by promoting the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
17
|
Masoumi Godgaz S, Asefnejad A, Bahrami SH. Fabrication of PEGylated SPIONs-Loaded Niosome for Codelivery of Paclitaxel and Trastuzumab for Breast Cancer Treatment: In Vivo Study. ACS APPLIED BIO MATERIALS 2024; 7:2951-2965. [PMID: 38602218 DOI: 10.1021/acsabm.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
There is a growing appeal for engineering drug delivery systems for controlled and local drug delivery. Conjugation of antibodies on the nanocarriers for targeted chemotherapeutic drugs has always been one of the main techniques. This work aims to develop a polycaprolactone/chitosan electrospun mat incorporated with paclitaxel/Fe3O4-loaded niosomes (SPNs) decorated with trastuzumab (TbNs) for cancer therapy. SPNs and TbNs were analyzed by DLS, zeta potential, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. Fabricated mats with distinct concentrations of TbNs were classified into four groups (G0 (0), G1 (1), G2 (2.5), and G3 (5%)) and were studied physicochemically, mechanically, and biologically. Paclitaxel release was also studied for 7 days under an alternative magnetic field (AMF). The optimized mat was nominated for an in vivo study to evaluate its tumor growth inhibition. Based on the results, the TbNs had a spherical core and shell morphology with a smooth surface. The zeta potential and the mean size of TbNs were equal to -14.7 mV and 221 nm. TbNs did not affect the morphology and quality of nanofibers, but in general, the presence of TbNs increased the elastic modulus, water uptake, and degradation. Regarding the release study, AMF showed a significant increase in accelerating paclitaxel release from mats, and most releases belonged to the mat with 5% of TbNs. Results from the in vivo study showed the effective and synergistic effects of AMF on drug release and significant tumor growth inhibition. To summarize, the proposed nanocarrier under AMF can be a good candidate for cancer therapy.
Collapse
Affiliation(s)
- Saeideh Masoumi Godgaz
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855,Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855,Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran15875-4413,Iran
| |
Collapse
|
18
|
Wu X, Zhang Z, Cui W, Han L, Liu Z, Song X, Tan J. The analysis of inducible family members in the water flea Daphnia magna led to the identification of an uncharacterized lineage of heat shock protein 70. Heliyon 2024; 10:e30288. [PMID: 38765176 PMCID: PMC11098801 DOI: 10.1016/j.heliyon.2024.e30288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
To explore the function and evolutionary relationships of inducible heat shock protein 70 (Hsp70) in Daphnia magna, cDNAs of four Hsp70 family members (DmaHsp70, DmaHsp70-2, DmaHsp70-12, DmaHsp70-14) were cloned. While all DmaHsp70s possess three function domains, it is noteworthy that only DmaHsp70 ends with a "EEVD" motif. Phylogenetic analysis indicates that the Hsp70-12 lineage is distanced from the rest, and therefore it is an uncharacterized lineage of Hsp70. The differences in isoelectric point and 3-dimensional (3D) conformation of the N-terminal nucleotide binding domain (NBD) of DmaHsp70s further support the theory. DmaHsp70s exhibit varied motif distribution patterns and the logo sequences of motifs have diverse signature characteristics, indicating that different mechanisms are involved in the regulation of ATP binding and hydrolysis for the DmaHsp70s. Protein-protein network together with the predicted subcellular locations of DmaHsp70s suggest that they likely fulfill distinct roles in cells. The transcription of four DmaHsp70s were changed during the recovery stage after thermal stress or oxidative stress. But the expression pattern of them were dissimilar. Collectively, these results collectively elucidated the identification of a previously uncharacterizedHsp70 lineage in animal and extended our understanding of the Hsp70 family.
Collapse
Affiliation(s)
- Xiangyang Wu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhiwei Zhang
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenfeng Cui
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Linfei Han
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zijie Liu
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaojun Song
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiabo Tan
- Laboratory of Comparative Immunology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
19
|
Ahn CR, Ha IJ, Kim JE, Ahn KS, Park J, Baek SH. Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species. Antioxidants (Basel) 2024; 13:564. [PMID: 38790669 PMCID: PMC11118127 DOI: 10.3390/antiox13050564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy's anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs.
Collapse
Affiliation(s)
- Chae Ryeong Ahn
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - In Jin Ha
- Korean Medicine Clinical Trial Center (K-CTC), Korean Medicine Hospital, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jai-Eun Kim
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Jinbong Park
- College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Soeul 02447, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
20
|
Martins-Ribeiro A, Kizhedath A, Ahmed SS, Glassey J, Ishaq A, Freer M, Dickinson AM. A Human Skin Explant Test as a Novel In Vitro Assay for the Detection of Skin Sensitization to Aggregated Monoclonal Antibodies. TOXICS 2024; 12:332. [PMID: 38787111 PMCID: PMC11125788 DOI: 10.3390/toxics12050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Introduction: Monoclonal antibodies (mAbs) are important therapeutics. However, the enhanced potential for aggregation has become a critical quality parameter during the production of mAbs. Furthermore, mAb aggregation may also present a potential health risk in a clinical setting during the administration of mAb therapeutics to patients. While the extent of immunotoxicity in patient populations is uncertain, reports show it can lead to immune responses via cell activation and cytokine release. In this study, an autologous in vitro skin test designed to predict adverse immune events, including skin sensitization, was used as a novel assay for the assessment of immunotoxicity caused by mAb aggregation. Material and Methods: Aggregation of mAbs was induced by a heat stress protocol, followed by characterization of protein content by analytical ultra-centrifugation and transmission electron microscopy, revealing a 4% aggregation level of total protein content. Immunotoxicity and potential skin sensitization caused by the aggregates, were then tested in a skin explant assay. Results: Aggregated Herceptin and Rituximab caused skin sensitization, as shown by histopathological damage (grade II-III positive response) together with positive staining for Heat Shock Protein 70 (HSP70). Changes in T cell proliferation were not observed. Cytokine analysis revealed a significant increase of IL-10 for the most extreme condition of aggregation (65 °C at pH3) and a trend for an overall increase of IFN-γ, especially in response to Rituximab. Conclusions: The skin explant assay demonstrated that aggregated mAbs showed adverse immune reactions, as demonstrated as skin sensitization, with histopathological grades II-III. The assay may, therefore, be a novel tool for assessing immunotoxicity and skin sensitization caused by mAb aggregation.
Collapse
Affiliation(s)
- Ana Martins-Ribeiro
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Arathi Kizhedath
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Shaheda Sameena Ahmed
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Jarka Glassey
- Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Abbas Ishaq
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Matthew Freer
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
| | - Anne Mary Dickinson
- Alcyomics Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle Upon Tyne NE4 5BX, UK; (A.M.-R.); (M.F.)
- Translational and Clinical Research Institute Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
21
|
Kunachowicz D, Król-Kulikowska M, Raczycka W, Sleziak J, Błażejewska M, Kulbacka J. Heat Shock Proteins, a Double-Edged Sword: Significance in Cancer Progression, Chemotherapy Resistance and Novel Therapeutic Perspectives. Cancers (Basel) 2024; 16:1500. [PMID: 38672583 PMCID: PMC11048091 DOI: 10.3390/cancers16081500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Heat shock proteins (Hsps) are involved in one of the adaptive mechanisms protecting cells against environmental and metabolic stress. Moreover, the large role of these proteins in the carcinogenesis process, as well as in chemoresistance, was noticed. This review aims to draw attention to the possibilities of using Hsps in developing new cancer therapy methods, as well as to indicate directions for future research on this topic. In order to discuss this matter, a thorough review of the latest scientific literature was carried out, taking into account the importance of selected proteins from the Hsp family, including Hsp27, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp110. One of the more characteristic features of all Hsps is that they play a multifaceted role in cancer progression, which makes them an obvious target for modern anticancer therapy. Some researchers emphasize the importance of directly inhibiting the action of these proteins. In turn, others point to their possible use in the design of cancer vaccines, which would work by inducing an immune response in various types of cancer. Due to these possibilities, it is believed that the use of Hsps may contribute to the progress of oncoimmunology, and thus help in the development of modern anticancer therapies, which would be characterized by higher effectiveness and lower toxicity to the patients.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (D.K.); (M.K.-K.)
| | - Wiktoria Raczycka
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Marta Błażejewska
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland; (W.R.); (J.S.); (M.B.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine Santariškių g. 5, LT-08406 Vilnius, Lithuania
- DIVE IN AI, 53-307 Wroclaw, Poland
| |
Collapse
|
22
|
Ali M, Zhang Z, Ibrahim MAA, Soliman MES. Heat shock protein (Hsp27)-ceramide synthase (Cers1) protein-protein interactions provide a new avenue for unexplored anti-cancer mechanism and therapy. J Recept Signal Transduct Res 2024; 44:41-53. [PMID: 39189140 DOI: 10.1080/10799893.2024.2392711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Hsp27 is a member of the small heat-shock proteins (sHSPs) - the known cellular line of defence against abnormal protein folding behaviors. Nevertheless, its upregulation is linked to a variety of pathological disorders, including several types of cancers. The ceramide synthases (CerS) mediate the synthesis of ceramide, a critical structural and signaling lipid. Functionally, downstream ceramide metabolites are implicated in the apoptosis process and their abnormal functionality has been linked to anticancer resistance. Studies showed that CerS1 are possibly inhibited by Hsp27 leading to biochemical anticancer effects in vitro. Nevertheless, the nature of such protein-protein interaction (PPI) has not been considerably investigated in molecular terms, hence, we present the first description of the dynamics CerS1-Hsp27 interaction landscapes using molecular dynamics simulations. Time-scale molecular dynamics simulation analysis indicated a system-wide conformational events of decreased stability, increased flexibility, reduced compactness, and decreased folding of CerS1. Analysis of binding energy showed a favorable interaction entailing 56 residues at the interface and a total stabilizing energy of -158 KJ/mol. The CerS1 catalytic domain experienced an opposite trend compared to the protein backbone. Yet, these residues adopted a highly compact conformation as per DCCM and DSSP analysis. Furthermore, conserved residues (SER 212, ASP 213, ALA 240, GLY 243, ASP 319) comprising the substrate shuttling machinery showed notable rigidity implying a restrained ceramide precursor access and assembly; hence, a possible inhibitory mechanism. Findings from this report would streamline a better molecular understanding of CerS1-Hsp27 interactions and decipher its potential avenue toward unexplored anti-cancer mechanisms and therapy.
Collapse
Affiliation(s)
- Musab Ali
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Zhichao Zhang
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, China
| | - Mahmoud A A Ibrahim
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
- Computational Chemistry Laboratory, Chemistry Department, Minia University, Minia, Egypt
| | - Mahmoud E S Soliman
- Molecular Bio-Computation and Drug Design Research Group, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
23
|
Liang Y, Zhong Y, Xi Y, He L, Zhang H, Hu X, Gu H. Toxic effects of combined exposure to homoyessotoxin and nitrite on the survival, antioxidative responses, and apoptosis of the abalone Haliotis discus hannai. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116058. [PMID: 38301583 DOI: 10.1016/j.ecoenv.2024.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Homoyessotoxin (homo-YTX) and nitrite (NO2-N), released during harmful dinoflagellate cell lysis adversely affect abalones. However, their toxicity mechanisms in shellfish remain unclear. This study investigated the economic abalone species Haliotis discus hannai exposed to varying concentrations of homo-YTX (0, 2, 5, and 10 µg L-1) and NO2-N (0, 3, and 6 mg L-1) on the basis of their 12 h LC50 values (5.05 µg L-1 and 4.25 mg L-1, respectively) and the environmentally relevant dissolved concentrations during severe dinoflagellate blooms, including mixtures. The test abalones were exposed to homo-YTX and NO2-N for 12 h. The mortality rate (D), reactive oxygen species (ROS) levels, antioxidant defense capabilities, and expression levels of antioxidant-related, Hsp-related, and apoptosis-related genes in abalone gills were assessed. Results showed that the combined exposure to homo-YTX and NO2-N increased the D and ROS levels and upregulated B-cell lymphoma-2 (BCL2)-associated X (BAX) and caspase3 (CASP3) expression levels while reducing glutathione peroxidase (GPx) activity and GPx, CuZnSOD, and BCL2 expression levels. High concentrations of homo-YTX (10 µg L-1) and NO2-N (6 mg L-1) solutions and the combinations of these toxicants inhibited the activities of superoxide dismutase (SOD) and catalase (CAT) and downregulated the expression levels of MnSOD, CAT, Hsp70, and Hsp90. The ROS levels were negatively correlated with the activities of SOD, CAT, and GPx and the expression levels of MnSOD, CuZnSOD, CAT, GPx, Hsp70, Hsp90, and BCL2. These results suggest that homo-YTX, in conjunction with NO2-N, induces oxidative stress, disrupts antioxidant defense systems, and triggers caspase-dependent apoptosis in the gills of abalone. ROS-mediated antioxidative and heat-shock responses and apoptosis emerge as potential toxicity mechanisms affecting the survival of H. discus hannai due to homo-YTX and NO2-N exposure.
Collapse
Affiliation(s)
- Ye Liang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China.
| | - Yuxin Zhong
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Yu Xi
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Liangyi He
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Heng Zhang
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Xiang Hu
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China
| | - Haifeng Gu
- School of Marine Sciences, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing 210044, PR China; Third Institute of Oceanography, Ministry of Natural Resources, No. 178 Daxue Road, Xiamen 361005, PR China
| |
Collapse
|
24
|
Wang L, Jiang Y, Fang L, Guan C, Xu Y. Heat-shock protein 90 alleviates oxidative stress and reduces apoptosis in liver of Seriola aureovittata (yellowtail kingfish) under high-temperature stress. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110927. [PMID: 38040327 DOI: 10.1016/j.cbpb.2023.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Hsp90s are molecular chaperones that enhance fish tolerance to high-temperature stress. However, the function of Hsp90s in Seriola aureovittata (yellowtail kingfish) under high-temperature stress remains largely unknown. Here, two Hsp90 isoforms were identified in S. aureovittata by bioinformatics analysis: SaHsp90α and SaHsp90β. The coding sequence of SaHsp90α was 2193-bp long and encoded a polypeptide of 730 amino acids; SaHsp90β was 2178-bp long and encoded a polypeptide of 725 amino acids. SaHsp90α and SaHsp90β both contained a HATPase domain and a HSP90 domain. Their transcripts were detected in all examined S. aureovittata tissues, with relatively high levels in the gonads, head kidney, and intestine. During high-temperature stress at 28 °C, the expression levels of SaHsp90α and SaHsp90β transcripts were significantly increased in liver. After simultaneously knocking down the expression of the SaHsp90s, there was a significant decrease in liver superoxide dismutase (SOD) activity and a remarkable increase of malondialdehyde content in liver after high-temperature stress. The expression levels of the key caspase family genes caspase-3 and caspase-7 were also significantly upregulated by high-temperature stress in SaHsp90-knockdown liver. TUNEL labeling demonstrated that the number of apoptotic cells significantly increased in the SaHsp90-knockdown group when high-temperature treatment lasted for 48 h. Protein-protein docking analysis predicted that SaHsp90α and SaHsp90β can bind to S. aureovittata SOD and survivin, which are key proteins for maintenance of redox homeostasis and inhibition of apoptosis. These findings demonstrate that SaHsp90α and SaHsp90β play a crucial role in resistance to high-temperature stress by regulating redox homeostasis and apoptosis in yellowtail kingfish.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao, Shandong 266071, China
| | - Yan Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao, Shandong 266071, China
| | - Lu Fang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Changtao Guan
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao, Shandong 266071, China
| | - Yongjiang Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Joint Laboratory for Deep Blue Fishery Engineering, Qingdao, Shandong 266071, China.
| |
Collapse
|
25
|
Yin Y, Xie Z, Sun X, Wu X, Zhang J, Shi H, Ding L, Hong M. Effect of Butyl Paraben on Oxidative Stress in the Liver of Mauremys sinensis. TOXICS 2023; 11:915. [PMID: 37999567 PMCID: PMC10674816 DOI: 10.3390/toxics11110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Butyl paraben (BuP) has been widely used as a preservative in the cosmetics, food, and medicine industries. Recently, it has become a new pollutant and has attracted much attention. In order to evaluate the toxic effect of BuP on aquatic animals, Chinese striped-neck turtles (Mauremys sinensis) were exposed to BuP solutions with different concentrations of 0, 5, 50, 500, and 5000 µg/L for 20 weeks. The results showed that with an increase in BuP concentration, the activity of antioxidant enzymes (SOD, CAT and GSH-PX) in liver decreased. The expression of key genes in the Nrf2-Keap1 signal pathways first increased and then decreased, while the expression of the HSP70 and HSP90 genes increased. In addition, the liver had an inflammatory reaction. The expression of the BAFF and IL-6 genes increased and then decreased with an increase in BuP concentration, while the expression of P50 and P65 increased significantly. Oxidative stress induced apoptosis, and the expression of pro-apoptosis genes (BAX, cytc, Caspase3 and Caspase9) increased, while the expression of the anti-apoptosis gene Bcl2 decreased. The results provide an important reference for the comprehensive ecological and health risk assessment of environmental BuP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Y.); (Z.X.); (X.S.); (X.W.); (J.Z.); (H.S.)
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (Y.Y.); (Z.X.); (X.S.); (X.W.); (J.Z.); (H.S.)
| |
Collapse
|
26
|
Liu CH, Liu MC, Jheng PR, Yu J, Fan YJ, Liang JW, Hsiao YC, Chiang CW, Bolouki N, Lee JW, Hsieh JH, Mansel BW, Chen YT, Nguyen HT, Chuang EY. Plasma-Derived Nanoclusters for Site-Specific Multimodality Photo/Magnetic Thrombus Theranostics. Adv Healthc Mater 2023; 12:e2301504. [PMID: 37421244 DOI: 10.1002/adhm.202301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Traditional thrombolytic therapeutics for vascular blockage are affected by their limited penetration into thrombi, associated off-target side effects, and low bioavailability, leading to insufficient thrombolytic efficacy. It is hypothesized that these limitations can be overcome by the precisely controlled and targeted delivery of thrombolytic therapeutics. A theranostic platform is developed that is biocompatible, fluorescent, magnetic, and well-characterized, with multiple targeting modes. This multimodal theranostic system can be remotely visualized and magnetically guided toward thrombi, noninvasively irradiated by near-infrared (NIR) phototherapies, and remotely activated by actuated magnets for additional mechanical therapy. Magnetic guidance can also improve the penetration of nanomedicines into thrombi. In a mouse model of thrombosis, the thrombosis residues are reduced by ≈80% and with no risk of side effects or of secondary embolization. This strategy not only enables the progression of thrombolysis but also accelerates the lysis rate, thereby facilitating its prospective use in time-critical thrombolytic treatment.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City, 23561, Taiwan
| | - Ming-Che Liu
- Clinical Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Jui Fan
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jia-Wei Liang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Chiang
- Department of Orthopedics, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| | - Nima Bolouki
- Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, 60177, Czech Republic
| | - Jyh-Wei Lee
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Jang-Hsing Hsieh
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
- Center for Plasma and Thin Film Technologies, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Bradley W Mansel
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, 30076, Taiwan
| | - Yan-Ting Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering Graduate Institute of Biomedical Optomechatronics, School of Biomedical Engineering, Research Center of Biomedical Device, Innovation Entrepreneurship Education Center, College of Interdisciplinary Studies, Taipei Medical University, Taipei, 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University, Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
27
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Li J, Zhao W, Zhu J, Wang S, Ju H, Chen S, Basioura A, Ferreira-Dias G, Liu Z. Temperature Elevation during Semen Delivery Deteriorates Boar Sperm Quality by Promoting Apoptosis. Animals (Basel) 2023; 13:3203. [PMID: 37893927 PMCID: PMC10603671 DOI: 10.3390/ani13203203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Semen delivery practice is crucial to the efficiency of artificial insemination using high-quality boar sperm. The present study aimed to evaluate the effect of a common semen delivery method, a Styrofoam box, under elevated temperatures on boar sperm quality and functionality and to investigate the underlying molecular responses of sperm to the temperature rise. Three pooled semen samples from 10 Duroc boars (3 ejaculates per boar) were used in this study. Each pooled semen sample was divided into two aliquots. One aliquot was stored at a constant 17 °C as the control group. Another one was packaged in a well-sealed Styrofoam box and placed in an incubator at 37 °C for 24 h to simulate semen delivery on hot summer days and subsequently transferred to a refrigerator at 17 °C for 3 days. The semen temperature was continuously monitored. The semen temperature was 17 °C at 0 h of storage and reached 20 °C at 5 h, 30 °C at 14 h, and 37 °C at 24 h. For each time point, sperm quality and functionality, apoptotic changes, expression levels of phosphorylated AMPK, and heat shock proteins HSP70 and HSP90 were determined by CASA, flow cytometry, and Western blotting. The results showed that elevated temperature during delivery significantly deteriorated boar sperm quality and functionality after 14 h of delivery. Storage back to 17 °C did not recover sperm motility. An increased temperature during delivery apparently promoted the conversion of sperm early apoptosis to late apoptosis, showing a significant increase in the expression levels of Bax and Caspase 3. The levels of phosphorylated AMPK were greatly induced by the temperature rise to 20 °C during delivery but reduced thereafter. With the temperature elevation, expression levels of HSP70 and HSP90 were notably increased. Our results indicate that a temperature increase during semen delivery greatly damages sperm quality and functionality by promoting sperm apoptosis. HSP70 and HSP90 could participate in boar sperm resistance to temperature changes by being associated with AMPK activation and anti-apoptotic processes.
Collapse
Affiliation(s)
- Junwei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Wenming Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuaibiao Wang
- DanAg Agritech Consulting (Zhengzhou) Co., Ltd., Zhengzhou 450000, China;
- Royal Veterinary College, London NW1 0TU, UK
| | - Huiming Ju
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shufang Chen
- Ningbo Academy of Agricultural Science, Ningbo 315040, China;
| | - Athina Basioura
- Department of Agriculture, School of Agricultural Sciences, University of Western Macedonia, 53100 Florina, Greece;
| | - Graça Ferreira-Dias
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (J.L.); (W.Z.); (J.Z.); (H.J.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
29
|
Ahn CR, Baek SH. Enhancing Gastric Cancer Therapeutic Efficacy through Synergistic Cotreatment of Linderae Radix and Hyperthermia in AGS Cells. Biomedicines 2023; 11:2710. [PMID: 37893084 PMCID: PMC10604735 DOI: 10.3390/biomedicines11102710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Gastric cancer remains a global health threat, particularly in Asian countries. Current treatment methods include surgery, chemotherapy, and radiation therapy. However, they all have limitations, such as adverse side effects, tumor resistance, and patient tolerance. Hyperthermia therapy uses heat to selectively target and destroy cancer cells, but it has limited efficacy when used alone. Linderae Radix (LR), a natural compound with thermogenic effects, has the potential to enhance the therapeutic efficacy of hyperthermia treatment. In this study, we investigated the synergistic anticancer effects of cotreatment with LR and 43 °C hyperthermia in AGS gastric cancer cells. The cotreatment inhibited AGS cell proliferation, induced apoptosis, caused cell cycle arrest, suppressed heat-induced heat shock responses, increased reactive oxygen species (ROS) generation, and promoted mitogen-activated protein kinase phosphorylation. N-acetylcysteine pretreatment abolished the apoptotic effect of LR and hyperthermia cotreatment, indicating the crucial role of ROS in mediating the observed anticancer effects. These findings highlight the potential of LR as an adjuvant to hyperthermia therapy for gastric cancer. Further research is needed to validate these findings in vivo, explore the underlying molecular pathways, and optimize treatment protocols for the development of novel and effective therapeutic strategies for patients with gastric cancer.
Collapse
Affiliation(s)
- Chae-Ryeong Ahn
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Seung-Ho Baek
- College of Korean Medicine, Dongguk University, 32 Dongguk-ro, Goyang-si 10326, Republic of Korea
| |
Collapse
|
30
|
Chaudhary MR, Chaudhary S, Sharma Y, Singh TA, Mishra AK, Sharma S, Mehdi MM. Aging, oxidative stress and degenerative diseases: mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023; 24:609-662. [PMID: 37516673 DOI: 10.1007/s10522-023-10050-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Aging accompanied by several age-related complications, is a multifaceted inevitable biological progression involving various genetic, environmental, and lifestyle factors. The major factor in this process is oxidative stress, caused by an abundance of reactive oxygen species (ROS) generated in the mitochondria and endoplasmic reticulum (ER). ROS and RNS pose a threat by disrupting signaling mechanisms and causing oxidative damage to cellular components. This oxidative stress affects both the ER and mitochondria, causing proteopathies (abnormal protein aggregation), initiation of unfolded protein response, mitochondrial dysfunction, abnormal cellular senescence, ultimately leading to inflammaging (chronic inflammation associated with aging) and, in rare cases, metastasis. RONS during oxidative stress dysregulate multiple metabolic pathways like NF-κB, MAPK, Nrf-2/Keap-1/ARE and PI3K/Akt which may lead to inappropriate cell death through apoptosis and necrosis. Inflammaging contributes to the development of inflammatory and degenerative diseases such as neurodegenerative diseases, diabetes, cardiovascular disease, chronic kidney disease, and retinopathy. The body's antioxidant systems, sirtuins, autophagy, apoptosis, and biogenesis play a role in maintaining homeostasis, but they have limitations and cannot achieve an ideal state of balance. Certain interventions, such as calorie restriction, intermittent fasting, dietary habits, and regular exercise, have shown beneficial effects in counteracting the aging process. In addition, interventions like senotherapy (targeting senescent cells) and sirtuin-activating compounds (STACs) enhance autophagy and apoptosis for efficient removal of damaged oxidative products and organelles. Further, STACs enhance biogenesis for the regeneration of required organelles to maintain homeostasis. This review article explores the various aspects of oxidative damage, the associated complications, and potential strategies to mitigate these effects.
Collapse
Affiliation(s)
- Mani Raj Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yogita Sharma
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Thokchom Arjun Singh
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shweta Sharma
- Chitkara School of Health Sciences, Chitkara University, Chandigarh, Punjab, 140401, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
31
|
Andrianto A, Sudiana IK, Suprabawati DGA, Notobroto HB. Immune system and tumor microenvironment in early-stage breast cancer: different mechanisms for early recurrence after mastectomy and chemotherapy on ductal and lobular types. F1000Res 2023; 12:841. [PMID: 38046195 PMCID: PMC10692586 DOI: 10.12688/f1000research.134302.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background: The most common type of breast cancer is the ductal type (IDC), followed by lobular type (ILC). Surgery is the main therapy for early-stage breast cancer. Adjuvant chemotherapy might be given to those at high risk of recurrence. Recurrence is still possible after mastectomy and chemotherapy and most often occurs in the first two years. We aimed to determine the mechanisms in early local recurrence in both types. Methods: We used an observational method with a cross-sectional study design. The samples were patients with early-stage IDC and ILC, who underwent modified radical mastectomy (MRM) and got adjuvant chemotherapy with taxan and anthracycline base, and experienced recurrence in the first two years after surgery. The materials in this study were paraffin blocks from surgical specimens; we examined vimentin, α-SMA and MMP1, PDGF and CD95 by immunohistochemistry (IHC). Data analysis was done using OpenEpi 3.0.1 and EZR. We used pathway analysis with linear regression. Results: There were 25 samples with local recurrence and 25 samples without recurrence in the ductal type group. The lobular type group consisted of six subjects without recurrence and seven with recurrence. There were significant differences in the expression of vimentin (p=0.000 and 0.021, respectively), PDGF (p=0.000 and 0.002) and CD95 (p=0.000 and 0.045) in ductal and lobular cancer types, respectively. MMP1 (p=0.000) and α-SMA (p=0.000) only showed a significant difference in the ductal type. The pathway analysis showed that in the ductal type, the mechanism of recurrence was enabled by two factors: α-SMA and CD95. Meanwhile, for the lobular type, the recurrence mechanism was through the CD95 pathway. Conclusions: Local recurrence in early-stage IDC and ILC had different mechanisms. These findings are expected to make cancer treatment in both types more focused and efficient.
Collapse
Affiliation(s)
- Andreas Andrianto
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - I Ketut Sudiana
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Desak Gede Agung Suprabawati
- Division of Oncology, Department of Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Hari Basuki Notobroto
- Department of Biostatistics and Population, Faculty of Public Health, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| |
Collapse
|
32
|
Akram S, Al-Shammari AM, Sahib HB, Jabir MS. Papaverine Enhances the Oncolytic Effects of Newcastle Disease Virus on Breast Cancer In Vitro and In Vivo. Int J Microbiol 2023; 2023:3324247. [PMID: 37720338 PMCID: PMC10504052 DOI: 10.1155/2023/3324247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 10/28/2022] [Accepted: 08/20/2023] [Indexed: 09/19/2023] Open
Abstract
Breast cancer is a lethal disease in females worldwide and needs effective treatment. Targeting cancer cells with selective and safe treatment seems like the best choice, as most chemotherapeutic drugs act unselectively. Papaverine showed promising antitumor activity with a high safety profile and increased blood flow through vasodilation. At the same time, it was widely noticed that virotherapy using the Newcastle disease virus proved to be safe and selective against a broad range of cancer cells. Furthermore, combination therapy is favorable, as it attacks cancer cells with multiple mechanisms and enhances virus entrance into the tumor mass, overcoming cancer cells' resistance to therapy. Therefore, we aimed at assessing the novel combination of the AMHA1 strain of Newcastle disease virus (NDV) and nonnarcotic opium alkaloid (papaverine) against breast cancer models in vitro and in vivo. Methods. In vitro experiments used two human breast cancer cell lines and one normal cell line and were treated with NDV, papaverine, and a combination. The study included a cell viability MTT assay, morphological analysis, and apoptosis detection. Animal experiments used the AN3 mouse mammary adenocarcinoma tumor model. Evaluation of the antitumor activity included growth inhibition measurement; the immunohistochemistry assay measured caspase protein expression. Finally, a semiquantitative microarray assay was used to screen changes in apoptotic proteins. In vitro, results showed that the combination therapy induces synergistic cytotoxicity and apoptosis against cancer cells with a negligible cytotoxic effect on normal cells. In vivo, combination treatment induced a significant antitumor effect with an obvious regression in tumor size and a remarkable and significant expression of caspase-3, caspase-8, and caspase-9 compared to monotherapies. Microarray analysis shows higher apoptosis protein levels in the combination therapy group. In conclusion, this study demonstrated the role of papaverine in enhancing the antitumor activity of NDV, suggesting a promising strategy for breast cancer therapy through nonchemotherapeutic drugs.
Collapse
Affiliation(s)
- Sura Akram
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | - Hayder B. Sahib
- Department of Pharmacology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Majid Sakhi Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| |
Collapse
|
33
|
Seo I, Kim S, Hyun J, Kim Y, Park HS, Yoon J, Bhang SH. Enhancing viability and angiogenic efficacy of mesenchymal stem cells via HSP90 α and HSP27 regulation based on ROS stimulation for wound healing. Bioeng Transl Med 2023; 8:e10560. [PMID: 37693062 PMCID: PMC10487335 DOI: 10.1002/btm2.10560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Light-based therapy has been reported as a potential preconditioning strategy to induce intracellular reactive oxygen species (ROS) signaling and improve the angiogenic properties of various types of cells. However, bio-stimulation mechanisms of light therapy in terms of ROS-heat shock proteins (HSPs) mediated anti-apoptotic and angiogenic pathways in human adult stem cells have not been fully delineated yet. Commonly used light sources such as light-emitting diode (LED) and laser are accompanied by drawbacks, such as phototoxicity, thermal damage, and excessive ROS induction, so the role and clinical implications of light-induced HSPs need to be investigated using a heat-independent light source. Here, we introduced organic LED (OLED) at 610 nm wavelength as a new light source to prevent thermal effects from interfering with the expression of HSPs. Our results showed that light therapy using OLED significantly upregulated anti-apoptotic and angiogenic factors in human bone marrow mesenchymal stem cells (hMSCs) at both gene and protein levels via the activation of HSP90α and HSP27, which were stimulated by ROS. In a mouse wound-closing model, rapid recovery and improved re-epithelization were observed in the light-treated hMSCs transplant group. This study demonstrates that the upregulation of Akt (protein kinase B)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling, caused by HSP90α and HSP27 expression, is the mechanism behind the anti-apoptotic and angiogenic effects of OLED treatment on stem cells.
Collapse
Affiliation(s)
- Inwoo Seo
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Sung‐Won Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jiyu Hyun
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Hyun Su Park
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Jeong‐Kee Yoon
- Department of Systems BiotechnologyChung‐Ang UniversityAnseongRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
34
|
He R, Fisher TW, Saha S, Peiz-Stelinski K, Willis MA, Gang DR, Brown JK. Differential gene expression of Asian citrus psyllids infected with ' Ca. Liberibacter asiaticus' reveals hyper-susceptibility to invasion by instar fourth-fifth and teneral adult stages. FRONTIERS IN PLANT SCIENCE 2023; 14:1229620. [PMID: 37662178 PMCID: PMC10470031 DOI: 10.3389/fpls.2023.1229620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
The bacterial pathogen Candidatus Liberibacter asiaticus (CLas) is the causal agent of citrus greening disease. This unusual plant pathogenic bacterium also infects its psyllid host, the Asian citrus psyllid (ACP). To investigate gene expression profiles with a focus on genes involved in infection and circulation within the psyllid host of CLas, RNA-seq libraries were constructed from CLas-infected and CLas-free ACP representing the five different developmental stages, namely, nymphal instars 1-2, 3, and 4-5, and teneral and mature adults. The Gbp paired-end reads (296) representing the transcriptional landscape of ACP across all life stages and the official gene set (OGSv3) were annotated based on the chromosomal-length v3 reference genome and used for de novo transcript discovery resulting in 25,410 genes with 124,177 isoforms. Differential expression analysis across all ACP developmental stages revealed instar-specific responses to CLas infection, with greater overall responses by nymphal instars, compared to mature adults. More genes were over-or under-expressed in the 4-5th nymphal instars and young (teneral) adults than in instars 1-3, or mature adults, indicating that late immature instars and young maturing adults were highly responsive to CLas infection. Genes identified with potential for direct or indirect involvement in the ACP-CLas circulative, propagative transmission pathway were predominantly responsive during early invasion and infection processes and included canonical cytoskeletal remodeling and endo-exocytosis pathway genes. Genes with predicted functions in defense, development, and immunity exhibited the greatest responsiveness to CLas infection. These results shed new light on ACP-CLas interactions essential for pathogenesis of the psyllid host, some that share striking similarities with effector protein-animal host mechanisms reported for other culturable and/or fastidious bacterial- or viral- host pathosystems.
Collapse
Affiliation(s)
- Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Soybean Genomics and Improvement Laboratory, US Department of Agriculture (USDA)-Agricultural Research Service (ARS), Beltsville, MD, United States
| | - Tonja W. Fisher
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| | - Surya Saha
- Sol Genomics Network, Boyce Thompson Institute, Ithaca, NY, United States
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Kirsten Peiz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, Lake Alfred, FL, United States
| | - Mark A. Willis
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - David R. Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Judith K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Bekkouch O, Zengin G, Harnafi M, Touiss I, Khoulati A, Saalaoui E, Harnafi H, Abdellattif MH, Amrani S. Anti-Inflammatory Study and Phytochemical Characterization of Zingiber officinale Roscoe and Citrus limon L. Juices and Their Formulation. ACS OMEGA 2023; 8:26715-26724. [PMID: 37546676 PMCID: PMC10398691 DOI: 10.1021/acsomega.2c04263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/09/2023] [Indexed: 08/08/2023]
Abstract
Zingiber officinale and Citrus limon, well known as ginger and lemon, are two vegetals widely used in traditional medicine and the culinary field. The juices of the two vegetals were evaluated based on their inflammation, both in vivo and in vitro. High-performance liquid chromatography (HPLC) was used to characterize different juices from Zingiber officinale Roscoe and Citrus limon. After the application of the HPLC method, different compounds were identified, such as 6-gingerol and 6-gingediol from the ginger juice and isorhamnetin and hesperidin from the lemon juice. In addition, the two juices and their formulation were assessed for their anti-inflammatory activity, in vitro by utilizing the BSA denaturation test, in vivo using the carrageenan-induced inflammation test, and the vascular permeability test. Important and statistically significant anti-inflammatory activities were observed for all juices, especially the formulation. The results of our work showed clearly that the Zingiber officinale and Citrus limon juices protect in vivo the development of the rat paw edema, especially the formulation F composed of the Zingiber officinale and Citrus limon juices, which shows an anti-inflammatory activity equal to -35.95% and -44.05% using 10 and 20 mg/kg of the dose, respectively. Our work also showed that the formulation was the most effective tested extract since it inhibits the vascular permeability by -37% and -44% at the doses of 200 and 400 mg/kg, respectively, and in vitro via the inhibition of the denaturation of BSA by giving a synergetic effect with the highest IC50 equal to 684.61 ± 7.62 μg/mL corresponding to the formulation F. This work aims to develop nutraceutical preparations in the future and furnishes the support for a new investigation into the activities of the various compounds found in Zingiber officinale Roscoe and Citrus limon.
Collapse
Affiliation(s)
- Oussama Bekkouch
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Gökhan Zengin
- Physiology
and Biochemistry Research Laboratory, Department of Biology, Science
Faculty, Selcuk University, 42130Konya, Turkey
| | - Mohamed Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ilham Touiss
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Amine Khoulati
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Hicham Harnafi
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| | - Magda H. Abdellattif
- Chemistry
Department, Sciences College, Taif University, P.O. Box 11099, Taif21944, Saudi Arabia
| | - Souliman Amrani
- Laboratory
of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty
of Sciences, Mohammed First University, Oujda60000, Morocco
| |
Collapse
|
36
|
Neves-da-Rocha J, Santos-Saboya MJ, Lopes MER, Rossi A, Martinez-Rossi NM. Insights and Perspectives on the Role of Proteostasis and Heat Shock Proteins in Fungal Infections. Microorganisms 2023; 11:1878. [PMID: 37630438 PMCID: PMC10456932 DOI: 10.3390/microorganisms11081878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are a diverse group of eukaryotic organisms that infect humans, animals, and plants. To successfully colonize their hosts, pathogenic fungi must continuously adapt to the host's unique environment, e.g., changes in temperature, pH, and nutrient availability. Appropriate protein folding, assembly, and degradation are essential for maintaining cellular homeostasis and survival under stressful conditions. Therefore, the regulation of proteostasis is crucial for fungal pathogenesis. The heat shock response (HSR) is one of the most important cellular mechanisms for maintaining proteostasis. It is activated by various stresses and regulates the activity of heat shock proteins (HSPs). As molecular chaperones, HSPs participate in the proteostatic network to control cellular protein levels by affecting their conformation, location, and degradation. In recent years, a growing body of evidence has highlighted the crucial yet understudied role of stress response circuits in fungal infections. This review explores the role of protein homeostasis and HSPs in fungal pathogenicity, including their contributions to virulence and host-pathogen interactions, as well as the concerted effects between HSPs and the main proteostasis circuits in the cell. Furthermore, we discuss perspectives in the field and the potential for targeting the components of these circuits to develop novel antifungal therapies.
Collapse
Affiliation(s)
- João Neves-da-Rocha
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.J.S.-S.); (M.E.R.L.); (A.R.)
| |
Collapse
|
37
|
Bittencourt LO, Dionizio A, Ferreira MKM, Aragão WAB, de Carvalho Cartágenes S, Puty B, do Socorro Ferraz Maia C, Zohoori FV, Buzalaf MAR, Lima RR. Prolonged exposure to high fluoride levels during adolescence to adulthood elicits molecular, morphological, and functional impairments in the hippocampus. Sci Rep 2023; 13:11083. [PMID: 37422569 PMCID: PMC10329641 DOI: 10.1038/s41598-023-38096-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
Fluoride is added to water due to its anticariogenic activity. However, due to its natural presence in soils and reservoirs at high levels, it could be a potential environmental toxicant. This study investigated whether prolonged exposure to fluoride from adolescence to adulthood-at concentrations commonly found in artificially fluoridated water and in fluorosis endemic areas-is associated with memory and learning impairments in mice, and assessed the molecular and morphological aspects involved. For this endeavor, 21-days-old mice received 10 or 50 mg/L of fluoride in drinking water for 60 days and the results indicated that the increased plasma fluoride bioavailability was associated with the triggering of short- and long-term memory impairments after high F concentration levels. These changes were associated with modulation of the hippocampal proteomic profile, especially of proteins related to synaptic communication, and a neurodegenerative pattern in the CA3 and DG. From a translational perspective, our data provide evidence of potential molecular targets of fluoride neurotoxicity in the hippocampus at levels much higher than that in artificially fluoridated water and reinforce the safety of exposure to low concentrations of fluoride. In conclusion, prolonged exposure to the optimum fluoride level of artificially fluoridated water was not associated with cognitive impairments, while a higher concentration associated with fluorosis triggered memory and learning deficits, associated with a neuronal density reduction in the hippocampus.
Collapse
Affiliation(s)
- Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, São Paulo, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Sabrina de Carvalho Cartágenes
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Inflammation and Behavior Pharmacology, Faculty of Pharmacy, Institute of Health Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fatemeh Vida Zohoori
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa street n. 01, Guamá, Belém, Pará, 66075-110, Brazil.
| |
Collapse
|
38
|
Shakeel M, Yoon M. Heat stress and stallion fertility. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:683-697. [PMID: 37970501 PMCID: PMC10640949 DOI: 10.5187/jast.2023.e29] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 11/17/2023]
Abstract
The threat posed by increased surface temperatures worldwide has attracted the attention of researchers to the reaction of animals to heat stress. Spermatogenesis in animals such as stallions is a temperature-dependent process, ideally occurring at temperatures slightly below the core body temperature. Thus, proper thermoregulation is essential, especially because stallion spermatogenesis and the resulting spermatozoa are negatively affected by increased testicular temperature. Consequently, the failure of thermoregulation resulting in heat stress may diminish sperm quality and increase the likelihood of stallion infertility. In this review, we emphasize upon the impact of heat stress on spermatogenesis and the somatic and germ cells and describe the subsequent testicular alterations. In addition, we explore the functions and molecular responses of heat shock proteins, including HSP60, HSP70, HSP90, and HSP105, in heat-induced stress conditions. Finally, we discuss the use of various therapies to alleviate heat stress-induced reproductive harm by modulating distinct signaling pathways.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Clinical Studies, Faculty of
Veterinary and Animal Sciences, Pir Mehr Ali Shah, Arid Agriculture
University, Rawalpindi 44000, Pakistan
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Reseach Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
39
|
Ma L, Hou T, Zhu K, Zhang A. Inhibition of Histone H3K18 Acetylation-Dependent Antioxidant Pathways Involved in Arsenic-Induced Liver Injury in Rats and the Protective Effect of Rosa roxburghii Tratt Juice. TOXICS 2023; 11:503. [PMID: 37368603 DOI: 10.3390/toxics11060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Arsenic is a common environmental toxicant. Long-term arsenic exposure can induce various types of liver injury, but the underlying mechanism remains unclear, so effective prevention and treatment measures are unknown. This study aims to explore the mechanism of arsenic-induced rat liver injury based on the histone H3K18 acetylation-dependent antioxidant pathway and to identify the role of a medicinal and edible resource, Rosa roxburghii Tratt juice, in combating it. Hepatic steatosis and inflammatory cell infiltration were observed in rats exposed to different doses of NaAsO2 using histopathological measurement. Increased 8-OHdG and MDA in liver tissue corroborated hepatic oxidative damage. We further found that a reduction in H3K18ac in the liver showed a dose-response relationship, with an increase in the NaAsO2 treatment dose, and it was remarkably associated with increased 8-OHdG and MDA. The results of ChIP-qPCR identified that the decreased enrichment of H3K18ac in promoters of the Hspa1a and Hspb8 genes culminated in the inhibition of the genes' expression, which was found to be involved in the aggravation of hepatic oxidative damage induced by arsenic. Notably, Rosa roxburghii Tratt juice was found to reduce 8-OHdG and MDA in the liver, thereby alleviating the histopathological lesions induced by arsenic, which was modulated by recovering the H3K18ac-dependent transcriptional activation of the Hspa1a and Hspb8 genes. Taken together, we provide a novel epigenetics insight into clarifying the mechanism of arsenic-induced liver injury and its rescue by Rosa roxburghii Tratt juice.
Collapse
Affiliation(s)
- Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Teng Hou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
40
|
Agache I, Laculiceanu A, Spanu D, Grigorescu D. The Concept of One Health for Allergic Diseases and Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:290-302. [PMID: 37188486 DOI: 10.4168/aair.2023.15.3.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
The worldwide prevalence of allergic disease is rising as a result of complex gene-environment interactions that shape the immune system and host response. Climate change and loss of biodiversity are existential threats to humans, animals, plants, and ecosystems. While there is significant progress in the development of targeted therapeutic options to treat allergies and asthma, these approaches are inadequate to meet the challenges faced by climate change. The exposomic approach is needed with the recognition of the bidirectional effect between human beings and the environment. All stakeholders need to work together toward mitigating the effects of climate change and promoting a One Health concept in order to decrease the burden of asthma and allergy and to improve immune health. Healthcare professionals should strive to incorporate One Health counseling, environmental health precepts, and advocacy into their practice.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Daniela Spanu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Dan Grigorescu
- Faculty of Medicine, Transylvania University, Brasov, Romania
| |
Collapse
|
41
|
Contino M, Ferruggia G, Indelicato S, Pecoraro R, Scalisi EM, Bracchitta G, Dragotto J, Salvaggio A, Brundo MV. In Vitro Nano-Polystyrene Toxicity: Metabolic Dysfunctions and Cytoprotective Responses of Human Spermatozoa. BIOLOGY 2023; 12:biology12040624. [PMID: 37106824 PMCID: PMC10136234 DOI: 10.3390/biology12040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
The ubiquitous spread of Polystyrene nanoplastics (PS-NPs) has rendered chronic human exposure an unavoidable phenomenon. The biodistribution of such particles leads to bioaccumulation in target organs including the testis, the site of sperm maturation. The purpose of this research has been to estimate the impact of PS-NPs (50 and 100 nm) on the metabolism of mature spermatozoa. The analysis of the semen parameters has revealed a higher toxicity of the smaller sized PS-NPs, which have negatively affected major organelles, leading to increased acrosomal damage, oxidative stress with the production of ROS, DNA fragmentation, and decreased mitochondrial activity. PS-NPs of 100 nm, on the other hand, have mainly affected the acrosome and induced a general state of stress. An attempt has also been made to highlight possible protective mechanisms such as the expression of HSP70s and their correlation among various parameters. The results have evinced a marked production of HSP70s in the samples exposed to the smaller PS-NPs, negatively correlated with the worsening in oxidative stress, DNA fragmentation, and mitochondrial anomalies. In conclusion, our results have confirmed the toxicity of PS-NPs on human spermatozoa but have also demonstrated the presence of mechanisms capable of counteracting at least in part these injuries.
Collapse
Affiliation(s)
- Martina Contino
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Greta Ferruggia
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Stefania Indelicato
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| | - Giovanni Bracchitta
- U.O. Fisiopatologia della Riproduzione Umana-Clinica del Mediterraneo, 97100 Ragusa, Italy
| | - Jessica Dragotto
- U.O. Fisiopatologia della Riproduzione Umana-Clinica del Mediterraneo, 97100 Ragusa, Italy
| | - Antonio Salvaggio
- Experimental Zooprophylactic Institute of Sicily "A. Mirri", 90129 Palermo, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy
| |
Collapse
|
42
|
Caruso G, Scalisi EM, Pecoraro R, Cardaci V, Privitera A, Truglio E, Capparucci F, Jarosova R, Salvaggio A, Caraci F, Brundo MV. Effects of carnosine on the embryonic development and TiO 2 nanoparticles-induced oxidative stress on Zebrafish. Front Vet Sci 2023; 10:1148766. [PMID: 37035814 PMCID: PMC10078361 DOI: 10.3389/fvets.2023.1148766] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Oxidative stress is due to an unbalance between pro-oxidants, such as reactive oxygen (ROS) and nitrogen (RNS) species, and antioxidants/antioxidant system. Under physiological conditions these species are involved in different cellular processes such as cellular homeostasis and immune response, while an excessive production of ROS/RNS has been linked to the development of various diseases such as cancer, diabetes, and Alzheimer's disease. In this context, the naturally occurring dipeptide carnosine has shown the ability to scavenge ROS, counteract lipid peroxidation, and inhibit proteins oxidation. Titanium dioxide nanoparticles (TiO2-NPs) have been widely used to produce cosmetics, in wastewater treatment, in food industry, and in healthcare product. As consequence, these NPs are often released into aquatic environments. The Danio rerio (commonly called zebrafish) embryos exposure to TiO2-NPs did not affect the hatching rate, but induced oxidative stress. According to this scenario, in the present study, we first investigated the effects of carnosine exposure and of a sub-toxic administration of TiO2-NPs on the development and survival of zebrafish embryos/larvae measured through the acute embryo toxicity test (FET-Test). Zebrafish larvae represent a useful model to study oxidative stress-linked disorders and to test antioxidant molecules, while carnosine was selected based on its well-known multimodal mechanism of action that includes a strong antioxidant activity. Once the basal effects of carnosine were assessed, we then evaluated its effects on TiO2-NPs-induced oxidative stress in zebrafish larvae, measured in terms of total ROS production (measured with 2,7-dichlorodihydrofluorescein diacetate probe) and protein expression by immunohistochemistry of two cellular stress markers, 70 kDa-heat shock protein (Hsp70) and metallothioneins (MTs). We demonstrated that carnosine did not alter the phenotypes of both embryos and larvae of zebrafish at different hours post fertilization. Carnosine was instead able to significantly decrease the enhancement of ROS levels in zebrafish larvae exposed to TiO2-NPs and its antioxidant effect was paralleled by the rescue of the protein expression levels of Hsp70 and MTs. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of pathologies characterized by oxidative stress such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Elena Maria Scalisi
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Roberta Pecoraro
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milan, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Truglio
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Fabiano Capparucci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Romana Jarosova
- Department of Chemistry and R.N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
| | | | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Scordino M, Frinchi M, Urone G, Nuzzo D, Mudò G, Di Liberto V. Manipulation of HSP70-SOD1 Expression Modulates SH-SY5Y Differentiation and Susceptibility to Oxidative Stress-Dependent Cell Damage: Involvement in Oxotremorine-M-Mediated Neuroprotective Effects. Antioxidants (Basel) 2023; 12:antiox12030687. [PMID: 36978935 PMCID: PMC10045076 DOI: 10.3390/antiox12030687] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The differentiation of neural progenitors is a complex process that integrates different signals to drive transcriptional changes, which mediate metabolic, electrophysiological, and morphological cellular specializations. Understanding these adjustments is essential within the framework of stem cell and cancer research and therapy. Human neuroblastoma SH-SY5Y cells, widely used in neurobiology research, can be differentiated into neuronal-like cells through serum deprivation and retinoic acid (RA) supplementation. In our study, we observed that the differentiation process triggers the expression of Heat Shock Protein 70 (HSP70). Notably, inhibition of HSP70 expression by KNK437 causes a dramatic increase in cell death. While undifferentiated SH-SY5Y cells show a dose-dependent decrease in cell survival following exposure to hydrogen peroxide (H2O2), differentiated cells become resistant to H2O2-induced cell death. Interestingly, the differentiation process enhances the expression of SOD1 protein, and inhibition of HSP70 expression counteracts this effect and increases the susceptibility of differentiated cells to H2O2-induced cell death, suggesting that the cascade HSP70-SOD1 is involved in promoting survival against oxidative stress-dependent damage. Treatment of differentiated SH-SY5Y cells with Oxotremorine-M (Oxo), a muscarinic acetylcholine receptor agonist, enhances the expression of HSP70 and SOD1 and counteracts tert–Butyl hydroperoxide-induced cell death and reactive oxygen species (ROS) generation. It is worth noting that co-treatment with KNK437 reduces SOD1 expression and Oxo-induced protection against oxidative stress damage, suggesting the involvement of HSP70/SOD1 signaling in this beneficial effect. In conclusion, our findings demonstrate that manipulation of the HSP70 signal modulates SH-SY5Y differentiation and susceptibility to oxidative stress-dependent cell death and unravels novel mechanisms involved in Oxo neuroprotective functions. Altogether these data provide novel insights into the mechanisms underlying neuronal differentiation and preservation under stress conditions.
Collapse
Affiliation(s)
- Miriana Scordino
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Monica Frinchi
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Giulia Urone
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), via U. La Malfa 153, 90146 Palermo, Italy
| | - Giuseppa Mudò
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
- Correspondence: (G.M.); (V.D.L.)
| | - Valentina Di Liberto
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 129, 90134 Palermo, Italy
- Correspondence: (G.M.); (V.D.L.)
| |
Collapse
|
44
|
He X, Guo X, Deng B, Kang J, Liu W, Zhang G, Wang Y, Yang Y, Kang X. HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects. Exp Neurol 2023; 361:114301. [PMID: 36538982 DOI: 10.1016/j.expneurol.2022.114301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/β-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/β-catenin signaling pathway to inhibit apoptosis.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xudong Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Wenzhao Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China.
| |
Collapse
|
45
|
Barrera SS, Naranjo-Gomez JS, Rondón-Barragán IS. Thermoprotective molecules: Effect of insulin-like growth factor type I (IGF-1) in cattle oocytes exposed to high temperatures. Heliyon 2023; 9:e14375. [PMID: 36967889 PMCID: PMC10036656 DOI: 10.1016/j.heliyon.2023.e14375] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The adverse effects of heat stress (HS) on the welfare and productivity of cattle are the result of the associated hyperthermia and the physiological and behavioral mechanisms performed by the animal to regulate body temperature. The negative effects of HS on in vitro oocyte maturation and in vitro bovine embryo production have been reported; being one of the major concerns due to economic and productive losses, and several mechanisms have been implemented to reduce its impact. These mechanisms include supplementation of the medium with hormones, adjuvants, identification of protective genes, among others. This review aims to explore the cellular and molecular mechanisms of insulin-like growth factor-1 (IGF-1) during in vitro and in vivo maturation of bovine oocytes and its thermoprotective effect under HS. Although the supplementation of the culture medium during oocyte maturation with IGF-1 has been implemented during the last years, there are still controversial results, however, supplementation with low concentration showed a positive effect on maturation and thermoprotection of oocytes exposed to higher temperatures. Additionally, IGF-1 is involved in multiple cellular pathways, and it may regulate cell apoptosis in cases of HS and protect oocyte competence under in vitro conditions.
Collapse
|
46
|
Wei H, Xu X, Feng G, Shao S, Chen X, Yang Z. Candidate genes potentially involved in molting and body size reduction in the male of the horned gall aphid, Schlechtendalia chinensis. Front Physiol 2023; 14:1097317. [PMID: 36814477 PMCID: PMC9940790 DOI: 10.3389/fphys.2023.1097317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
In general, insects grow (increase in body size) through molting. To the opposite, the body size of the males of the horned gall aphid, Schlechtendalia chinensis, gets smaller after molting and as they age. To understand the molecular bases of this rare phenomenon, transcriptomes were generated from 1-5 days old male and the data were analyzed via a weighted gene co-expression network analysis (WGCNA). A total of 15 partitioned modules with different topological overlaps were obtained, and four modules were identified as highly significant for male body length (p < 0.05). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that a portion of genes in the four modules are likely involved in autophagy and apoptosis. In addition, a total of 40 hub genes were obtained in the four modules, and among them eight genes were highly expressed in males compared to individuals of other generations of S. chinensis. These eight genes were associated with autophagy and apoptosis. Our results reveal the unique negative growth phenomenon in male S. chinensis after molting, and also suggest that the male S. chinensis with no ability to feed probably decompose their own substances via autophagy and apoptosis to provide energy for life activities such as germ cell development.
Collapse
|
47
|
Loureiro C, Buzalaf MAR, Ventura TMO, Pelá VT, Rodrigues GWL, Andrade JG, Pessan JP, Jacinto RC. Teeth with acute apical abscess vs. teeth with chronic apical periodontitis: a quantitative and qualitative proteomic analysis. Clin Oral Investig 2023; 27:591-601. [PMID: 36445466 DOI: 10.1007/s00784-022-04754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE To quantitatively and qualitatively analyze the proteomic profile of teeth with acute apical abscesses (AAA) compared with teeth with chronic apical periodontitis (CAP) and to correlate the expression of detected human proteins with their main biological functions. MATERIALS AND METHODS Samples were obtained from root canals of 9 patients diagnosed with AAA and 9 with CAP. Samples were analyzed by reversed-phase liquid chromatography coupled to mass spectrometry. Label-free quantitative proteomic analysis was performed by Protein Lynx Global Service software. Differences in protein expression were calculated using the t-test (p < 0.05). RESULTS In total, 246 human proteins were identified from all samples. Proteins exclusively found in the AAA group were mainly associated with the immunoinflammatory response and oxidative stress response. In the quantitative analysis, 17 proteins were upregulated (p < 0.05) in the AAA group, including alpha-1-acid glycoprotein, hemopexin, fibrinogen gamma chain, and immunoglobulin. Additionally, 61 proteins were downregulated (p < 0.05), comprising cathepsin G, moesin, gelsolin, and transketolase. Most of the proteins were from the extracellular matrix, cytoplasm, and nucleus. CONCLUSIONS The common proteins between the groups were mainly associated with the immune response at both expression levels. Upregulated proteins mostly belonged to the acute-phase proteins, while the downregulated proteins were associated with DNA/RNA regulation and repair, and structural function. CLINICAL RELEVANCE The host response is directly related to the development of apical abscesses. Thus, understanding the behavior of human proteins against the endodontic pathogens involved in this condition might contribute to the study of new approaches related to the treatment of this disease.
Collapse
Affiliation(s)
- Caroline Loureiro
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | | | | | - Vinícius Taioqui Pelá
- Department of Genetics and Evolution, Federal University of Sao Carlos, São Carlos, SP, Brazil
| | - Gladiston William Lobo Rodrigues
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Júlia Guerra Andrade
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil
| | - Rogério Castilho Jacinto
- Department of Preventive and Restorative Dentistry, School of Dentistry of Araçatuba, São Paulo State University, SP, Araçatuba, Brazil.
| |
Collapse
|
48
|
Niinuma SA, Lubbad L, Lubbad W, Moin ASM, Butler AE. The Role of Heat Shock Proteins in the Pathogenesis of Polycystic Ovarian Syndrome: A Review of the Literature. Int J Mol Sci 2023; 24:ijms24031838. [PMID: 36768170 PMCID: PMC9915177 DOI: 10.3390/ijms24031838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and post-menopausal women. PCOS is a multifactorial heterogeneous disorder associated with a variety of etiologies, outcomes, and clinical manifestations. However, the pathophysiology of PCOS is still unclear. Heat shock proteins (HSPs) have recently been investigated for their role in the pathogenesis of PCOS. HSPs are a class of proteins that act as molecular chaperones and maintain cellular proteostasis. More recently, their actions beyond that of molecular chaperones have highlighted their pathogenic role in several diseases. In PCOS, different HSP family members show abnormal expression that affects the proliferation and apoptotic rates of ovarian cells as well as immunological processes. HSP dysregulation in the ovaries of PCOS subjects leads to a proliferation/apoptosis imbalance that mechanistically impacts follicle stage development, resulting in polycystic ovaries. Moreover, HSPs may play a role in the pathogenesis of PCOS-associated conditions. Recent studies on HSP activity during therapeutic interventions for PCOS suggest that modulating HSP activity may lead to novel treatment strategies. In this review, we summarize what is currently known regarding the role of HSPs in the pathogenesis of PCOS and their potential role in the treatment of PCOS, and we outline areas for future research.
Collapse
Affiliation(s)
- Sara Anjum Niinuma
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Laila Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Walaa Lubbad
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
- Correspondence: or ; Tel.: +973-66760313
| |
Collapse
|
49
|
Satapathy PP, Mishra SR, Jena GR, Kundu AK. Hyper-transcription of heat shock factors and heat shock proteins safeguard caprine cardiac cells against heat stress. J Therm Biol 2023; 111:103393. [PMID: 36585073 DOI: 10.1016/j.jtherbio.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
The present study was undertaken to document the transcriptional abundance of heat shock factors and heat shock proteins and their role in survivability of caprine cardiac cells during heat stress. Cardiac tissues were collected from different goats (n = 6) and primary cardiac cell culture was done in an atmosphere of 5% CO2 and 95% air at 38.5 °C. Cardiac cells accomplished 70-75% confluence after 72 h of incubation. Confluent cardiac cells were exposed to heat stress at 42 °C for 0 (control), 20, 60, 100 and 200 min. Quantitative RT-PCR for β2m (internal control), heat shock factors (HSF1, HSF2, HSF4, HSF5), heat shock proteins (HSP10, HSP40), and Caspase-3 was done and their transcriptional abundance was assessed by Pfaffl method. Transcriptional abundance of HSF1, HSF2, and HSF4 did not change at 20 min, increased (P < 0.05) from 60 to 200 min and reached zenith at 200 min of heat exposure. However, transcriptional abundance of HSF5 was gradually escalated (P < 0.05) from 20 to 200 min and registered highest at 200 min of heat exposure. Transcriptional abundance of HSP10 and HSP40 followed an similar pattern like that of HSF5. Transcriptional abundance of Caspase-3 was significantly down-regulated at 200 min of heat exposure. It could be speculated that over-expression of HSFs and HSPs might have reduced Caspase-3 expression at 200 min of heat exposure suggesting their involvement in cardiac cells survival under heat stress. Moreover, hyper-expression of HSFs and HSPs could maintain the integrity and endurance of cardiac tissues of goats under heat stress.
Collapse
Affiliation(s)
- P P Satapathy
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - S R Mishra
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India.
| | - G R Jena
- Department of Veterinary Clinical Medicine, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| | - A K Kundu
- Department of Veterinary Physiology, C.V.Sc & A.H., O.U.A.T, Bhubaneswar, 751003, India
| |
Collapse
|
50
|
Sundaramoorthy S, Dakshinamoorthi A, K C. Evaluation of anti-oxidant and anticancer effect of marine algae Cladophora glomerata in HT29 colon cancer cell lines- an in-vitro study. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2022; 14:332-339. [PMID: 36741197 PMCID: PMC9890206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 12/06/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Marine algae are a huge Pandora's box of rich nutrients and huge medicinal compounds. These therapeutic compounds are investigated widely for their anticancer, antioxidant, and anti-diabetic properties. OBJECTIVES This study aims to evaluate the antioxidant and anticancer effect of the marine algae Cladophora glomerata (collected from Hare Island-Tuticorin region) on HT-29 colon cancer cell lines. METHODOLOGY The marine algae, Cladophora glomerata, was collected, processed, and authenticated. Methanol, Ethyl acetate, Chloroform, and Hexane extracts were prepared using a hot solvent extraction process. These extracts were subjected to SOD assay and MTT assay. 5 Fluorouracil was used as the positive control. RESULTS The antioxidant activity of the SOD assay was found to be 85.66±0.81, 80.10±1.25, and 98±0.93 U/mg protein for methanol, ethyl acetate, chloroform, and hexane extracts, respectively. L-Ascorbic acid was used as the positive control whose SOD antioxidant value was found to be 139±1.24 U/mg protein. The IC50 value of methanol, ethyl acetate, chloroform, hexane algae extracts, and 5 Fluorouracil against HT29 cell lines was calculated to be 28.46±0.65, 48.56±1.19, 93.7±0.91, 88.53±0.83, and 8.2±1.3 μg/ml, respectively. CONCLUSION From the above study, we can infer that the methanol extracts of the algae Cladophora glomerata have excellent anticancer activity. Therefore, these compounds can be purified and analyzed further for a potential lead as an anticancer molecule.
Collapse
Affiliation(s)
| | | | - Chithra K
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SRIHERChennai, India
| |
Collapse
|