1
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
2
|
Acher AW, Hallet J. Advances in Management of Nonfunctional Pancreas Neuroendocrine Tumors. Surg Clin North Am 2024; 104:1095-1111. [PMID: 39237166 DOI: 10.1016/j.suc.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This article presents updates in the surgical management of non-functional sporadic pancreas neuroendocrine tumors NET, including considerations for assessment of biologic behavior to support decision-making, indications for surgery, and surgical approaches tailored to the unique nature of neuroendocrine tumors.
Collapse
Affiliation(s)
- Alexandra W Acher
- Department of Surgery, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5
| | - Julie Hallet
- Department of Surgery, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5; Susan Leslie Clinic for Neuroendocrine Tumors, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Simms ME, Li Z, Sibley MM, Ivanov AS, Lara CM, Johnstone TC, Kertesz V, Fears A, White FD, Thorek DLJ, Thiele NA. PYTA: a universal chelator for advancing the theranostic palette of nuclear medicine. Chem Sci 2024; 15:11279-11286. [PMID: 39055008 PMCID: PMC11268510 DOI: 10.1039/d3sc06854d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
To clinically advance the growing arsenal of radiometals available to image and treat cancer, chelators with versatile binding properties are needed. Herein, we evaluated the ability of the py2[18]dieneN6 macrocycle PYTA to interchangeably bind and stabilize 225Ac3+, [177Lu]Lu3+, [111In]In3+ and [44Sc]Sc3+, a chemically diverse set of radionuclides that can be used complementarily for targeted alpha therapy, beta therapy, single-photon emission computed tomography (SPECT) imaging, and positron emission tomography (PET) imaging, respectively. Through NMR spectroscopy and X-ray diffraction, we show that PYTA possesses an unusual degree of flexibility for a macrocyclic chelator, undergoing dramatic conformational changes that enable it to optimally satisfy the disparate coordination properties of each metal ion. Subsequent radiolabeling studies revealed that PYTA quantitatively binds all 4 radiometals at room temperature in just minutes at pH 6. Furthermore, these complexes were found to be stable in human serum over 2 half-lives. These results surpass those obtained for 2 state-of-the-art chelators for nuclear medicine, DOTA and macropa. The stability of 225Ac-PYTA and [44Sc]Sc-PYTA, the complexes having the most disparity with respect to metal-ion size, was further probed in mice. The resulting PET images (44Sc) and ex vivo biodistribution profiles (44Sc and 225Ac) of the PYTA complexes differed dramatically from those of unchelated [44Sc]Sc3+ and 225Ac3+. These differences provide evidence that PYTA retains this size-divergent pair of radionuclides in vivo. Collectively, these studies establish PYTA as a new workhorse chelator for nuclear medicine and warrant its further investigation in targeted constructs.
Collapse
Affiliation(s)
- Megan E Simms
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhiyao Li
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Megan M Sibley
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Caroline M Lara
- Department of Biological Sciences, University of Notre Dame Notre Dame IN 46556 USA
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz Santa Cruz CA 95064 USA
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Amanda Fears
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Frankie D White
- Radioisotope Science and Technology Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Daniel L J Thorek
- Department of Radiology, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Program in Quantitative Molecular Therapeutics, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
- Department of Biomedical Engineering, Washington University in St. Louis St. Louis MO 63110 USA
- Oncologic Imaging Program, Siteman Cancer Center, Washington University in St. Louis School of Medicine St. Louis MO 63110 USA
| | - Nikki A Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
4
|
Merdzo I, Travagin F, Boccalon M, Alessio E, Lattuada L, Baranyai Z, Giovenzana GB. TRASUTA: The Effect of the Structural Rigidity of a Mesocyclic AAZTA-like Chelating Agent on the Thermodynamic, Kinetic, and Structural Properties of Some Divalent Metal and Ga 3+ Complexes. Inorg Chem 2024; 63:12525-12537. [PMID: 38905138 DOI: 10.1021/acs.inorgchem.4c01413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Mesocyclic chelating agents such as AAZTA and its derivatives have been recently reported to overcome the relatively low thermodynamic stability of metal complexes of acyclic chelating agents and the slow complexation kinetics of macrocyclic chelating agents. This work reports the preparation of a spirobicyclic hexadentate AAZTA-like chelating agent (TRASUTA) and the investigation of the thermodynamic, kinetic, and structural properties of the corresponding chelates with the PET-relevant Ga3+ and selected metal ions. A combination of analytical techniques allowed identification of a coordination isomerization process, involving the coordinating side arms and the inversion of a nitrogen atom and leading to lower thermodynamic and kinetic inertness with respect to mononuclear mesocyclic analogues. The bicyclic system of TRASUTA retains significant dynamics despite the conformational constraint imposed by the spiro-fusion, resulting in a lower stability of the corresponding metal chelates.
Collapse
Affiliation(s)
- Ileana Merdzo
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Enzo Alessio
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste 34127, (TS), Italy
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, Colleretto Giacosa 10010, (TO), Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, AREA Science Park, ed. Q─S.S. 14 Km 163,5, Basovizza 34149, (TS), Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università Degli Studi Del Piemonte Orientale, Largo Donegani 2/3, Novara 28100, (NO), Italy
| |
Collapse
|
5
|
Ambrosini V, Fortunati E, Fanti S, Ursprung S, Asmundo L, O'Shea A, Kako B, Lee S, Furtado FS, Blake M, Goiffon RJ, Najmi Z, Hesami M, Murakami T, Domachevsky L, Catalano OA. State-of-the-Art Hybrid Imaging of Neuroendocrine Neoplasms. J Comput Assist Tomogr 2024; 48:510-520. [PMID: 38518197 DOI: 10.1097/rct.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
ABSTRACT Neuroendocrine neoplasms (NENs) may be challenging to diagnose due to their small size and diverse anatomical locations. Hybrid imaging techniques, specifically positron emission tomography/computed tomography (PET/CT) and positron emission tomography/magnetic resonance imaging (PET/MRI), represent the current state-of-the-art for evaluating NENs. The preferred radiopharmaceuticals for NEN PET imaging are gallium-68 (68Ga) DOTA-peptides, which target somatostatin receptors (SSTR) overexpressed on NEN cells. Clinical applications of [68Ga]Ga-DOTA-peptides PET/CT include diagnosis, staging, prognosis assessment, treatment selection, and response evaluation. Fluorodeoxyglucose-18 (18F-FDG) PET/CT aids in detecting low-SSTR-expressing lesions and helps in patient stratification and treatment planning, particularly in grade 3 neuroendocrine tumors (NETs). New radiopharmaceuticals such as fluorine-labeled SSTR agonists and SSTR antagonists are emerging as alternatives to 68Ga-labeled peptides, offering improved detection rates and favorable biodistribution. The maturing of PET/MRI brings advantages to NEN imaging, including simultaneous acquisition of PET and MRI images, superior soft tissue contrast resolution, and motion correction capabilities. The PET/MRI with [68Ga]Ga-DOTA-peptides has demonstrated higher lesion detection rates and more accurate lesion classification compared to PET/CT. Overall, hybrid imaging offers valuable insights in the diagnosis, staging, and treatment planning of NENs. Further research is needed to refine response assessment criteria and standardize reporting guidelines.
Collapse
Affiliation(s)
| | - Emilia Fortunati
- From the Nuclear Medicine, Alma Mater Studiorum, University of Bologna
| | | | | | | | - Aileen O'Shea
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Bashar Kako
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael Blake
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Najmi
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mina Hesami
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Takaaki Murakami
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Hospital, Kyoto, Japan
| | - Liran Domachevsky
- Department of Nuclear Medicine, The Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Petranović Ovčariček P, Calderoni L, Campenni A, Fanti S, Giovanella L. Molecular imaging of thyroid and parathyroid diseases. Expert Rev Endocrinol Metab 2024; 19:317-333. [PMID: 38899737 DOI: 10.1080/17446651.2024.2365776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Molecular imaging of thyroid and parathyroid diseases has changed in recent years due to the introduction of new radiopharmaceuticals and new imaging techniques. Accordingly, we provided an clinicians-oriented overview of such techniques and their indications. AREAS COVERED A review of the literature was performed in the PubMed, Web of Science, and Scopus without time or language restrictions through the use of one or more fitting search criteria and terms as well as through screening of references in relevant selected papers. Literature up to and including December 2023 was included. Screening of titles/abstracts and removal of duplicates was performed and the full texts of the remaining potentially relevant articles were retrieved and reviewed. EXPERT OPINION Thyroid and parathyroid scintigraphy remains integral in patients with thyrotoxicosis, thyroid nodules, differentiated thyroid cancer and, respectively, hyperparathyroidism. In the last years positron-emission tomography with different tracers emerged as a more accurate alternative in evaluating indeterminate thyroid nodules [18F-fluorodeoxyglucose (FDG)], differentiated thyroid cancer [124I-iodide, 18F-tetrafluoroborate, 18F-FDG] and hyperparathyroidism [18F-fluorocholine]. Other PET tracers are useful in evaluating relapsing/advanced forms of medullary thyroid cancer (18F-FDOPA) and selecting patients with advanced follicular and medullary thyroid cancers for theranostic treatments (68Ga/177Ga-somatostatin analogues).
Collapse
Affiliation(s)
- Petra Petranović Ovčariček
- Department of Oncology and Nuclear Medicine, University Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Letizia Calderoni
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alfredo Campenni
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Unit of Nuclear Medicine, University of Messina, Messina, Italy
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola, Bologna, Italy
- Nuclear Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luca Giovanella
- Department of Nuclear Medicine, Gruppo Ospedaliero Moncucco, Lugano, Switzerland
- Clinic for Nuclear Medicine, University Hospital of Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Sallam M, Mohammadi M, Sainsbury F, Nguyen NT, Kimizuka N, Muyldermans S, Benešová-Schäfer M. Bibliometric and scientometric analysis of PSMA-targeted radiotheranostics: knowledge mapping and global standing. Front Oncol 2024; 14:1397790. [PMID: 39011478 PMCID: PMC11246987 DOI: 10.3389/fonc.2024.1397790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose Bibliometric and scientometric analyses provide a structured approach to large amounts of data, enabling the prediction of research theme trends over time, the detection of shifts in the boundaries of disciplines, and the identification of the most productive countries, institutions and scholars. In the context of prostate-specific membrane antigen (PSMA)-targeted radiotheranostics, no bibliometric or scientometric analysis has been published thus far. Therefore, this study was conducted to identify key contributors to the literature, assess the global scientific production of related research, and possibly predict future development patterns. Methods Scientometrics and bibliometrics were utilized to analyze the current body of knowledge while tracking its evolution to support scientific decision-making comprehensively and systematically. Science mapping techniques were employed to visualize research activities. Two different tools, Tableau and VOSviewer, were utilized, with VOSviewer being deemed the most suitable for the research objectives. The Web of Science (WoS) was used as the principal database for the searches. Results Through the search process over a period of 30 years (January 1993-January 2023), 694 original studies in the English language were subjected to comprehensive analysis. By employing bibliometric and scientometric methods, multiple networks were created that mapped various concepts, such as publication trends, leading countries, cocitations, coauthorship among researchers and scientists, as well as coauthorship among organizations and funding agencies. This study revealed the evolutionary patterns, trends, outliers, and key players in the PSMA field, which enabled a more nuanced understanding of the research landscape. Conclusion This research contributes to the enrichment of knowledge on PSMA-targeted radiotheranostics through detailed global bibliometric and scientometric analyses. It stresses the necessity for the development of communication platforms, the establishment of supportive infrastructures, and the implementation of proactive solutions to address emerging challenges. This study offers a significant resource for delineating effective strategies and identifying prominent funding bodies essential for continuous advancements in the field of PSMA-based diagnosis and therapy for prostate cancer. It is vital to sustain this momentum to ensure further progress in this pioneering area.
Collapse
Affiliation(s)
- Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD, Australia
| | - Mahan Mohammadi
- Centre for Environment and Population Health (CEPH), School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Frank Sainsbury
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, Australia
- Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, QLD, Australia
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
- Center for Molecular Systems (CMS), Kyushu University, Fukuoka, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Fukuoka, Japan
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Iqbal S, Zhuang E, Raj M, Bahary N, Monga DK. Long-term clinical outcomes of [ 177Lu]Lu-DOTATATE in patients with metastatic neuroendocrine tumors. Front Oncol 2024; 14:1393317. [PMID: 38817893 PMCID: PMC11137281 DOI: 10.3389/fonc.2024.1393317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
The incidence of gastroenteropancreatic neuroendocrine tumors has been rising and these tumors are usually only diagnosed at a metastatic stage. Present first line treatments include somatostatin analogs, targeted therapies and peptide receptor radionuclide therapy. The Lutetium-177 [177Lu] based radiotracer [177Lu]Lu-DOTATATE has only been approved as first-line treatment of metastatic midgut NETs however its efficacy as a third line or above treatment in patients with non ileal primaries has not been tested. In our study, we identified 25 patients with histologically confirmed well-differentiated metastatic neuroendocrine tumors and administered [177Lu]Lu-DOTATATE as a second line, third line and fourth line treatment. Our study demonstrated a notable response in patients with non-ileal primaries and heavily pretreated disease, warranting further studies for additional cycles of treatment.
Collapse
Affiliation(s)
- Sabah Iqbal
- Mercy Catholic Medical Center, Darby, PA, United States
| | - Eric Zhuang
- Department of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Moses Raj
- Department of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Nathan Bahary
- Department of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Dulabh K. Monga
- Department of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Bentestuen M, Nalliah S, Stolberg MMK, Zacho HD. How to Perform FAPI PET? An Expedited Systematic Review Providing a Recommendation for FAPI PET Imaging With Different FAPI Tracers. Semin Nucl Med 2024; 54:345-355. [PMID: 38052711 DOI: 10.1053/j.semnuclmed.2023.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
This expedited systematic review aims to provide the first overview of the different Fibroblast activation protein inhibitor (FAPI) PET scan procedures in the literature and discuss how to efficiently obtain optimal FAPI PET images based on the best available evidence. The PubMed, Embase, Cochrane Library, and Web of Science databases were systematically searched in April 2023. Peer-reviewed cohort studies published in English and used FAPI tracers were included. Articles were excluded if critical scan procedure information was missing, or the article was not retrievable from a university library within 30 days. Data were grouped according to the FAPI tracer applied. Meta-analysis with proper statistics was deemed not feasible based on a pilot study. A total of 946 records were identified. After screening, 159 studies were included. [68Ga]Ga-FAPI-04 was applied in 98 studies (61%), followed by [68Ga]Ga-FAPI-46 in 19 studies (12%). Most studies did not report specific patient preparation. A mean/median administered activity of 80-200 MBq was most common; however, wide ranges were seen in [68Ga]Ga-FAPI-04 PET studies (56-370 MBq). An injection-to-scan-time of 60 minutes was dominant for all FAPI PET studies. A possible trend toward shorter injection-to-scan times was observed for [68Ga]Ga-FAPI-46. Three studies evaluated [68Ga]Ga-FAPI-46 PET acquisition at multiple time points in more than 593 cancer lesions, all yielding equivalent tumor detection at 10 minutes vs later time points despite slightly lower tumor-to-background Ratios. Despite the wide ranges, most institutions administer an average of 80-200 MBq [68Ga]Ga-FAPI-04/46 and scan patients at 60 minutes postinjection. For [68Ga]Ga-FAPI-46, the present evidence consistently supports the feasibility of image acquisition earlier than 30 minutes. Currently, data on the optimal FAPI PET scan procedure are limited, and more studies are encouraged. The current review can serve as a temporary guideline for institutions planning FAPI PET studies.
Collapse
Affiliation(s)
- Morten Bentestuen
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Surenth Nalliah
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Marie M K Stolberg
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle D Zacho
- Department of Nuclear Medicine and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
Wanek T, Raabe M, Alam MNA, Filip T, Stanek J, Loebsch M, Laube C, Mairinger S, Weil T, Kuntner C. Functionalization of 68Ga-Radiolabeled Nanodiamonds with Octreotide Does Not Improve Tumor-Targeting Capabilities. Pharmaceuticals (Basel) 2024; 17:514. [PMID: 38675474 PMCID: PMC11054832 DOI: 10.3390/ph17040514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in medical applications. The surface coating of NDs can be modified by attaching binding ligands or imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting capabilities of NDs.
Collapse
Affiliation(s)
- Thomas Wanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
| | - Marco Raabe
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 115201, Taiwan
| | - Md Noor A Alam
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
| | - Mathilde Loebsch
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Core Facility Laboratory Animal Breeding and Husbandry (CFL), Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Laube
- Leibniz-Institute of Surface Engineering (IOM), 04318 Leipzig, Germany;
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Claudia Kuntner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.)
- Medical Imaging Cluster (MIC), Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
11
|
Martin S, Wendlinger L, Litvinenko A, Faizova R, Schottelius M. Validation of a size exclusion method for concomitant purification and formulation of peptide radiopharmaceuticals. EJNMMI Radiopharm Chem 2024; 9:23. [PMID: 38512591 PMCID: PMC10957824 DOI: 10.1186/s41181-024-00254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Both in clinical routine and in preclinical research, the established standard procedure for the final purification of radiometal-labeled peptide radiopharmaceuticals is cartridge-based reversed-phase (RP) solid phase extraction (SPE). It allows the rapid and quantitative separation of the radiolabeled peptide from hydrophilic impurities and easy integration into automated synthesis procedures. However, product elution from RP cartridges necessitates the use of organic solvents and product recovery is sometimes limited. Thus, an alternative purification method based on commercially available size exclusion cartridges was investigated. RESULTS Since most peptide radiopharmaceuticals have a molecular weight > 1 kDa, Sephadex G10 cartridges with a molecular size cut-off of 700 Da were used for the final purification of a broad palette of 68Ga-, 64Cu- and 99mTc-labeled experimental peptide radiotracers as well as the clinically relevant ligand PSMA-617. Results (radiochemical purity (RCP, determined by ITLC), recovery from the solid support) were compared to the respective standard RP-SPE method. Generally, retention of unreacted 68Ga, 64Cu and 99mTc salts on the G10 cartridges was quantitative up to the specified elution volume (1.2 mL) for 68Ga and 99mTc and 99.6% for 64Cu. Even at increased elution volumes of 1.5-2 mL, RCPs of the eluted 68Ga- and 99mTc -radiopeptides were > 99%. For all peptides with a molecular weight ≥ 2 kDa, product recovery from the G10 cartridges was consistently > 85% upon respective adjustment of the elution volume. Product recovery was lowest for [68Ga]Ga-PSMA-617 (67%, 1.2 mL to 84%, 2 mL). The pH of the final product solution was found to be volume-dependent (1.2 mL: pH 6.3; 1.5 mL: pH 5.9; 2 mL: pH 5.5). Notably, the G10 cartridges were reused up to 20 times without compromising performance, and implementation of the method in an automated radiosynthesis procedure was successful. CONCLUSIONS Overall, size exclusion purification yielded all peptide radiopharmaceuticals in excellent radiochemical purities (> 99%) in saline within 10-12 min. Although product recovery is marginally inferior to classical SPE purifications, this method has the advantage of completely avoiding organic solvents and representing a cost-effective, easy-to-implement purification approach for automated radiotracer synthesis.
Collapse
Affiliation(s)
- Sebastian Martin
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Lennard Wendlinger
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Alexandra Litvinenko
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Radmila Faizova
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- AGORA, Pôle de recherche sur le cancer, Lausanne, 1011, Switzerland.
- SCCL Swiss Cancer Center Leman, Lausanne, 1011, Switzerland.
| |
Collapse
|
12
|
Whetter JN, Śmiłowicz D, Boros E. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Acc Chem Res 2024; 57:933-944. [PMID: 38501206 DOI: 10.1021/acs.accounts.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.
Collapse
Affiliation(s)
- Jennifer N Whetter
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
13
|
Müller KJ, Biczok A, Schichor C, von Baumgarten L, Albert NL. The value of [ 18F]FET PET and somatostatin receptor imaging for differentiating pseudoprogression in residual meningioma. Eur J Nucl Med Mol Imaging 2024; 51:1194-1196. [PMID: 37897618 PMCID: PMC10881591 DOI: 10.1007/s00259-023-06479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Katharina J Müller
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-Universität München, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Annamaria Biczok
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital Munich, Ludwig-Maximilians-Universität München, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-Universität München, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
14
|
Morgan KA, Wichmann CW, Osellame LD, Cao Z, Guo N, Scott AM, Donnelly PS. Tumor targeted alpha particle therapy with an actinium-225 labelled antibody for carbonic anhydrase IX. Chem Sci 2024; 15:3372-3381. [PMID: 38425522 PMCID: PMC10901495 DOI: 10.1039/d3sc06365h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Selective antibody targeted delivery of α particle emitting actinium-225 to tumors has significant therapeutic potential. This work highlights the design and synthesis of a new bifunctional macrocyclic diazacrown ether chelator, H2MacropaSqOEt, that can be conjugated to antibodies and forms stable complexes with actinium-225. The macrocyclic diazacrown ether chelator incorporates a linker comprised of a short polyethylene glycol fragment and a squaramide ester that allows selective reaction with lysine residues on antibodies to form stable vinylogous amide linkages. This new H2MacropaSqOEt chelator was used to modify a monoclonal antibody, girentuximab (hG250), that binds to carbonic anhydrase IX, an enzyme that is overexpressed on the surface of cancers such as clear cell renal cell carcinoma. This new antibody conjugate (H2MacropaSq-hG250) had an average chelator to antibody ratio of 4 : 1 and retained high affinity for carbonic anhydrase IX. H2MacropaSq-hG250 was radiolabeled quantitatively with [225Ac]AcIII within one minute at room temperature with micromolar concentrations of antibody and the radioactive complex is stable in human serum for >7 days. Evaluation of [225Ac]Ac(MacropaSq-hG250) in a mouse xenograft model, that overexpresses carbonic anhydrase IX, demonstrated a highly significant therapeutic response. It is likely that H2MacropaSqOEt could be used to modify other antibodies providing a readily adaptable platform for other actinium-225 based therapeutics.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| | - Christian W Wichmann
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
| | - Nancy Guo
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute Melbourne Australia
- School of Cancer Medicine, La Trobe University Melbourne Australia
- Department of Molecular Imaging and Therapy Austin Health Melbourne Australia
- Department of Medicine, University of Melbourne Melbourne Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne Melbourne Australia
| |
Collapse
|
15
|
Van Laere C, Koole M, Deroose CM, de Voorde MV, Baete K, Cocolios TE, Duchemin C, Ooms M, Cleeren F. Terbium radionuclides for theranostic applications in nuclear medicine: from atom to bedside. Theranostics 2024; 14:1720-1743. [PMID: 38389843 PMCID: PMC10879862 DOI: 10.7150/thno.92775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Terbium features four clinically interesting radionuclides for application in nuclear medicine: terbium-149, terbium-152, terbium-155, and terbium-161. Their identical chemical properties enable the synthesis of radiopharmaceuticals with the same pharmacokinetic character, while their distinctive decay characteristics make them valuable for both imaging and therapeutic applications. In particular, terbium-152 and terbium-155 are useful candidates for positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging, respectively; whereas terbium-149 and terbium-161 find application in α- and β--/Auger electron therapy, respectively. This unique characteristic makes the terbium family ideal for the "matched-pair" principle of theranostics. In this review, the advantages and challenges of terbium-based radiopharmaceuticals are discussed, covering the entire chain from radionuclide production to bedside administration. It elaborates on the fundamental properties of terbium, the production routes of the four interesting radionuclides and gives an overview of the available bifunctional chelators. Finally, we discuss the preclinical and clinical studies as well as the prospects of this promising development in nuclear medicine.
Collapse
Affiliation(s)
- Camille Van Laere
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Medical Applications, Mol, Belgium
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine, University Hospitals Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Christophe M. Deroose
- Nuclear Medicine, University Hospitals Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michiel Van de Voorde
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Medical Applications, Mol, Belgium
| | - Kristof Baete
- Nuclear Medicine, University Hospitals Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Thomas E. Cocolios
- KU Leuven, Institute for Nuclear and Radiation Physics, Department of Physics and Astronomy, Leuven, Belgium
| | | | - Maarten Ooms
- Belgian Nuclear Research Centre (SCK CEN), Institute for Nuclear Medical Applications, Mol, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Karpuz M, Ozgenc E, Oner E, Atlihan-Gundogdu E, Burak Z. 68 Ga-labeled, imatinib encapsulated, theranostic liposomes: Formulation, characterization, and in vitro evaluation of anticancer activity. Drug Dev Res 2024; 85:e22136. [PMID: 38009423 DOI: 10.1002/ddr.22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Cancer is still a global health problem. Among cancer types, breast cancer is the most frequently diagnosed one, and it causes a high mortality rate if not diagnosed in the early stages. In our study, imatinib encapsulated, nanosized, neutral/cationic liposome formulations were prepared as theranostic agents for breast cancer. After the characterization studies in which all liposomes exhibited proper profile owing to their particle size between 133 and 250 nm, polydispersity index values lower than 0.4, neutral and cationic zeta potential values, and high drug encapsulation efficiency, controlled drug release behaviors with zero-order kinetic were obtained. The higher than 90% radiolabeling efficiency values were obtained thanks to the determination of optimum radiolabeling condition (80°C temperature, 5 mCi radioactivity, and 10 min incubation period). According to the resazurin assay evaluating the cytotoxic profile of liposomes on MCF7 cells, neutral empty liposome was found as biocompatible, while both cationic liposomes (empty and drug-loaded ones) exhibited high nonspecific cytotoxicity at even low drug concentration due to the existence of stearyl amine in the formulations. However, dose-dependent cytotoxic effect and the highest cellular binding capacity were obtained by imatinib loaded neutral liposomes. In conclusion, 68 Ga-radiolabeled, imatinib-loaded, neutral, nanosized liposome formulation is the most promising one as a theranostic agent among all formulations.
Collapse
Affiliation(s)
- Merve Karpuz
- Department of Radiopharmacy, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Emre Ozgenc
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ezgi Oner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, St James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, Trinity School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Zeynep Burak
- Department of Nuclear Medicine, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Hossain M, Habib I, Singha K, Kumar A. FDA-approved heterocyclic molecules for cancer treatment: Synthesis, dosage, mechanism of action and their adverse effect. Heliyon 2024; 10:e23172. [PMID: 38163206 PMCID: PMC10755292 DOI: 10.1016/j.heliyon.2023.e23172] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
As the incorporation of heterocycles increases the physical characteristics and biological activity of pharmacological molecules, heterocyclic scaffolds are commonly discovered as common cores in a wide spectrum of biologically active drugs. In the contemporary context, many heterocycles have arisen, playing vital roles in diverse pharmaceutical compounds that benefit humanity. Over 85 % of FDA-approved medication molecules contain heterocycles, and most importantly, numerous heterocyclic medicinal molecules indicate potential benefits against a range: of malignancies. The unique flexibility and dynamic core scaffold of these compounds have aided anticancer research. These medications are used to treat cancer patients by targeting particular genes, enzymes, and receptors. Aside from the drugs that are now on the market, numerous forms are being researched for their potential anti-cancer activity. Here in this review, we classified some molecules and biologically active heterocycles containing anticancer medicinal moieties approved by the FDA between 2019 and 2021 based on their use in various forms of cancer. We will focus on those that are suitable for cancer treatment, as well as the essential biochemical mechanisms of action, biological targets, synthetic methods, and inherent limiting considerations in their use.
Collapse
Affiliation(s)
- Mossaraf Hossain
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Imran Habib
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Koustav Singha
- Synthetic Organic Research Laboratory, UGC-HRDC (Chemistry), University of North Bengal, Darjeeling, 734013, India
| | - Anoop Kumar
- Department of Biotechnology, University of North Bengal, Darjeeling, 734013, India
| |
Collapse
|
18
|
Hartmann K, Gillman JA, Lazor JW, Ware JB, Weeks JK, Nasrallah IM, Farwell MD, Pantel AR. 68 Ga-DOTATATE PET to Characterize Lesions in the Neuroaxis. Clin Nucl Med 2024; 49:9-15. [PMID: 38048554 DOI: 10.1097/rlu.0000000000004966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
AIM The differentiation of paragangliomas, schwannomas, meningiomas, and other neuroaxis tumors in the head and neck remains difficult when conventional MRI is inconclusive. This study assesses the utility of 68 Ga-DOTATATE PET/CT as an adjunct to hone the diagnosis. PATIENTS AND METHODS This retrospective study considered 70 neuroaxis lesions in 52 patients with 68 Ga-DOTATATE PET/CT examinations; 22 lesions (31%) had pathologic confirmation. Lesions were grouped based on pathological diagnosis and best radiologic diagnosis when pathology was not available. Wilcoxon rank sum tests were used to test for differences in SUV max among paragangliomas, schwannomas, and meningiomas. Receiver operator characteristic curves were constructed. RESULTS Paragangliomas had a significantly greater 68 Ga-DOTATATE uptake (median SUV max , 62; interquartile range [IQR], 89) than nonparagangliomas. Schwannomas had near-zero 68 Ga-DOTATATE uptake (median SUV max , 2; IQR, 1). Intermediate 68 Ga-DOTATATE uptake was seen for meningiomas (median SUV max , 19; IQR, 6) and other neuroaxis lesions (median SUV max , 7; IQR, 9). Receiver operator characteristic analysis demonstrated an area under the curve of 0.87 for paragangliomas versus all other lesions and 0.97 for schwannomas versus all other lesions. CONCLUSIONS Marked 68 Ga-DOTATATE uptake (>50 SUV max ) favors a diagnosis of paraganglioma, although paragangliomas exhibit a wide variability of uptake. Low to moderate level 68 Ga-DOTATATE uptake is nonspecific and may represent diverse pathophysiology including paraganglioma, meningioma, and other neuroaxis tumors but essentially excludes schwannomas, which exhibited virtually no uptake.
Collapse
Affiliation(s)
- Katherine Hartmann
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | | | - Jillian W Lazor
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | - Jeffrey B Ware
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | - Joanna K Weeks
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | - Ilya M Nasrallah
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | - Michael D Farwell
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| | - Austin R Pantel
- From the Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA
| |
Collapse
|
19
|
Carbo-Bague I, Saini S, Cingoranelli SJ, Davey PRWJ, Tosato M, Lapi SE, Ramogida CF. Evaluation of a novel hexadentate 1,2-hydroxypyridinone-based acyclic chelate, HOPO-O 6-C4, for 43Sc/ 47Sc, 68Ga, and 45Ti radiopharmaceuticals. Nucl Med Biol 2024; 128-129:108872. [PMID: 38262310 DOI: 10.1016/j.nucmedbio.2023.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Chelators play a crucial role in the development of metal-based radiopharmaceuticals, and with the continued interest in 68Ga and increasing availability of new radiometals such as 43Sc/47Sc and 45Ti, there is a growing demand for tailored chelators that can form stable complexes with these metals. This work reports the synthesis and characterization of a hexadentate tris-1,2-hydroxypyridonone chelator HOPO-O6-C4 and its in vitro and in vivo evaluation with the above mentioned radiometals. METHODS To investigate the affinity of HOPO-O6-C4, macroscopic studies were performed with Sc3+, and Ga3+ followed by DFT structural optimization of the Sc3+, Ga3+ and Ti4+ complexes. Further tracer studies with 43Sc (and 47Sc), 45Ti, and 68Ga were performed to determine the potential for positron emission tomography (PET) imaging with these complexes. In vitro stability studies followed by in vivo imaging and biodistribution studies were performed to understand the kinetic stability of the resultant radiometal-complexes of HOPO-O6-C4. RESULTS Promising radiolabeling results with HOPO-O6-C4 were obtained with 43Sc, 47Sc, 45Ti, and 68Ga radionuclides; rapid radiolabeling was observed at 37 °C and pH 7 in under 30-min. Apparent molar activity measurements were performed for radiolabeling of HOPO-O6-C4 with 43Sc (4.9 ± 0.26 GBq/μmol), 47Sc (1.58 ± 0.01 GBq/μmol), 45Ti (11.5 ± 1.6 GBq/μmol) and 68Ga (5.74 ± 0.7 GBq/μmol), respectively. Preclinical in vivo imaging studies resulted in promising results with [68Ga]Ga-HOPO-O6-C4 indicating a rapid clearance through hepatic excretion route and no decomplexation whereas [43Sc]Sc-HOPO-O6-C4, [47Sc]Sc-HOPO-O6-C4 and [45Ti]Ti-HOPO-O6-C4 showed modest and significant evidence of decomplexation, respectively. CONCLUSIONS The tris-1,2-HOPO chelator HOPO-O6-C4 is a promising scaffold for elaboration into a 68Ga- based radiopharmaceutical.
Collapse
Affiliation(s)
- Imma Carbo-Bague
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Shefali Saini
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA
| | - Shelbie J Cingoranelli
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA
| | - Patrick R W J Davey
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Marianna Tosato
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, 1824 6th Ave South, Birmingham, AL 35294, USA.
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; Life Sciences, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada.
| |
Collapse
|
20
|
Singh NK, Hage N, Ramamourthy B, Nagaraju S, Kappagantu KM. Nuclear Imaging Modalities in the Diagnosis and Management of Thyroid Cancer. Curr Mol Med 2024; 24:1091-1096. [PMID: 37724677 DOI: 10.2174/1566524023666230915103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
In this review we have brought forward various nuclear imaging modalities used in the diagnosis, staging, and management of thyroid cancer. Thyroid cancer is the most common endocrine malignancy, accounting for approximately 3% of all new cancer diagnoses. Nuclear imaging plays an important role in the evaluation of thyroid cancer, and the use of radioiodine imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the management of this disease. Radioiodine imaging involves the use of Iodine-123 [I-123] or Iodine-131 [I-131] to evaluate thyroid function and detect thyroid cancer. I-123 is a gamma-emitting isotope that is used in thyroid imaging to evaluate thyroid function and detect thyroid nodules. I-131 is a beta-emitting isotope that is used for the treatment of thyroid cancer. Radioiodine imaging is used to detect the presence of thyroid nodules and evaluate thyroid function. FDG imaging is a PET imaging modality that is used to evaluate the metabolic activity of thyroid cancer cells. FDG is a glucose analogue that is taken up by cells that are metabolically active, such as cancer cells. FDG PET/CT can detect primary thyroid cancer and metastatic disease, including lymph nodes and distant metastases. FDG PET/CT is also used to monitor treatment response and detect the recurrence of thyroid cancer. Somatostatin receptor imaging involves the use of radiolabeled somatostatin analogues to detect neuroendocrine tumors, including thyroid cancer. Radiolabeled somatostatin analogues, such as Indium-111 octreotide or Gallium-68 DOTATATE, are administered to the patient, and a gamma camera is used to detect areas of uptake. Somatostatin receptor imaging is highly sensitive and specific for the detection of metastatic thyroid cancer. A comprehensive search of relevant literature was done using online databases of PubMed, Embase, and Cochrane Library using the keywords "thyroid cancer," "nuclear imaging," "radioiodine imaging," "FDG PET/CT," and "somatostatin receptor imaging" to identify relevant studies to be included in this review. Nuclear imaging plays an important role in the diagnosis, staging, and management of thyroid cancer. The use of radioiodine imaging, thyroglobulin imaging, FDG imaging, and somatostatin receptor imaging are all valuable tools in the evaluation of thyroid cancer. With further research and development, nuclear imaging techniques have the potential to improve the diagnosis and management of thyroid cancer and other endocrine malignancies.
Collapse
Affiliation(s)
- Namit Kant Singh
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Neemu Hage
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Balaji Ramamourthy
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Sushmitha Nagaraju
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | - Krishna Medha Kappagantu
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| |
Collapse
|
21
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
22
|
Souche C, Fouillet J, Rubira L, Donzé C, Deshayes E, Fersing C. Bisphosphonates as Radiopharmaceuticals: Spotlight on the Development and Clinical Use of DOTAZOL in Diagnostics and Palliative Radionuclide Therapy. Int J Mol Sci 2023; 25:462. [PMID: 38203632 PMCID: PMC10779041 DOI: 10.3390/ijms25010462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Bisphosphonates are therapeutic agents that have been used for almost five decades in the treatment of various bone diseases, such as osteoporosis, Paget disease and prevention of osseous complications in cancer patients. In nuclear medicine, simple bisphosphonates such as 99mTc-radiolabelled oxidronate and medronate remain first-line bone scintigraphic imaging agents for both oncology and non-oncology indications. In line with the growing interest in theranostic molecules, bifunctional bisphosphonates bearing a chelating moiety capable of complexing a variety of radiometals were designed. Among them, DOTA-conjugated zoledronate (DOTAZOL) emerged as an ideal derivative for both PET imaging (when radiolabeled with 68Ga) and management of bone metastases from various types of cancer (when radiolabeled with 177Lu). In this context, this report provides an overview of the main medicinal chemistry aspects concerning bisphosphonates, discussing their roles in molecular oncology imaging and targeted radionuclide therapy with a particular focus on bifunctional bisphosphonates. Particular attention is also paid to the development of DOTAZOL, with emphasis on the radiochemistry and quality control aspects of its preparation, before outlining the preclinical and clinical data obtained so far with this radiopharmaceutical candidate.
Collapse
Affiliation(s)
- Céleste Souche
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Juliette Fouillet
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Charlotte Donzé
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34298 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
23
|
Mallapura H, Ovdiichuk O, Jussing E, Thuy TA, Piatkowski C, Tanguy L, Collet-Defossez C, Långström B, Halldin C, Nag S. Microfluidic-based production of [ 68Ga]Ga-FAPI-46 and [ 68Ga]Ga-DOTA-TOC using the cassette-based iMiDEV™ microfluidic radiosynthesizer. EJNMMI Radiopharm Chem 2023; 8:42. [PMID: 38091157 PMCID: PMC10719436 DOI: 10.1186/s41181-023-00229-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The demand for 68Ga-labeled radiotracers has significantly increased in the past decade, driven by the development of diversified imaging tracers, such as FAPI derivatives, PSMA-11, DOTA-TOC, and DOTA-TATE. These tracers have exhibited promising results in theranostic applications, fueling interest in exploring them for clinical use. Among these probes, 68Ga-labeled FAPI-46 and DOTA-TOC have emerged as key players due to their ability to diagnose a broad spectrum of cancers ([68Ga]Ga-FAPI-46) in late-phase studies, whereas [68Ga]Ga-DOTA-TOC is clinically approved for neuroendocrine tumors. To facilitate their production, we leveraged a microfluidic cassette-based iMiDEV radiosynthesizer, enabling the synthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC based on a dose-on-demand (DOD) approach. RESULTS Different mixing techniques were explored to influence radiochemical yield. We achieved decay-corrected yield of 44 ± 5% for [68Ga]Ga-FAPI-46 and 46 ± 7% for [68Ga]Ga-DOTA-TOC in approximately 30 min. The radiochemical purities (HPLC) of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC were 98.2 ± 0.2% and 98.4 ± 0.9%, respectively. All the quality control results complied with European Pharmacopoeia quality standards. We optimized various parameters, including 68Ga trapping and elution, cassette batches, passive mixing in the reactor, and solid-phase extraction (SPE) purification and formulation. The developed synthesis method reduced the amount of precursor and other chemicals required for synthesis compared to conventional radiosynthesizers. CONCLUSIONS The microfluidic-based approach enabled the implementation of radiosynthesis of [68Ga]Ga-FAPI-46 and [68Ga]Ga-DOTA-TOC on the iMiDEV™ microfluidic module, paving the way for their use in preclinical and clinical applications. The microfluidic synthesis approach utilized 2-3 times less precursor than cassette-based conventional synthesis. The synthesis method was also successfully validated in a similar microfluidic iMiDEV module at a different research center for the synthesis of [68Ga]Ga-FAPI-46 with limited runs. Our study demonstrated the potential of microfluidic methods for efficient and reliable radiometal-based radiopharmaceutical synthesis, contributing valuable insights for future advancements in this field and paving the way for routine clinical applications in the near future.
Collapse
Affiliation(s)
- Hemantha Mallapura
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden.
| | - Olga Ovdiichuk
- Nancyclotep, Molecular Imaging Platform, 5 Rue du Morvan, 54500, Vandoeuvre Les Nancy, France
| | - Emma Jussing
- Department of Oncology and Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, 17176, Stockholm, Sweden
| | - Tran A Thuy
- Department of Oncology and Pathology, Karolinska Institutet, 17177, Stockholm, Sweden
- Department of Radiopharmacy, Karolinska University Hospital, 17176, Stockholm, Sweden
| | | | - Laurent Tanguy
- PMB-Alcen, Route des Michels CD56, 13790, Peynier, France
| | - Charlotte Collet-Defossez
- Nancyclotep, Molecular Imaging Platform, 5 Rue du Morvan, 54500, Vandoeuvre Les Nancy, France
- Inserm, IADI, Université de Lorraine, 54000, Nancy, France
| | - Bengt Långström
- Department of Chemistry, Uppsala University, 75123, Uppsala, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-17176, Stockholm, Sweden
| |
Collapse
|
24
|
Borgula IM, Shuvaev S, Abston E, Rotile NJ, Weigand-Whittier J, Zhou IY, Caravan P, Raines RT. Detection of Pulmonary Fibrosis with a Collagen-Mimetic Peptide. ACS Sens 2023; 8:4008-4013. [PMID: 37930825 PMCID: PMC10842190 DOI: 10.1021/acssensors.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology that is characterized by excessive deposition and abnormal remodeling of collagen. IPF has a mean survival time of only 2-5 years from diagnosis, creating a need to detect IPF at an earlier stage when treatments might be more effective. We sought to develop a minimally invasive probe that could detect molecular changes in IPF-associated collagen. Here, we describe the design, synthesis, and performance of [68Ga]Ga·DOTA-CMP, which comprises a positron-emitting radioisotope linked to a collagen-mimetic peptide (CMP). This peptide mimics the natural structure of collagen and detects irregular collagen matrices by annealing to damaged collagen triple helices. We assessed the ability of the peptide to detect aberrant lung collagen selectively in a bleomycin-induced mouse model of pulmonary fibrosis using positron emission tomography (PET). [68Ga]Ga·DOTA-CMP PET demonstrated higher and selective uptake in a fibrotic mouse lung compared to controls, minimal background signal in adjacent organs, and rapid clearance via the renal system. These studies suggest that [68Ga]Ga·DOTA-CMP identifies fibrotic lungs and could be useful in the early diagnosis of IPF.
Collapse
Affiliation(s)
- Isabella M. Borgula
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sergey Shuvaev
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02124, United States
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Eric Abston
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
- Department of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts 02124, United States
| | - Nicholas J. Rotile
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Iris Y. Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Peter Caravan
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02124, United States
- Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
26
|
Zhi Y, Gerhard-Hartmann E, Hartrampf PE, Weich A, Higuchi T, Bley TA, Hackenberg S, Hagen R, Rosenwald A, Scherzad A, Remde H, Fassnacht M, Werner RA, Serfling SE. Somatostatin Receptor-Directed PET/CT Can Differentiate Between Different Subtypes of Head and Neck Paragangliomas. Clin Nucl Med 2023; 48:923-927. [PMID: 37756444 PMCID: PMC10581414 DOI: 10.1097/rlu.0000000000004870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Given their neuroendocrine origin, head and neck paragangliomas (HNPGLs) can be imaged with somatostatin receptor (SSTR)-directed PET/CT. We aimed to determine whether the in vivo PET signal can differentiate between varying HNPGL subtypes. PATIENTS AND METHODS Fourteen patients with HNPGL received pretherapeutic SSTR-PET/CTs using 68 Ga-DOTATOC. Six (42.9%) patients had a jugular paraganglioma (PGL-J), 5 (35.7%) were diagnosed with carotid paraganglioma (PGL-Cs), and the remaining 3 patients (21.4%) had PGL-C with pathogenic SDHx germline variants (PGL-C-SDH). A visual and quantitative assessment of the primary tumor on SSTR-PET was performed, including SUV max and target-to-background ratio (TBR). Quantitative values were then compared between subgroups of patients affected with different HNPGL entities. RESULTS On visual assessment, all primary HNPGLs could be identified on SSTR-PET/CT. Quantification of HNPGL revealed substantially elevated SUV max in PGL-J (101.7 ± 58.5) when compared with PGL-C-SDH (13.4 ± 5.6, P < 0.05), but not when compared with PGL-C (66.7 ± 27.3, P = 0.4; PGL-C vs PGL-C-SDH, P = 0.2). TBR of PGL-J (202.9 ± 82.2), however, further differentiated between PGL-C (95.7 ± 45.4, P < 0.05) and PGL-C-SDH (20.4 ± 12.2, P < 0.01; PGL-C vs PGL-C-SDH, P = 0.3). Moreover, whole-body readout revealed metastases in 2/3 (66.7%) of PGL-C-SDH patients, with a single SSTR-expressing skeletal lesion in one subject and bipulmonary lesions in the other patient. CONCLUSIONS In patients with HNPGL, SSTR-PET/CT identified the primary and metastatic disease and provides substantially elevated TBR, indicating excellent image contrast. PET-based quantification can also differentiate between varying HNPGL subtypes.
Collapse
Affiliation(s)
- Yingjun Zhi
- From the Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg
| | - Elena Gerhard-Hartmann
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Julius-Maximilian University Würzburg
| | | | - Alexander Weich
- Division of Gastroenterology, Department of Internal Medicine II
- NET-Zentrum Würzburg, ENETS Center of Excellence, University Hospital Würzburg, Würzburg, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Thorsten A. Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg
| | - Stephan Hackenberg
- Department of Otorhinolaryngology–Head and Neck Surgery, RWTH Aachen University, Aachen
| | - Rudolf Hagen
- From the Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg
| | - Andreas Rosenwald
- Institute of Pathology and Comprehensive Cancer Center Mainfranken, Julius-Maximilian University Würzburg
| | - Agmal Scherzad
- From the Department of Otorhinolaryngology, Plastic, Aesthetic, and Reconstructive Head and Neck Surgery, University Hospital Würzburg
| | - Hanna Remde
- Division of Endocrinology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Martin Fassnacht
- Division of Endocrinology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine
- NET-Zentrum Würzburg, ENETS Center of Excellence, University Hospital Würzburg, Würzburg, Germany
- Johns Hopkins School of Medicine, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD
| | - Sebastian E. Serfling
- Department of Nuclear Medicine
- NET-Zentrum Würzburg, ENETS Center of Excellence, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Alamdari-Palangi V, Jaberi KR, Shahverdi M, Naeimzadeh Y, Tajbakhsh A, Khajeh S, Razban V, Fallahi J. Recent advances and applications of peptide-agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 2023; 149:15249-15273. [PMID: 37581648 DOI: 10.1007/s00432-023-05144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Shahverdi
- Medical Biotechnology Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
28
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
29
|
Rosenberg AJ, Cheung YY, Liu F, Sollert C, Peterson TE, Kropski JA. Fully automated radiosynthesis of [ 68Ga]Ga-FAPI-46 with cyclotron produced gallium. EJNMMI Radiopharm Chem 2023; 8:29. [PMID: 37843670 PMCID: PMC10579206 DOI: 10.1186/s41181-023-00216-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Radiopharmaceuticals capable of targeting the fibroblast activation protein have become widely utilized in the research realm as well as show great promise to be commercialized; with [68Ga]Ga-FAPI-46 being one of the most widely utilized. Until now the synthesis has relied on generator-produced gallium-68. Here we present a developed method to utilize liquid-target cyclotron-produced gallium-68 to prepare [68Ga]Ga-FAPI-46. RESULTS A fully-automated manufacturing process for [68Ga]Ga-FAPI-46 was developed starting with the 68Zn[p,n]68Ga cyclotron bombardment to provide [68Ga]GaCl3, automated purification of the [68Ga]GaCl3, chelation with the precursor, and final formulation/purification. The activity levels produced were sufficient for multiple clinical research doses, and the final product met all release criteria. Furthermore, the process consistently provides < 2% of Ga-66 and Ga-67 at the 4-h expiry, meeting the Ph. Eur. STANDARDS CONCLUSIONS The automated radiosynthesis on the GE FASTlab 2 module purifies the cyclotron output into [68Ga]GaCl3, performs the labeling, formulates the product, and sterilizes the product while transferring to the final vial. Production of > 40 mCi (> 1480 MBq) of [68Ga]Ga-FAPI-46 in excellent radiochemical yield was achieved with all batches meeting release criteria.
Collapse
Affiliation(s)
- Adam J Rosenberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| | - Yiu-Yin Cheung
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Fei Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
Echavidre W, Fagret D, Faraggi M, Picco V, Montemagno C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers (Basel) 2023; 15:4839. [PMID: 37835533 PMCID: PMC10572076 DOI: 10.3390/cancers15194839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The theranostic approach in oncology holds significant importance in personalized medicine and stands as an exciting field of molecular medicine. Significant achievements have been made in this field in recent decades, particularly in treating neuroendocrine tumors using 177-Lu-radiolabeled somatostatin analogs and, more recently, in addressing prostate cancer through prostate-specific-membrane-antigen targeted radionuclide therapy. The promising clinical results obtained in these indications paved the way for the further development of this approach. With the continuous discovery of new molecular players in tumorigenesis, the development of novel radiopharmaceuticals, and the potential combination of theranostics agents with immunotherapy, nuclear medicine is poised for significant advancements. The strategy of theranostics in oncology can be categorized into (1) repurposing nuclear medicine agents for other indications, (2) improving existing radiopharmaceuticals, and (3) developing new theranostics agents for tumor-specific antigens. In this review, we provide an overview of theranostic development and shed light on its potential integration into combined treatment strategies.
Collapse
Affiliation(s)
- William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Daniel Fagret
- Laboratory of Bioclinical Radiopharmaceutics, Universite Grenoble Alpes, CHU Grenoble Alpes, Inserm, 38000 Grenoble, France;
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 98000 Monaco, Monaco;
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (W.E.); (V.P.)
| |
Collapse
|
31
|
Sullivan TE, Hernandez Vargas S, Ghosh SC, AghaAmiri S, Ikoma N, Azhdarinia A. A translational blueprint for developing intraoperative imaging agents via radiopharmaceutical-guided drug design. Curr Opin Chem Biol 2023; 76:102376. [PMID: 37572489 DOI: 10.1016/j.cbpa.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/22/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Cancer imaging is a rapidly evolving field due to the discovery of novel molecular targets and the availability of corresponding techniques to detect them with high precision, accuracy, and sensitivity. Nuclear medicine is the most widely used molecular imaging modality and has a growing toolkit of clinically used radiopharmaceuticals that enable whole-body tumor visualization, staging, and treatment monitoring for a variety of tumors in a non-invasive manner. The need for similar imaging capabilities in the operating room has led to the emergence of fluorescence-guided surgery (FGS) as a powerful technique that gives surgeons unprecedented ability to distinguish tumors from healthy tissues. While a variety of strategies have been used to develop contrast agents for FGS, the use of radiopharmaceuticals as models brings exceptional translational potential and has increasingly been explored. Here, we review strategies used to convert clinically used radiopharmaceuticals into fluorescent and multimodal counterparts. Unique preclinical and clinical capabilities stemming from radiopharmaceutical-based agent design are also discussed to illustrate the advantages of this approach.
Collapse
Affiliation(s)
- Teresa E Sullivan
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
32
|
Ulaner GA, Fowler AM, Clark AS, Linden H. Estrogen Receptor-Targeted and Progesterone Receptor-Targeted PET for Patients with Breast Cancer. PET Clin 2023; 18:531-542. [PMID: 37270377 DOI: 10.1016/j.cpet.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Estrogen receptor (ER)-targeted imaging with 16α-18F-fluoro-17β-fluoroestradiol (18F-FES) has multiple proven clinical applications for patients with ER-positive breast cancer, including helping to select optimal patients for endocrine therapies, assessing ER status in lesions that are difficult to biopsy, and evaluating lesions with inconclusive results on other imaging tests. This has led to US Food and Drug Administration approval of 18F-FES PET for patients with ER-positive breast cancer. Newer progesterone receptor-targeted imaging agents are in clinical trials.
Collapse
Affiliation(s)
- Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA; Radiology and Translational Genomics, University of Southern California, Los Angeles, CA, USA.
| | - Amy M Fowler
- Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Amy S Clark
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah Linden
- Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Liu X, Chen L, Li Y, He C, Zhang X, Zhou H, Bao G, Zhu X, Xiang G, Ma X. Synthesis of novel DOTA-/AAZTA-based bifunctional chelators: Solution thermodynamics, peptidomimetic conjugation, and radiopharmaceutical evaluation. Biomed Pharmacother 2023; 165:115114. [PMID: 37467649 DOI: 10.1016/j.biopha.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Bifunctional chelators (BFCs), which link metallic radionuclide and a targeting vector, are some of the most crucial components of metallic radionuclide-based radiopharmaceuticals for positron-emission computed tomography (PET) imaging. In this study, we designed and synthesized two versatile BFCs, p-NCS-Ph-DE4TA and p-NCS-Ph-AAZ4TA, and we conjugated them with a prostate-specific membrane antigen (PSMA) inhibitor. These two chelators showed high affinity for Ga (III) according to a study of the thermodynamics and kinetics and DFT calculations. The labeled PSMA targeted probes, [68Ga]Ga-p-NCS-Ph-DE4TA-PSMA and [68Ga]Ga-p-NCS-Ph-AAZ4TA-PSMA, maintained excellent stability in vitro, and they exhibited high specific activity when binding to PSMA. A PET/CT imaging study in mice bearing SMMC-7721 hepatocellular carcinoma xenografts demonstrated clear visualization of tumors with a high tumor uptake and low background level, indicating the excellent performance in vivo and specific activity when targeting hepatocellular carcinomas. In summary, p-NCS-Ph-DE4TA and p-NCS-Ph-AAZ4TA are leading developmental candidates for PET imaging for tumor diagnosis.
Collapse
Affiliation(s)
- Xiaoguang Liu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, People's Republic of China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lixing Chen
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuying Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huimin Zhou
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guangfa Bao
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Pharmacy, Tongren Polytechnic College, Tongren 554300, People's Republic of China.
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Pharmacy, Tongren Polytechnic College, Tongren 554300, People's Republic of China.
| |
Collapse
|
34
|
Lepareur N, Ramée B, Mougin-Degraef M, Bourgeois M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1733. [PMID: 37376181 DOI: 10.3390/pharmaceutics15061733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Targeted radionuclide therapy has become increasingly prominent as a nuclear medicine subspecialty. For many decades, treatment with radionuclides has been mainly restricted to the use of iodine-131 in thyroid disorders. Currently, radiopharmaceuticals, consisting of a radionuclide coupled to a vector that binds to a desired biological target with high specificity, are being developed. The objective is to be as selective as possible at the tumor level, while limiting the dose received at the healthy tissue level. In recent years, a better understanding of molecular mechanisms of cancer, as well as the appearance of innovative targeting agents (antibodies, peptides, and small molecules) and the availability of new radioisotopes, have enabled considerable advances in the field of vectorized internal radiotherapy with a better therapeutic efficacy, radiation safety and personalized treatments. For instance, targeting the tumor microenvironment, instead of the cancer cells, now appears particularly attractive. Several radiopharmaceuticals for therapeutic targeting have shown clinical value in several types of tumors and have been or will soon be approved and authorized for clinical use. Following their clinical and commercial success, research in that domain is particularly growing, with the clinical pipeline appearing as a promising target. This review aims to provide an overview of current research on targeting radionuclide therapy.
Collapse
Affiliation(s)
- Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, 35000 Rennes, France
- Inserm, INRAE, Institut NUMECAN (Nutrition, Métabolismes et Cancer)-UMR 1317, Univ Rennes, 35000 Rennes, France
| | - Barthélémy Ramée
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
| | - Marie Mougin-Degraef
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
| | - Mickaël Bourgeois
- Nuclear Medicine Department, Nantes University Hospital, 44000 Nantes, France
- Inserm, CNRS, CRCI2NA (Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers)-UMR 1307, Université de Nantes, ERL 6001, 44000 Nantes, France
- Groupement d'Intérêt Public ARRONAX, 1 Rue Aronnax, 44817 Saint Herblain, France
| |
Collapse
|
35
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
36
|
Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, Beloglazkina EK. Recent Advances in 64Cu/ 67Cu-Based Radiopharmaceuticals. Int J Mol Sci 2023; 24:9154. [PMID: 37298101 PMCID: PMC10288943 DOI: 10.3390/ijms24119154] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Copper-64 (T1/2 = 12.7 h) is a positron and beta-emitting isotope, with decay characteristics suitable for both positron emission tomography (PET) imaging and radiotherapy of cancer. Copper-67 (T1/2 = 61.8 h) is a beta and gamma emitter, appropriate for radiotherapy β-energy and with a half-life suitable for single-photon emission computed tomography (SPECT) imaging. The chemical identities of 64Cu and 67Cu isotopes allow for convenient use of the same chelating molecules for sequential PET imaging and radiotherapy. A recent breakthrough in 67Cu production opened previously unavailable opportunities for a reliable source of 67Cu with high specific activity and purity. These new opportunities have reignited interest in the use of copper-containing radiopharmaceuticals for the therapy, diagnosis, and theranostics of various diseases. Herein, we summarize recent (2018-2023) advances in the use of copper-based radiopharmaceuticals for PET, SPECT imaging, radiotherapy, and radioimmunotherapy.
Collapse
Affiliation(s)
- Olga O. Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Daniil Abramchuck
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Peter Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, 119049 Moscow, Russia
| | - Alexander Kuznetsov
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1/2, 119991 Moscow, Russia
| | - Andrey Shemukhin
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Bld. 2, 119991 Moscow, Russia
| | - Elena K. Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, 119991 Moscow, Russia; (D.A.)
| |
Collapse
|
37
|
Mixdorf JC, Hoffman SLV, Aluicio-Sarduy E, Barnhart TE, Engle JW, Ellison PA. Copper-Mediated Radiobromination of (Hetero)Aryl Boronic Pinacol Esters. J Org Chem 2023; 88:2089-2094. [PMID: 36745853 PMCID: PMC9957949 DOI: 10.1021/acs.joc.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.
Collapse
Affiliation(s)
- Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Sabrina L. V. Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| |
Collapse
|
38
|
Kemble J, Kwon ED, Karnes RJ. Addressing the need for more therapeutic options in neuroendocrine prostate cancer. Expert Rev Anticancer Ther 2023; 23:177-185. [PMID: 36698089 DOI: 10.1080/14737140.2023.2173174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Neuroendocrine prostate cancer (NEPC) is an aggressive form of prostate cancer frequently seen after prolonged treatment of castration resistant prostate cancer (CRPC). NEPC has become increasingly prevalent over the last 20 years, with a poor prognosis caused by a late diagnosis and limited treatment options. Recent advances in PET/CT imaging and targeted radioimmunotherapy are promising, but more research into additional treatment options is needed. AREAS COVERED The aim of this review is to analyze the current imaging and treatment options for NEPC, and to highlight future potential treatment strategies. A Pubmed search for 'Neuroendocrine Prostate Cancer' was performed and relevant articles were reviewed. EXPERT OPINION The recent FDA approval and success of 177 PSMA Lutetium in CRPC is promising, as 177 Lutetium could potentially be paired with a NEPC specific biomarker for targeted therapy. Recent laboratory studies pairing DLL3, which is overexpressed in NEPC, with 177 Lutetium and new PET agents have showed good efficacy in identifying and treating NEPC. The success of future development of NEPC therapies may depend on the availability of 177 Lutetium, as current supplies are limited. Further research into additional imaging and treatment options for NEPC is warranted.
Collapse
Affiliation(s)
- Jayson Kemble
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | - Eugene D Kwon
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
39
|
D'Souza JC, O'Brien SR, Yang Z, El Jack AK, Pantel AR. Widespread micronodular hepatic metastases of neuroendocrine tumor detected by [68Ga]DOTATATE PET/CT. Radiol Case Rep 2023; 18:481-485. [DOI: 10.1016/j.radcr.2022.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/25/2022] Open
|
40
|
Martinez J, Subramanian K, Huicochea Castellanos S, Thomas C, Choudhury AR, Muench B, Tagawa ST, Pillarsetty NVK, Osborne JR. Cyclotron vs generator-produced 68Ga PSMA: a single-institution, prospective clinical trial. Transl Oncol 2023; 28:101593. [PMID: 36571987 PMCID: PMC9803810 DOI: 10.1016/j.tranon.2022.101593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/25/2022] Open
Abstract
The clinical utility of gallium 68 (68Ga)-PSMA PET for the diagnosis and management of prostate cancer is driven in part by radioisotope availability and production costs. This study evaluates the equivalence between the two manufacturing processes for 68Ga-PSMA: 68Ga-PSMA-cyclotron (from a solid target) and 68Ga-PSMA-generator. A prospective, single-arm, single-institution non-randomized study was conducted where 16 patients with prostate adenocarcinoma underwent PET/CTs consecutively within 12 to 48 hours with each type of manufactured 68Ga-PSMA between December 2020 and June 2021. The intraclass correlation coefficients suggested acceptable reliability in all lesion parameters (ICC > 0.70). Bland-Altman analysis demonstrated acceptable bias levels for all lesion parameters. Thereby 68Ga-cyclotron (solid target) and 68Ga-generator production methods tagged to the same PSMA ligand resulted in scans which were deemed to be equivalent in detecting PSMA+ lesions in our study. As cyclotron-produced, solid- target 68Ga can be made in large (Ci) quantities, it is a promising tool for future application in 68Ga-PSMA PET scans with the potential to decrease radiotracer production costs and increase isotope availability.
Collapse
Affiliation(s)
- Juana Martinez
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY.
| | - Kritika Subramanian
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | | | - Charlene Thomas
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Arindam Roy Choudhury
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | - Brett Muench
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| | - Scott T Tagawa
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Joseph R Osborne
- Division of Molecular Imaging and Therapeutics, Department of Radiology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
41
|
Akter A, Lyons O, Mehra V, Isenman H, Abbate V. Radiometal chelators for infection diagnostics. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 2:1058388. [PMID: 37388440 PMCID: PMC7614707 DOI: 10.3389/fnume.2022.1058388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Infection of native tissues or implanted devices is common, but clinical diagnosis is frequently difficult and currently available noninvasive tests perform poorly. Immunocompromised individuals (for example transplant recipients, or those with cancer) are at increased risk. No imaging test in clinical use can specifically identify infection, or accurately differentiate bacterial from fungal infections. Commonly used [18F]fluorodeoxyglucose (18FDG) positron emission computed tomography (PET/CT) is sensitive for infection, but limited by poor specificity because increased glucose uptake may also indicate inflammation or malignancy. Furthermore, this tracer provides no indication of the type of infective agent (bacterial, fungal, or parasitic). Imaging tools that directly and specifically target microbial pathogens are highly desirable to improve noninvasive infection diagnosis and localization. A growing field of research is exploring the utility of radiometals and their chelators (siderophores), which are small molecules that bind radiometals and form a stable complex allowing sequestration by microbes. This radiometal-chelator complex can be directed to a specific microbial target in vivo, facilitating anatomical localization by PET or single photon emission computed tomography. Additionally, bifunctional chelators can further conjugate therapeutic molecules (e.g., peptides, antibiotics, antibodies) while still bound to desired radiometals, combining specific imaging with highly targeted antimicrobial therapy. These novel therapeutics may prove a useful complement to the armamentarium in the global fight against antimicrobial resistance. This review will highlight current state of infection imaging diagnostics and their limitations, strategies to develop infection-specific diagnostics, recent advances in radiometal-based chelators for microbial infection imaging, challenges, and future directions to improve targeted diagnostics and/or therapeutics.
Collapse
Affiliation(s)
- Asma Akter
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| | - Oliver Lyons
- Vascular Endovascular and Transplant Surgery, Christchurch Public Hospital, Christchurch, New Zealand
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Varun Mehra
- Department of Hematology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Heather Isenman
- Department of Infectious Diseases, General Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
42
|
Cyclotron production of 68Ga and "in house" preparation of positron emission tomography (PET) radiopharmaceuticals. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn(p,n) 68Ga Reaction and Their Regulatory Aspects. Pharmaceutics 2022; 15:pharmaceutics15010070. [PMID: 36678699 PMCID: PMC9867404 DOI: 10.3390/pharmaceutics15010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns.
Collapse
|
44
|
Application of Metabolic Reprogramming to Cancer Imaging and Diagnosis. Int J Mol Sci 2022; 23:ijms232415831. [PMID: 36555470 PMCID: PMC9782057 DOI: 10.3390/ijms232415831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular metabolism governs the signaling that supports physiological mechanisms and homeostasis in an individual, including neuronal transmission, wound healing, and circadian clock manipulation. Various factors have been linked to abnormal metabolic reprogramming, including gene mutations, epigenetic modifications, altered protein epitopes, and their involvement in the development of disease, including cancer. The presence of multiple distinct hallmarks and the resulting cellular reprogramming process have gradually revealed that these metabolism-related molecules may be able to be used to track or prevent the progression of cancer. Consequently, translational medicines have been developed using metabolic substrates, precursors, and other products depending on their biochemical mechanism of action. It is important to note that these metabolic analogs can also be used for imaging and therapeutic purposes in addition to competing for metabolic functions. In particular, due to their isotopic labeling, these compounds may also be used to localize and visualize tumor cells after uptake. In this review, the current development status, applicability, and limitations of compounds targeting metabolic reprogramming are described, as well as the imaging platforms that are most suitable for each compound and the types of cancer to which they are most appropriate.
Collapse
|
45
|
Shi M, Jakobsson V, Greifenstein L, Khong PL, Chen X, Baum RP, Zhang J. Alpha-peptide receptor radionuclide therapy using actinium-225 labeled somatostatin receptor agonists and antagonists. Front Med (Lausanne) 2022; 9:1034315. [PMID: 36569154 PMCID: PMC9767967 DOI: 10.3389/fmed.2022.1034315] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) has over the last two decades emerged as a very promising approach to treat neuroendocrine tumors (NETs) with rapidly expanding clinical applications. By chelating a radiometal to a somatostatin receptor (SSTR) ligand, radiation can be delivered to cancer cells with high precision. Unlike conventional external beam radiotherapy, PRRT utilizes primarily β or α radiation derived from nuclear decay, which causes damage to cancer cells in the immediate proximity by irreversible direct or indirect ionization of the cells' DNA, which induces apoptosis. In addition, to avoid damage to surrounding normal cells, PRRT privileges the use of radionuclides that have little penetrating and more energetic (and thus more ionizing) radiations. To date, the most frequently radioisotopes are β- emitters, particularly Yttrium-90 (90Y) and Lutetium-177 (177Lu), labeled SSTR agonists. Current development of SSTR-targeting is triggering the shift from using SSTR agonists to antagonists for PRRT. Furthermore, targeted α-particle therapy (TAT), has attracted special attention for the treatment of tumors and offers an improved therapeutic option for patients resistant to conventional treatments or even beta-irradiation treatment. Due to its short range and high linear energy transfer (LET), α-particles significantly damage the targeted cancer cells while causing minimal cytotoxicity toward surrounding normal tissue. Actinium-225 (225Ac) has been developed into potent targeting drug constructs including somatostatin-receptor-based radiopharmaceuticals and is in early clinical use against multiple neuroendocrine tumor types. In this article, we give a review of preclinical and clinical applications of 225Ac-PRRT in NETs, discuss the strengths and challenges of 225Ac complexes being used in PRRT; and envision the prospect of 225Ac-PRRT as a future alternative in the treatment of NETs.
Collapse
Affiliation(s)
- Mengqi Shi
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Academy for Precision Oncology, International Centers for Precision Oncology (ICPO), Wiesbaden, Germany
| | - Lukas Greifenstein
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Pek-Lan Khong
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Agency for Science, Technology, and Research (A*STAR), Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Richard P. Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Rectal neuroendocrine neoplasms: what the radiologists should know. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:4016-4031. [PMID: 35288791 DOI: 10.1007/s00261-022-03474-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023]
Abstract
Neuroendocrine neoplasms of the rectum (R-NENs) are rare; however, their incidence has increased almost threefold in the last few decades. Imaging of R-NENs includes two primary categories: anatomic/morphologic imaging comprised of endoscopic ultrasound (EUS), computed tomography (CT), magnetic resonance imaging (MRI), and functional/molecular imaging comprising of planar scintigraphy, single-photon emission computed tomography (SPECT), and positron emission tomography (PET). The management depends on stage, dimension, atypical features, histological grade, and lymphovascular invasion (LVI). Low-risk local R-NENs can be resected endoscopically, and high-risk or locally advanced neoplasms can be treated with radical surgery and lymphadenectomy and/or chemoradiation. The review article focuses on imaging illustrations and discusses applications of different imaging modalities in diagnosing and managing R-NENs.
Collapse
|
47
|
Cieslik P, Kubeil M, Zarschler K, Ullrich M, Brandt F, Anger K, Wadepohl H, Kopka K, Bachmann M, Pietzsch J, Stephan H, Comba P. Toward Personalized Medicine: One Chelator for Imaging and Therapy with Lutetium-177 and Actinium-225. J Am Chem Soc 2022; 144:21555-21567. [DOI: 10.1021/jacs.2c08438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Patrick Cieslik
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Florian Brandt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Karl Anger
- Hochschule für Technik und Wirtschaft Dresden, Friedrich-List-Platz 1, 01069 Dresden, Germany
| | - Hubert Wadepohl
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut, INF 270, 69120 Heidelberg, Germany
- Universität Heidelberg, Interdisciplinary Center for Scientific Computing, INF 205, 69120 Heidelberg, Germany
| |
Collapse
|
48
|
Evaluation of 68Ga-Radiolabeled Peptides for HER2 PET Imaging. Diagnostics (Basel) 2022; 12:diagnostics12112710. [PMID: 36359554 PMCID: PMC9689602 DOI: 10.3390/diagnostics12112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
One in eight women will be diagnosed with breast cancer in their lifetime and approximately 25% of those cases will be HER2-positive. Current methods for diagnosing HER2-positive breast cancer involve using IHC and FISH from suspected cancer biopsies to quantify HER2 expression. HER2 PET imaging could potentially increase accuracy and improve the diagnosis of lesions that are not available for biopsies. Using two previously discovered HER2-targeting peptides, we modified each peptide with the chelator DOTA and a PEG2 linker resulting in DOTA-PEG2-GSGKCCYSL (P5) and DOTA-PEG2-DTFPYLGWWNPNEYRY (P6). Each peptide was labeled with 68Ga and was evaluated for HER2 binding using in vitro cell studies and in vivo tumor xenograft models. Both [68Ga]P5 and [68Ga]P6 showed significant binding to HER2-positive BT474 cells versus HER2-negative MDA-MB-231 cells ([68Ga]P5; 0.68 ± 0.20 versus 0.47 ± 0.05 p < 0.05 and [68Ga]P6; 0.55 ± 0.21 versus 0.34 ± 0.12 p < 0.01). [68Ga]P5 showed a higher percent injected dose per gram (%ID/g) binding to HER2-positive tumors two hours post-injection compared to HER2-negative tumors (0.24 ± 0.04 versus 0.12 ± 0.06; p < 0.05), while the [68Ga]P6 peptide showed significant binding (0.98 ± 0.22 versus 0.51 ± 0.08; p < 0.05) one hour post-injection. These results lay the groundwork for the use of peptides to image HER2-positive breast cancer.
Collapse
|
49
|
Hirata S, Mishiro K, Higashi T, Fuchigami T, Munekane M, Arano Y, Kinuya S, Ogawa K. Synthesis and evaluation of a multifunctional probe with a high affinity for prostate-specific membrane antigen (PSMA) and bone. Nucl Med Biol 2022; 114-115:34-41. [PMID: 36088875 DOI: 10.1016/j.nucmedbio.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022]
Abstract
Prostate cancer frequently metastasizes to the bone. Because patients with bone metastases suffer from skeletal-related events, the diagnosis and treatment of bone metastases in the early stage are important. In this study, to improve the sensitivity of detecting bone metastases in patients with prostate cancer, we designed, synthesized, and evaluated a multifunctional radiotracer, [67Ga]Ga-D11-PSMA-617 ([67Ga]3), with an undeca-aspartic acid as a bone-seeking moiety between [67Ga]Ga-DOTA and a prostate-specific membrane antigen (PSMA) ligand based on the lysine-urea-glutamate motif. [67Ga]3 showed a high affinity for hydroxyapatite and high uptake in PSMA-positive LNCaP cells. Moreover, in biodistribution experiments using tumor-bearing mice, [67Ga]3 exhibited high accumulation in the bone and PSMA-positive tumor although the accumulation of [67Ga]3 in the PSMA-positive tumor was lower than that of [67Ga]Ga-PSMA-617. This study provides valuable information for developing radiotheranostic probes combining multiple carriers with different mechanisms.
Collapse
Affiliation(s)
- Saki Hirata
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takuma Higashi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takeshi Fuchigami
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masayuki Munekane
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yasushi Arano
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University, Kanazawa 920-8641, Japan
| | - Kazuma Ogawa
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan.
| |
Collapse
|
50
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|