1
|
Douhard R, Humbert P, Milon JY, Pegahi R. Pharmacology of chlorphenamine and pseudoephedrine use in the common cold: a narrative review. Curr Med Res Opin 2024:1-36. [PMID: 39484821 DOI: 10.1080/03007995.2024.2424422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
The common cold is the most frequent upper respiratory viral infection. Although benign, it represents a high socioeconomic burden. Many over-the-counter drugs are available to manage the symptoms of this condition, with antihistamines and vasoconstrictors being the most widely used. This review aimed to compare the potential mechanisms underlying the efficacy and safety of chlorphenamine and pseudoephedrine, the most commonly used agents in these two classes of drugs, and provide a useful perspective to impact appropriate decisions when considering these options for symptomatic common cold treatment.
Collapse
Affiliation(s)
- Romain Douhard
- Plateforme IMATHERA d'Imagerie et Radiothérapie Précliniques, Médecine Nucléaire, Centre Georges-François Leclerc, 21000 Dijon, France, and SciVigilance Consulting, 21120 Spoy, France
| | - Philippe Humbert
- International Clinic of Dermatology And Internal Medicine, 12 Av Wilson, 25290 Ornans, France
| | - Jean-Yves Milon
- UPSA, Medical department, 3 Rue Joseph Monier, 92500 Rueil-Malmaison, France
| | - Rassa Pegahi
- UPSA, Medical department, 3 Rue Joseph Monier, 92500 Rueil-Malmaison, France
| |
Collapse
|
2
|
Soliman SSM, Hamoda AM, Nayak Y, Mostafa A, Hamdy R. Novel compounds with dual inhibition activity against SARS-CoV-2 critical enzymes RdRp and human TMPRSS2. Eur J Med Chem 2024; 276:116671. [PMID: 39004019 DOI: 10.1016/j.ejmech.2024.116671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
COVID-19 caused major worldwide problems. The spread of variants and limited treatment encouraged the design of novel anti-SARS-CoV-2 compounds. A series of compounds RH1-23 were designed to dually target RNA-dependent RNA polymerase (RdRp) and transmembrane serine protease 2 (TMPRSS2). Compared to remdesivir, in vitro screening indicated the highest selectivity and potent activity of RH11-13 with half maximum inhibitory concentration (IC50) 3.9, 5.7, and 19.72 nM, respectively. RH11-12 showed superior inhibition activity against TMPRSS2 and RdRP with IC50 (1.7 and 4.2), and (6.1 and 4.42) nM, respectively. WaterMap analysis and molecular dynamics studies demonstrated the superior enzyme binding activity of RH11 and RH12. On Vero-E6 cells, RH11 and RH12 significantly inhibited the viral replication with 66 % and 63.2 %, and viral adsorption with 44 % and 65 %, alongside virucidal effect with 51.40 % and 90.5 %, respectively. Furthermore, the potent activity of RH12 was tested on TMPRSS2-expressing cells (Calu-3) compared to camostat. RH12 exhibited selectivity index (26.05) similar to camostat (28.01) and comparable to its SI on Vero-E6 cells (22.6). RH12 demonstrated also a significant inhibition of the viral adsorption on Calu-3 cells with 60 % inhibition at 30 nM. The designed compounds exhibited good physiochemical properties. These findings indicate a broad-spectrum antiviral efficacy of the designed compounds, particularly RH12, with a promise for further development.
Collapse
Affiliation(s)
- Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| | - Alshaimaa M Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt; Disease Intervention & Prevention and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, 78227, United States
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
El-Sheekh M, Kassem WMA, Alwaleed EA, Saber H. Optimization and characterization of brown seaweed alginate for antioxidant, anticancer, antimicrobial, and antiviral properties. Int J Biol Macromol 2024; 278:134715. [PMID: 39142488 DOI: 10.1016/j.ijbiomac.2024.134715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/20/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Alginate is a natural polysaccharide obtained from brown seaweeds and having advantageous health usefulness, was employed extensively in nutraceutical sectors and the pharmaceutical industry. This research was devoted for optimization of alginate extraction from different brown seaweeds. A Box-Behnken Design (BBD) was used for the optimization of alginate extraction from Padina pavonica by analyzing the influence of temperature (30, 40, and 50 °C), time (60, 120, and 180 min), and alkaline concentration (1 %, 2 %, and 3 %) on extraction yield and uronic acid content. The optimal conditions recorded to maximize the alginate yield and its uronic content were an alkali concentration of 2.5 % and a temperature of 39.95 °C for 102.5 min. The optimized parameters achieved from BBD were used to compare alginate extraction from P. pavonica, Sargassum cinereum, Turbinaria turbinata, and Dictyota dichotoma. FTIR, 1H NMR, and HPLC were used to characterize the extracted alginate. The bioactivity of alginate against free radicals, breast cancer cells (MCF-7), some pathogenic microbes, and SARS-CoV-2 viruses was tested. Under the optimized conditions, alginate was extracted from P. pavonica at a rate of 21.13 ± 2.47 % DW, S. cinereum at 24.08 ± 0.33 % DW g/L, T. turbinata at 17.47 ± 0.26 % DW, and D. dichotoma at a rate of 19.57 ± 3.60 % DW. The alginate extracted from D. dichotoma showed the highest antioxidant, anticancer, and antiviral activity.
Collapse
Affiliation(s)
- Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt.
| | - Wafaa M A Kassem
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Eman A Alwaleed
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| | - Hani Saber
- Department of Botany and Microbiology, Faculty of Science, South Valley University, 83523 Qena, Egypt
| |
Collapse
|
4
|
Ibrahim IM, Elfiky AA, Mahmoud SH, ElHefnawi M. A structural-based virtual screening and in vitro validation reveals novel effective inhibitors for SARS-CoV-2 helicase and endoribonuclease. J Biomol Struct Dyn 2024; 42:9145-9158. [PMID: 37615430 DOI: 10.1080/07391102.2023.2250479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
Researchers worldwide are looking for molecules that might disrupt the COVID-19 life cycle. Endoribonuclease, which is responsible for processing viral RNA to avoid detection by the host defense system, and helicase, which is responsible for unwinding the RNA helices for replication, are two key non-structural proteins. This study performs a hierarchical structure-based virtual screening approach for NSP15 and helicase to reach compounds with high binding probabilities. In this investigation, we incorporated a variety of filtering strategies for predicting compound interactions. First, we evaluated 756,275 chemicals from four databases using a deep learning method (NCI, Drug Bank, Maybridge, and COCONUT). Following that, two docking techniques (extra precision and induced fit) were utilized to evaluate the compounds' binding affinity, followed by molecular dynamic simulation supported by the MM-GBSA free binding energy calculation. Remarkably, two compounds (90616 and CNP0111740) exhibited high binding affinity values of -66.03 and -12.34 kcal/mol for helicase and NSP15, respectively. The VERO-E6 cell line was employed to test their in vitro therapeutic impact. The CC50 for CNP0111740 and 90616 were determined to be 102.767 μg/ml and 379.526 μg/ml, while the IC50 values were 140.176 μg/ml and 5.147 μg/ml, respectively. As a result, the selectivity index for CNP0111740 and 90616 is 0.73 and 73.73, respectively. Finally, these compounds were found to be novel, effective inhibitors for the virus; however, further in vivo validation is needed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Sara H Mahmoud
- Centre of Scientific Excellence for Influenza Viruses (CSEIV), National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemoinformatics Group (BICG), Informatics and Systems Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Park J, Han H, Ahn JK. Development of Targeted Drug Delivery System for the Treatment of SARS-CoV-2 Using Aptamer-Conjugated Gold Nanoparticles. Pharmaceutics 2024; 16:1288. [PMID: 39458617 PMCID: PMC11510760 DOI: 10.3390/pharmaceutics16101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The SARS-CoV-2 pandemic has highlighted niclosamide (NIC) as a promising treatment for COVID-19. However, its clinical application is limited due to its poor water solubility, resulting in low bioavailability. Methods: To address this issue, we developed a AuNP-HA-NIC system, which combines gold nanoparticles with hyaluronic acid to enhance drug delivery. Our comprehensive characterization of the system revealed that hyaluronic acid with specific molecular weights, particularly those exposed to electron-beam irradiation between 2 and 20 kGy, produced the most stable nanoparticles for efficient drug loading and delivery. Results: Additionally, the AuNP-HA-NIC system exhibits a significant sensitivity to pH changes, which is a critical feature for targeted drug release. Under acidic conditions mimicking the stomach and small intestine, minimal drug release was observed, indicating the effective prevention of premature drug release in the gastrointestinal tract. Furthermore, the integration of a targeting aptamer established specific binding abilities towards the SARS-CoV-2 spike protein, distinguishing it from other coronaviruses. Conclusions: As research progresses, and with further in vivo testing and optimization, the AuNP-HA-NIC-aptamer system holds great promise as a game-changer in the field of antiviral therapeutics, particularly in the battle against COVID-19.
Collapse
Affiliation(s)
- Junghun Park
- Department of Biologics, Gachon University, Incheon 21936, Republic of Korea;
| | - Hyogu Han
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
- Department of Chemistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Jun Ki Ahn
- User Convenience Technology R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea;
| |
Collapse
|
6
|
Mahmoud NM, Abdel Moneim AMY, Darweesh O, El Zahaby EI, Elshaarawy RFM, Hassan YA, Seadawy MG. Fabrication and characteristics of new quaternized chitosan nanocapsules loaded with thymol or thyme essential oil as effective SARS-CoV-2 inhibitors. RSC Adv 2024; 14:29330-29343. [PMID: 39285882 PMCID: PMC11403389 DOI: 10.1039/d4ra03298e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
This research explores the potential of encapsulating thyme essential oil (TEO) and thymol (TH) into quaternized chitosan nanocapsules to combat SARS-CoV-2. Initially, the bioactive materials, TH and TEO, were extracted from Thymus vulgaris and then structurally and phytochemically characterized by spectral and GC-MS analyses. Meanwhile, O-quaternized ultrasonic-mediated deacetylated chitosan (QUCS) was successfully synthesized and characterized. Lastly, nanobiocomposites (NBCs; NBC1 and NBC2) were fabricated using QUCS as a scaffold to encapsulate either TEO or TH, with the mediation of Tween 80. By encapsulating these bioactive materials, we aim to enhance their efficacy and targeted delivery, bioavailability, stability, and anti-COVID properties. The new NBCs were structurally, morphologically, and physically characterized. Incorporating TEO or TH into QUCS significantly increased ZP values to ±53.1 mV for NBC1 and ±48.2 mV for NBC2, indicating superior colloidal stability. Interestingly, Tween 80-QUCS provided outstanding packing and release performance, with entrapment efficiency (EE) and loading capacity (LC) values of 98.2% and 3.7% for NBC1 and 83.7% and 1.9% for NBC2. The findings of in vitro antiviral studies not only highlight the potential of these nanobiocomposites as potential candidates for anti-COVID therapies but also underscore their selectivity in targeting SARS-CoV-2.
Collapse
Affiliation(s)
- Nashwa M Mahmoud
- Department of Chemistry, Faculty of Science, Suez University 43533 Suez Egypt
| | | | - Omeed Darweesh
- College of Pharmacy, Al-Kitab University Kirkuk 36015 Iraq
| | - Enas I El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology Gamasa Egypt
| | - Reda F M Elshaarawy
- Department of Chemistry, Faculty of Science, Suez University 43533 Suez Egypt
| | - Yasser A Hassan
- College of Pharmacy, Al-Kitab University Kirkuk 36015 Iraq
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology Gamasa Egypt
| | | |
Collapse
|
7
|
Morsy ARI, Mahmoud SH, Abou Shama NM, Arafa W, Yousef GA, Khalil AA, Ramadan SK. Antiviral activity of pyrazole derivatives bearing a hydroxyquinoline scaffold against SARS-CoV-2, HCoV-229E, MERS-CoV, and IBV propagation. RSC Adv 2024; 14:27935-27947. [PMID: 39224644 PMCID: PMC11367708 DOI: 10.1039/d4ra04728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
The ongoing global threat posed by coronaviruses necessitates the urgent development of effective antiviral agents. In this study, we investigated the potential of hydroxyquinoline-pyrazole candidates as antiviral agents against a range of coronaviruses, including SARS-CoV-2, MERS-CoV, and HCoV-229E. Molecular docking studies were conducted to assess the binding affinity of the synthesized compounds to key viral proteins. The compounds were prepared via condensation reactions of a pyrazolylhydrazide derivative with 2-chloro-3-formylquinoline, yielding hydrazone and pyrrolone derivatives. The cytotoxicity of compounds was evaluated using Vero E6 cells, and their antiviral activity was assessed via plaque reduction assays and viral inhibition assays using hydroxychloroquine as a positive control antiviral drug. The results revealed promising antiviral activity of the synthesized compounds against all tested coronaviruses, with selectivity indices indicating their potential as selective antiviral agents. Notably, the compounds exhibited potent inhibition of SARS-CoV-2 at lower concentrations, highlighting their promise as therapeutic candidates against this highly pathogenic virus. Likewise, the modeling pharmacokinetics approach showed its appropriate drug-likeness and bioavailability assets. These findings underscore the importance of hydroxyquinoline-pyrazole derivatives as potential antiviral agents against diverse coronaviruses, providing valuable insights for further therapeutic development.
Collapse
Affiliation(s)
- Alaa R I Morsy
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center Cairo Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Egypt
| | - Noura M Abou Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Egypt
| | - Walaa Arafa
- Microbiology Department, Faculty of Agriculture, Cairo University Egypt
| | - Gehad A Yousef
- Central Laboratory for Evaluation of Veterinary Biologics (CLEVB), Agricultural Research Center Cairo Egypt
| | - Ahmed A Khalil
- Veterinary Sera and Vaccines Research Institute (VSVRI), Agricultural Research Center (ARC) Cairo Egypt
| | - Sayed K Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
8
|
Li P, Liu M, He WM. Integrated Transcriptomic Analysis Reveals Reciprocal Interactions between SARS-CoV-2 Infection and Multi-Organ Dysfunction, Especially the Correlation of Renal Failure and COVID-19. Life (Basel) 2024; 14:960. [PMID: 39202702 PMCID: PMC11355357 DOI: 10.3390/life14080960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The COVID-19 pandemic, which is caused by the SARS-CoV-2 virus, has resulted in extensive health challenges globally. While SARS-CoV-2 primarily targets the respiratory system, clinical studies have revealed that it could also affect multiple organs, including the heart, kidneys, liver, and brain, leading to severe complications. To unravel the intricate molecular interactions between the virus and host tissues, we performed an integrated transcriptomic analysis to investigate the effects of SARS-CoV-2 on various organs, with a particular focus on the relationship between renal failure and COVID-19. A comparative analysis showed that SARS-CoV-2 triggers a systemic immune response in the brain, heart, and kidney tissues, characterized by significant upregulation of cytokine and chemokine secretion, along with enhanced migration of lymphocytes and leukocytes. A weighted gene co-expression network analysis demonstrated that SARS-CoV-2 could also induce tissue-specific transcriptional profiling. More importantly, single-cell sequencing revealed that COVID-19 patients with renal failure exhibited lower metabolic activity in lung epithelial and B cells, with reduced ligand-receptor interactions, especially CD226 and ICAM, suggesting a compromised immune response. A trajectory analysis revealed that COVID-19 patients with renal failure exhibited less mature alveolar type 1 cells. Furthermore, these patients showed potential fibrosis in the hearts, liver, and lung increased extracellular matrix remodeling activities. However, there was no significant metabolic dysregulation in the liver of COVID-19 patients with renal failure. Candidate drugs prediction by Drug Signatures database and LINCS L1000 Antibody Perturbations Database underscored the importance of considering multi-organ effects in COVID-19 management and highlight potential therapeutic strategies, including targeting viral entry and replication, controlling tissue fibrosis, and alleviating inflammation.
Collapse
Affiliation(s)
- Pai Li
- Capricorn Partner, 3000 Leuven, Belgium
| | - Meng Liu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Wei-Ming He
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
9
|
Ali SK, El-Masry SS, El-Adl K, Abdel-Mawgoud M, Okla MK, Abdel-Raheam HEF, Hesham AEL, Aboel-Ainin MA, Mohamed HS. Assessment of antimicrobial activity and GC-MS using culture filtrate of local marine Bacillus strains. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:399-416. [PMID: 38785435 DOI: 10.1080/03601234.2024.2357465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Secondary metabolites produced by Bacillus species from marine sources encompass a variety of compounds such as lipopeptides, isocoumarins, polyketides, macrolactones, polypeptides and fatty acids. These bioactive substances exhibit various biological activities, including antibiotic, antifungal, antiviral, and antitumor properties. This study aimed to isolate and identify a particular species of Bacillus from marine water and organisms that can produce bioactive secondary metabolites. Among the 73 Bacillus isolates collected, only 5 exhibited antagonistic activity against various viral and bacterial pathogens. The active isolates were subjected to 16S rRNA sequencing to determine their taxonomical affiliation. Among them, Bacillus tequilensis CCASU-2024-66 strain no. 42, with the accession number ON 054302 in GenBank, exhibited the highest inhibitory potential. It displayed an inhibition zone of 21 mm against Bacillus cereus while showing a minimum zone of inhibition of 9 mm against Escherichia coli and gave different inhibition against pathogenic fungi, the highest inhibition zone 15 mm against Candida albicans but the lowest inhibition zone 10 mm was against Botrytis cinerea, Fusarium oxysporum. Furthermore, it demonstrated the highest percentage of virucidal effect against the Newcastle virus and influenza virus, with rates of 98.6% and 98.1%, respectively. Furthermore, GC-MS analysis was employed to examine the bioactive substance components, specifically focusing on volatile and polysaccharide compounds. Based on these results, Bacillus tequilensis strain 42 may have the potential to be employed as an antiviral agent in poultry cultures to combat Newcastle and influenza, two extremely destructive viruses, thus reducing economic losses in the poultry production sector. Bacteria can be harnessed for the purpose of preserving food and controlling pathogenic fungi in both human and plant environments. Molecular docking for the three highly active derivatives 2,3-Butanediol, 2TMS, D-Xylopyranose, 4TMS, and Glucofuranoside, methyl 2,3,5,6-tetrakis-O-(trimethylsilyl) was carried out against the active sites of Bacillus cereus, Listeria monocytogenes, Candida albicans, Newcastle virus and influenza virus. The data obtained from molecular docking is highly correlated with that obtained from biology. Moreover, these highly active compounds exhibited excellent proposed ADMET profile.
Collapse
Affiliation(s)
- Shimaa K Ali
- Microbiology Department, Faculty of Agriculture, Beni-Suef University, Egypt
| | - Samar S El-Masry
- Microbiology Department, Faculty of Agriculture, Ain-Shamas University, Egypt
| | - Khaled El-Adl
- Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | | | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Hussein S Mohamed
- Chemistry of medicinal and aromatic plants department, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Egypt
| |
Collapse
|
10
|
Needham D. Niclosamide: A career builder. J Control Release 2024; 369:786-856. [PMID: 37544514 DOI: 10.1016/j.jconrel.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 08/08/2023]
Abstract
My contribution to honoring Professor Kinam Park celebrates and resonates with his scholarly career in drug delivery, his commitment to encouraging the next generation(s), and his efforts to keep us focused on clinically effective formulations. To do this I take as my example, niclosamide, a small molecule protonophore that, uniquely, can "target" all cell membranes, both plasma and organelle. As such, it acts upstream of many cell pathways and so has the potential to affect many of the essential events that a cell, and particularly a diseased cell or other entities like a virus, use to stay alive and prosper. Literature shows that it has so far been discovered to positively influence (at least): cancer, bacterial and viral infection, metabolic diseases such as Type II diabetes, NASH and NAFLD, artery constriction, endometriosis, neuropathic pain, rheumatoid arthritis, sclerodermatous graft-versus-host disease, systemic sclerosis, Parkinson's, and COPD. With such a fundamental action and broad-spectrum activity, I believe that studying niclosamide in all its manifestations, discovering if and to what extent it can contribute positively to disease control (and also where it can't), formulating it as effective therapeutics, and testing them in preclinical and clinical trials is a career builder for our next generation(s). The article is divided into two parts: Part I introduces niclosamide and other proton shunts mainly in cancer and viral infections and reviews an exponentially growing literature with some concepts and physicochemical properties that lead to its proton shunt mechanism. Part II focuses on repurposing by reformulation of niclosamide. I give two examples of "carrier-free formulations", - one for cancer (as a prodrug therapeutic of niclosamide stearate for i.v. and other administration routes, exemplified by our recent work on Osteosarcoma in mice and canine patients), and the other as a niclosamide solution formulation (that could provide the basis for a preventative nasal spray and early treatment option for COVID19 and other respiratory virus infections). My goal is to excite and enthuse, encourage, and motivate all involved in the drug development and testing process in academia, institutes, and industry, to learn more about this interesting molecule and others like it. To enable such endeavors, I give many proposed ideas throughout the document, that have been stimulated and inspired by gaps in the literature, urgent needs in disease, and new studies arising from our own work. The hope is that, by reading through this document and studying the suggested topics and references, the drug delivery and development community will continue our lineage and benefit from our legacy to achieve niclosamide's potential as an effective contributor to the treatment and control of many diseases and conditions.
Collapse
Affiliation(s)
- David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA; Translational Therapeutics, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
11
|
Okasha NI, Abdel-Rahman MA, Nafie MS, Abo Shama NM, Mahmoud SH, El-Ebeedy DA, Abdel Azeiz AZ. Identification of potential antiviral compounds from Egyptian sea stars against MERS-CoV with the in vitro and in silico experiments. Nat Prod Res 2024:1-7. [PMID: 38563220 DOI: 10.1080/14786419.2024.2335361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the world faced many epidemics which were caused by viral respiratory pathogens. Marine creatures including Asteroidea class have been one of the recent research topics due to their diverse and complex secondary metabolites. Some of these constituents exhibit antiviral activities. The present study aimed to extract and identify the potential antiviral compounds from Pentaceraster cumingi, Astropecten polyacanthus and Pentaceraster mammillatus. The results showed that promising activity of the methanolic extract of P. cumingi with 50% inhibitory concentration (IC50) of 3.21 mg/ml against MERS-CoV with a selective index (SI) of 13.975. The biochemical components of the extracts were identified by GC/MS analysis. The Molecular docking study highlighted the virtual mechanism of binding the identified compounds towards three PDB codes of MERS-CoV non-structural protein 10/16. Interestingly, 2-mono Linolein showed promising binding energy of -14.75 Kcal/mol with the second PDB code (5YNI) and -15.22 Kcal/mol with the third PDB code (5YNQ).
Collapse
Affiliation(s)
- Nadia I Okasha
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| | | | - Mohamed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Dalia A El-Ebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| | - Ahmed Z Abdel Azeiz
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th of October, Egypt
| |
Collapse
|
12
|
Okasha NI, Abdel Rahman M, Nafie MS, Abo Shama NM, Mostafa A, El-Ebeedy DA, Abdel Azeiz AZ. Identification of potential antiviral compounds from Egyptian sea stars against seasonal influenza A/H1N1 virus. J Genet Eng Biotechnol 2024; 22:100334. [PMID: 38494269 PMCID: PMC10980850 DOI: 10.1016/j.jgeb.2023.100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND One of the most dangerous problems that the world faced recently is viral respiratory pathogens. Marine creatures, including Echinodermata, specially Asteroidea class (starfish) have been extensively studied due to their miscellaneous bioactivities, excellent pharmacological properties, and complex secondary metabolites, including steroids, steroidal glycosides, anthraquinones, alkaloids, phospholipids, peptides, and fatty acids. These chemical constituents show antiviral activities against a wide range of viruses, including respiratory viruses. RESULTS The present study aimed at the identification of potential antiviral compounds from some starfish species. The bioactive compounds from Pentaceraster cumingi, Astropecten polyacanthus, and Pentaceraster mammillatus were extracted using two different solvents (ethyl acetate and methanol). The antiviral activity against influenza A/H1N1 virus showed that ethyl acetate extract from Pentaceraster cumingi has the highest activity, where the selective index was 150.8. The bioactive compounds of this extract were identified by GC/MS analysis. The molecular docking study highlighted the virtual mechanism of binding of the identified compounds towards polymerase basic protein 2 and neuraminidase for H1N1 virus. Interestingly, linoleic acid showed promising binding energy of -10.12 Kcal/mol and -24.20 Kcal/mol for the selected two targets, respectively, and it formed good interactive modes with the key amino acids inside both proteins. CONCLUSION The molecular docking analysis showed that linoleic acid was the most active antiviral compound from P. cumingi. Further studies are recommended for in-vitro and in-vivo evaluation of this compound against influenza A/H1N1 virus.
Collapse
Affiliation(s)
- Nadia I Okasha
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October city 12573, Egypt.
| | - Mohamed Abdel Rahman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohammed S Nafie
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt.
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt.
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt.
| | - Dalia A El-Ebeedy
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October city 12573, Egypt.
| | - Ahmed Z Abdel Azeiz
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October city 12573, Egypt.
| |
Collapse
|
13
|
El-Sayed HS, Saad AS, Tawfik WA, Adel A, Abdelmagid MA, Momenah MA, Azab DM, Omar SE, El-Habbaa AS, Bahshwan SMA, Alghamdi AM, El-Saadony MT, El-Tarabily KA, El-Mayet FS. The role of turmeric and black pepper oil nanoemulsion in attenuating cytokine storm triggered by duck hepatitis A virus type I (DHAV-I)-induced infection in ducklings. Poult Sci 2024; 103:103404. [PMID: 38242053 PMCID: PMC10831264 DOI: 10.1016/j.psj.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.
Collapse
Affiliation(s)
- Hemat S El-Sayed
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Aalaa S Saad
- Biotechnology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam A Tawfik
- Holding Company for Biological Products and Vaccines, Dokki, Giza 12311, Egypt; NaQaa Nanotechnology Network (NNN), Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalia M Azab
- Biochemistry Department (Pharmacology), Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Ayman S El-Habbaa
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Fouad S El-Mayet
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
14
|
Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life (Basel) 2024; 14:233. [PMID: 38398742 PMCID: PMC10890405 DOI: 10.3390/life14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Drug development is expensive, time-consuming, and has a high failure rate. In recent years, artificial intelligence (AI) has emerged as a transformative tool in drug discovery, offering innovative solutions to complex challenges in the pharmaceutical industry. This manuscript covers the multifaceted role of AI in drug discovery, encompassing AI-assisted drug delivery design, the discovery of new drugs, and the development of novel AI techniques. We explore various AI methodologies, including machine learning and deep learning, and their applications in target identification, virtual screening, and drug design. This paper also discusses the historical development of AI in medicine, emphasizing its profound impact on healthcare. Furthermore, it addresses AI's role in the repositioning of existing drugs and the identification of drug combinations, underscoring its potential in revolutionizing drug delivery systems. The manuscript provides a comprehensive overview of the AI programs and platforms currently used in drug discovery, illustrating the technological advancements and future directions of this field. This study not only presents the current state of AI in drug discovery but also anticipates its future trajectory, highlighting the challenges and opportunities that lie ahead.
Collapse
Affiliation(s)
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Ilfov, Romania;
| |
Collapse
|
15
|
Allayeh AK, El-boghdady AH, Said MA, Saleh MGA, Abdel-Aal MT, Abouelenein MG. Discovery of Pyrano[2,3- c]pyrazole Derivatives as Novel Potential Human Coronavirus Inhibitors: Design, Synthesis, In Silico, In Vitro, and ADME Studies. Pharmaceuticals (Basel) 2024; 17:198. [PMID: 38399412 PMCID: PMC10892497 DOI: 10.3390/ph17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The SARS-CoV-2 pandemic at the end of 2019 had major worldwide health and economic consequences. Until effective vaccination approaches were created, the healthcare sectors endured a shortage of operative treatments that might prevent the infection's spread. As a result, academia and the pharmaceutical industry prioritized the development of SARS-CoV2 antiviral medication. Pyranopyrazoles have been shown to play a prominent function in pharmaceutical chemistry and drug sighting because of their significant bioactive properties. We provide herein a novel sequence of pyranopyrazoles and their annulated systems whose antiviral efficacy and cytotoxicity were explored versus human coronavirus 229E (HCoV-229E) Vero-E6 cell lines as a model for the Coronaviridae family. Fifteen synthetic congeners pointed out miscellaneous antiviral efficacies against HCoV-229E with variable inhibition degrees. Compound 18 showed a high selectivity index (SI = 12.6) that established spectacular inhibitory capacity against human coronavirus 229E. Compounds 6, 7, and 14 exposed moderate efficacies. Compounds 6, 7, 14, and 18 exhibited substantial antiviral action through the replication phase with reduction percentages extending from 53.6%, 60.7%, and 55% to 82.2%, correspondingly. Likewise, when assessed to the positive control tipranavir (88.6%), the inhibitory efficiency of compounds 6, 7, 14, and 18 versus the SARS-CoV2 Mpro provided high percentages of 80.4%, 73.1%, 81.4% and up to 84.5%, respectively. In silico studies were performed to investigate further the biological activity and the target compounds' physical and chemical features, including molecular dynamic (MD) simulations, protein-ligand docking, ADME studies, and density functional theory (DFT) calculations. These inquiries demonstrated that this series of metabolically stable pyranopyrazoles and their annulated systems are effective human coronavirus inhibitors that inhibit the viral Mpro protein and may have emerged as a novel COVID-19 curative option.
Collapse
Affiliation(s)
- Abdou K. Allayeh
- Environmental Virology Laboratory 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt;
| | - Aliaa H. El-boghdady
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
| | - Mahmoud G. A. Saleh
- Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed T. Abdel-Aal
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed G. Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| |
Collapse
|
16
|
Al Ashmawy AZG, Balata GF. Formulation and in vitro characterization of nanoemulsions containing remdesivir or licorice extract: A potential subcutaneous injection for coronavirus treatment. Colloids Surf B Biointerfaces 2024; 234:113703. [PMID: 38096607 DOI: 10.1016/j.colsurfb.2023.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 02/09/2024]
Abstract
The management of coronavirus necessitates that medicines are available, reasonably priced, and easy to administer. The work aimed at formulating and characterizing remdesivir and licorice extract nanoemulsions and comparing their efficacy against coronavirus for further subcutaneous injection. First, the solubility of remdesivir was determined in different oils, surfactants, and co-surfactants to choose the optimal nanoemulsion components. Nanoemulsions were optimized concerning surfactant: co-surfactant ratio (5:1, 4:1, 3:1, 2:1, and 1:1) and oil to surfactant: co-surfactant ratio (1:9, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3, 1:2, and 1:1). The formulations were evaluated concerning % transmittance, emulsification time, pH, viscosity, droplet size, polydispersity index, zeta potential, drug content, transmission electron microscopy, in-vitro drug release, stability (of the optimal formulas), and antiviral effect against coronavirus. The optimal nanoemulsion formula was F7, exhibiting an acceptable pH level, a rapid emulsification rate, a viscosity of 20 cP, and 100% drug content. The formulation droplet size was 16 and 17 nm, the polydispersity index was 0.18 and 0.26, and the zeta potential was - 6.29 and - 10.34 mV for licorice extract and remdesivir nanoemulsions, respectively. However, licorice extract nanoemulsion exhibited better release and physical stability. Licorice extract nanoemulsion may be a potential subcutaneous injection for combating mild to moderate coronavirus.
Collapse
Affiliation(s)
- Al Zahraa G Al Ashmawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Gehan F Balata
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; Pharmacy Practice Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
17
|
Hegazy A, Soltane R, Alasiri A, Mostafa I, Metwaly AM, Eissa IH, Mahmoud SH, Allayeh AK, Shama NMA, Khalil AA, Barre RS, El-Shazly AM, Ali MA, Martinez-Sobrido L, Mostafa A. Anti-rheumatic colchicine phytochemical exhibits potent antiviral activities against avian and seasonal Influenza A viruses (IAVs) via targeting different stages of IAV replication cycle. BMC Complement Med Ther 2024; 24:49. [PMID: 38254071 PMCID: PMC10804494 DOI: 10.1186/s12906-023-04303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Giza District, Egypt
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed A Khalil
- Agriculture Research Center (ARC), Veterinary Sera and Vaccines Research Institute (VSVRI), Cairo, 11435, Egypt
| | - Ramya S Barre
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida , Sharkia, 44813, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
18
|
Rizvi SAA, Ferrer G, Khawaja UA, Sanchez-Gonzalez MA. Chlorpheniramine, an Old Drug with New Potential Clinical Applications: A Comprehensive Review of the Literature. Curr Rev Clin Exp Pharmacol 2024; 19:137-145. [PMID: 35652393 DOI: 10.2174/2772432817666220601162006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 11/22/2022]
Abstract
Chlorpheniramine Maleate (CPM), also known as chlorphenamine, is a potent alkylamine first-generation H1 antihistamine that has been used since the 1950s. CPM is a widely popular drug commonly used to treat allergic conditions, given its antihistamine properties. Although mainly used in over-the-counter treatment for cough and colds, various studies discuss a wide range of CPM's clinical uses, such as treating asthma, plasma cell gingivitis, chronic urticaria, and depression, among others. This antihistamine is usually taken orally; however, intravenous, intramuscular, and subcutaneous routes have been documented. Intranasal routes of this drug have recently been explored, especially due to its antiviral properties against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Accordingly, given CPM's extensive medical and safety profile, the present review explores this versatile drug's current and potential clinical applications. Although it is widely used mainly for treating common colds and aforementioned allergic conditions, CPM can be used for other clinical indications. The repurposing of CPM for other clinical indications, such as COVID-19, needs to be further explored through more extensive studies.
Collapse
Affiliation(s)
- Syed A A Rizvi
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy (HUSOP), Hampton, VA, USA
| | - Gustavo Ferrer
- Pulmonary Critical Care, Aventura Hospital and Medical Center, Aventura, USA
| | | | | |
Collapse
|
19
|
Bouback TA, Aljohani AM, Albeshri A, Al-Talhi H, Moatasim Y, GabAllah M, Badierah R, Albiheyri R, Al-Sarraj F, Ali MA. Antiviral activity of Humulus lupulus (HOP) aqueous extract against MERS-CoV and SARS-CoV-2: in-vitro and in-silico study. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2158133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Affiliation(s)
- Thamer Ahmed Bouback
- Biological Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Amal Mohammed Aljohani
- Biological Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Abdulaziz Albeshri
- Biological Department, Faculty of Science, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Hasan Al-Talhi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, Egypt
| | - Raied Badierah
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, Egypt
| | - Raed Albiheyri
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, Egypt
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Medical Laboratory, King Abdulaziz University Hospital, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Mohamed Ahmed Ali
- Center of Scientific Excellence for Influenza Viruses, Environmental Research Division, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
20
|
Moatasim Y, Kutkat O, Osman AM, Gomaa MR, Okda F, El Sayes M, Kamel MN, Gaballah M, Mostafa A, El-Shesheny R, Kayali G, Ali MA, Kandeil A. Potent Antiviral Activity of Vitamin B12 against Severe Acute Respiratory Syndrome Coronavirus 2, Middle East Respiratory Syndrome Coronavirus, and Human Coronavirus 229E. Microorganisms 2023; 11:2777. [PMID: 38004788 PMCID: PMC10673013 DOI: 10.3390/microorganisms11112777] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Repurposing vitamins as antiviral supporting agents is a rapid approach used to control emerging viral infections. Although there is considerable evidence supporting the use of vitamin supplementation in viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the specific role of each vitamin in defending against coronaviruses remains unclear. Antiviral activities of available vitamins on the infectivity and replication of human coronaviruses, namely, SARS-CoV-2, Middle East respiratory syndrome coronavirus (MERS-CoV), and human coronavirus 229E (HCoV-229E), were investigated using in silico and in vitro studies. We identified potential broad-spectrum inhibitor effects of Hydroxocobalamin and Methylcobalamin against the three tested CoVs. Cyanocobalamin could selectively affect SARS-CoV-2 but not MERS-CoV and HCoV-229E. Methylcobalamin showed significantly higher inhibition values on SARS-CoV-2 compared with Hydroxocobalamin and Cyanocobalamin, while Hydroxocobalamin showed the highest potent antiviral activity against MERS-CoV and Cyanocobalamin against HCoV-229E. Furthermore, in silico studies were performed for these promising vitamins to investigate their interaction with SARS-CoV-2, MERS-CoV, and HCoV-229E viral-specific cell receptors (ACE2, DPP4, and hAPN protein, respectively) and viral proteins (S-RBD, 3CL pro, RdRp), suggesting that Hydroxocobalamin, Methylcobalamin, and Cyanocobalamin may have significant binding affinity to these proteins. These results show that Methylcobalamin may have potential benefits for coronavirus-infected patients.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Ahmed M. Osman
- Biochemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt;
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Faten Okda
- Veterinary Research Institute, National Research Centre, Giza 12622, Egypt;
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Mohamed Gaballah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | | | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (Y.M.); (O.K.); (M.R.G.); (M.E.S.); (M.N.K.); (M.G.); (A.M.); (R.E.-S.)
| |
Collapse
|
21
|
Eleraky NE, El-Badry M, Omar MM, El-Koussi WM, Mohamed NG, Abdel-Lateef MA, Hassan AS. Curcumin Transferosome-Loaded Thermosensitive Intranasal in situ Gel as Prospective Antiviral Therapy for SARS-Cov-2. Int J Nanomedicine 2023; 18:5831-5869. [PMID: 37869062 PMCID: PMC10590117 DOI: 10.2147/ijn.s423251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Immunomodulatory and broad-spectrum antiviral activities have motivated the evaluation of curcumin for Coronavirus infection 2019 (COVID-19) management. Inadequate bioavailability is the main impediment to the therapeutic effects of oral Cur. This study aimed to develop an optimal curcumin transferosome-loaded thermosensitive in situ gel to improve its delivery to the lungs. Methods Transferosomes were developed by using 33 screening layouts. The phospholipid concentration as well as the concentration and type of surfactant were considered independent variables. The entrapment efficiency (EE%), size, surface charge, and polydispersity index (PDI) were regarded as dependent factors. A cold technique was employed to develop thermosensitive in-situ gels. Optimized transferosomes were loaded onto the selected gels. The produced gel was assessed based on shape attributes, ex vivo permeability enhancement, and the safety of the nasal mucosa. The in vitro cytotoxicity, antiviral cytopathic effect, and plaque assay (CV/CPE/Plaque activity), and in vivo performance were evaluated after intranasal administration in experimental rabbits. Results The optimized preparation displayed a particle size of 664.3 ± 69.3 nm, EE% of 82.8 ± 0.02%, ZP of -11.23 ± 2.5 mV, and PDI of 0.6 ± 0.03. The in vitro curcumin release from the optimized transferosomal gel was markedly improved compared with that of the free drug-loaded gel. An ex vivo permeation study revealed a significant improvement (2.58-fold) in drug permeability across nasal tissues of sheep. Histopathological screening confirmed the safety of these preparations. This formulation showed high antiviral activity against SARS-CoV-2 at reduced concentrations. High relative bioavailability (226.45%) was attained after the formula intranasally administered to rabbits compared to the free drug in-situ gel. The curcumin transferosome gel displayed a relatively high lung accumulation after intranasal administration. Conclusion This study provides a promising formulation for the antiviral treatment of COVID-19 patients, which can be evaluated further in preclinical and clinical studies.
Collapse
Affiliation(s)
- Nermin E Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud El-Badry
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mahmoud M Omar
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Wesam M El-Koussi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Noha G Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut, Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Abeer S Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, Egypt
| |
Collapse
|
22
|
Abo-Neima SE, El-Sheekh MM, Al-Zaban MI, El-Sayed AIM. Antibacterial and anti-corona virus (229E) activity of Nigella sativa oil combined with photodynamic therapy based on methylene blue in wound infection: in vitro and in vivo study. BMC Microbiol 2023; 23:274. [PMID: 37773101 PMCID: PMC10540405 DOI: 10.1186/s12866-023-03018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Microbial skin infections, antibiotic resistance, and poor wound healing are major problems, and new treatments are needed. Our study targeted solving this problem with Nigella sativa (NS) oil and photodynamic therapy based on methylene blue (MB-PDT). Antibacterial activity and minimum inhibitory concentration (MIC) were determined via agar well diffusion assay and broth microdilution, respectively. Transmission electron microscopy (TEM) proved deformations in Staphylococcus aureus ATCC 6538. Gas chromatography-mass spectrometry identified useful compounds that were suggested to be responsible for the potency of the oil. NS oil was tested as an antivirus against low pathogenic coronavirus (229E). Therapies examined, MB-PDT, NS, and MB-PDT + NS oil, to accelerate wound healing. The antibacterial efficacy against S. aureus was promising, with a MIC of 12.5% and TEM showing injured cells treated with NS oil. This oil inhibited 229E virus up to 42.85% and 32.14%. All tested therapies were successful in accelerating wound healing. The most successful was combined therapy (MB-PDT + NS oil), with a faster healing time. The combined therapy (MB-PDT + NS oil) reduced bacterial counts, which may be a key factor in accelerating wound healing. Skin wound histology was investigated; blood hematology and biochemical analysis did not change significantly after the safe combination treatment. A combination treatment could facilitate healing in a simple and inexpensive way in the future. Based on the results of the in vitro and in vivo studies, it was determined that NS oil had antibacterial and anti-corona virus activity when used in conjunction with photodynamic treatment based on methylene blue to treat wound infections.
Collapse
Affiliation(s)
- Sahar E Abo-Neima
- Physics Department, Faculty of Science, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mayasar I Al-Zaban
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Abeer I M El-Sayed
- Botany and Microbiology Department, Faculty of Science, Damanhour University, Damanhour, El-Beheira, Egypt
| |
Collapse
|
23
|
Ezz Eldin RR, Saleh MA, Alwarsh SA, Rushdi A, Althoqapy AA, El Saeed HS, Abo Elmaaty A. Design and Synthesis of Novel 5-((3-(Trifluoromethyl)piperidin-1-yl)sulfonyl)indoline-2,3-dione Derivatives as Promising Antiviral Agents: In Vitro, In Silico, and Structure-Activity Relationship Studies. Pharmaceuticals (Basel) 2023; 16:1247. [PMID: 37765055 PMCID: PMC10534365 DOI: 10.3390/ph16091247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, a series of new isatin derivatives was designed and synthesized (1-9) as broad-spectrum antiviral agents. Consequently, the antiviral activities of the synthesized compounds (1-9) were pursued against three viruses, namely influenza virus (H1N1), herpes simplex virus 1 (HSV-1), and coxsackievirus B3 (COX-B3). In particular, compounds 9, 5, and 4 displayed the highest antiviral activity against H1N1, HSV-1, and COX-B3 with IC50 values of 0.0027, 0.0022, and 0.0092 µM, respectively. Compound 7 was the safest, with a CC50 value of 315,578.68 µM. Moreover, a quantitative PCR (real-time PCR) assay was carried out for the most relevant compounds. The selected compounds exhibited a decrease in viral gene expression. Additionally, the conducted in silico studies emphasized the binding affinities of the synthesized compounds and their reliable pharmacokinetic properties as well. Finally, a structure-antiviral activity relationship study was conducted to anticipate the antiviral activity change upon future structural modification.
Collapse
Affiliation(s)
- Rogy R. Ezz Eldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Marwa A. Saleh
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Sefat A. Alwarsh
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran 31932, Saudi Arabia;
| | - Areej Rushdi
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Azza Ali Althoqapy
- Department of Medical Microbiology and Immunology, Faculty of Medicine for Girls, Al-Azhar University, Cairo 11651, Egypt; (A.R.); (A.A.A.)
| | - Hoda S. El Saeed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (M.A.S.); (H.S.E.S.)
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
24
|
Zheng YZ, Liu ZY, Li Y, Lv XY, Wu Y, Huang MW, Pan XC, Chen JF, Lin CD. Ceftazidime exhibits a broad inhibition to the infection of SARS-CoV-2 prototype and Omicron variant in vitro by blocking spike protein-ACE2 interaction. Acta Pharmacol Sin 2023; 44:1932-1934. [PMID: 36944800 PMCID: PMC10028314 DOI: 10.1038/s41401-023-01071-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Yun-Zhe Zheng
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhao-Yuan Liu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Ying Lv
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yi Wu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng-Wen Huang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing-Chao Pan
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jian-Feng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| | - Chang-Dong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
25
|
Kumar S, Singh H, Prajapat M, Sarma P, Bhattacharyya A, Kaur H, Kaur G, Shekhar N, Kaushal K, Kumari K, Bansal S, Mahendiratta S, Chauhan A, Singh A, Soloman Singh R, Sharma S, Thota P, Avti P, Prakash A, Kuhad A, Medhi B. Structural-Based Virtual Screening of FDA-Approved Drugs Repository for NSP16 Inhibitors, Essential for SARS-COV-2 Invasion Into Host Cells: Elucidation From MM/PBSA Calculation. Bioinform Biol Insights 2023; 17:11779322231171777. [PMID: 37533429 PMCID: PMC10392196 DOI: 10.1177/11779322231171777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/07/2023] [Indexed: 08/04/2023] Open
Abstract
NSP16 is one of the structural proteins of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) necessary for its entrance to the host cells. It exhibits 2'O-methyl-transferase (2'O-MTase) activity of NSP16 using methyl group from S-adenosyl methionine (SAM) by methylating the 5-end of virally encoded mRNAs and shields viral RNA, and also controls its replication as well as infection. In the present study, we used in silico approaches of drug repurposing to target and inhibit the SAM binding site in NSP16 using Food and Drug Administration (FDA)-approved small molecules set from Drug Bank database. Among the 2 456 FDA-approved molecules, framycetin, paromomycin, and amikacin were found to be significant binders against the SAM binding cryptic pocket of NSP16 with docking score of -13.708, -14.997 and -15.841 kcal/mol, respectively. Classical molecular dynamics (MD) simulation and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA)-based binding free energy calculation depicted that all these three framycetin, paromomycin, and amikacin might be promising therapeutic leads towards SARS-CoV-2 infections via host immune escape inhibition pathway.
Collapse
Affiliation(s)
- Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Harvinder Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Guwahati, Guwahati, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College & Hospital, Sector 32 (GMCH-32), Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Gurjeet Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Nishant Shekhar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Karanveer Kaushal
- Department of Ophthalmology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Kalpna Kumari
- Department of Anaesthesia, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Seema Bansal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Saniya Mahendiratta
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Arushi Chauhan
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Rahul Soloman Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Saurabh Sharma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Prasad Thota
- Indian Pharmacopoeia Commission, Ghaziabad, India
| | - Pramod Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Chandigarh, India
| |
Collapse
|
26
|
Vaz ES, Vassiliades SV, Giarolla J, Polli MC, Parise-Filho R. Drug repositioning in the COVID-19 pandemic: fundamentals, synthetic routes, and overview of clinical studies. Eur J Clin Pharmacol 2023; 79:723-751. [PMID: 37081137 PMCID: PMC10118228 DOI: 10.1007/s00228-023-03486-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
INTRODUCTION Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis. RESULTS The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance. CONCLUSION Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.
Collapse
Affiliation(s)
- Elisa Souza Vaz
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Sandra Valeria Vassiliades
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Jeanine Giarolla
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil
| | - Michelle Carneiro Polli
- Pharmacy Course, São Francisco University (USF), Waldemar César da Silveira St, 105, SP, Campinas, Brazil
| | - Roberto Parise-Filho
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 580, Bldg 13, SP, São Paulo, Brazil.
| |
Collapse
|
27
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
28
|
Al-Salmi FA, El-Megharbel SM, Hamza RZ. Synthesis and spectroscopic study of novel mixed ligand formula "Artemisinin/Zn" and assessment of its inhibitory effect against "SARS-CoV-2″. Heliyon 2023; 9:e17177. [PMID: 37366527 PMCID: PMC10277259 DOI: 10.1016/j.heliyon.2023.e17177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Herein, a newly synthesised mixed ligand artemisinin/zinc (Art/Zn) is chemically characterised and examined against SARS-CoV-2. Methods The synthesised complex was thoroughly characterised using various spectroscopic methods (FT-IR, UV and XRD). Its surface morphology and chemical purity were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis. The synthesised Art/Zn complex was tested for its inhibitory effects against SARS-CoV-2 using inhibitory concentration 50 (IC50) and cytotoxicity concentration 50 (CC50). Results The results reveal that the Art/Zn complex exhibits a moderate in vitro inhibitory effects against SARS-CoV-2, with a CC50 index of 213.6 μg/ml and an IC50 index of 66.79 μg/ml. Notably, it exhibits the inhibitory effect (IC50 = 66.79 μg/ml) at a very low concentration without any observable cytotoxic effects on host cells (CC50 = 213.6 μg/ml). Its mode of action against SARS-CoV-2 involves inhibiting the viral replication. The predicted target classes that Art/Zn may affect include kinases, which can regulate and inhibit the viral replication and binding to the angiotensin-converting enzyme-2 (ACE2) receptor and the main protease inhibitor (MPro), thereby inhibiting the activity of SARS-CoV-2 and proved by the molecular dynamics simulation. Conclusion We recommend using the Art/Zn complex owing to its moderate inhibitory and antiviral effects against the SARS-CoV-2 with a low cytotoxic effect on host (Vero E6) cells. We suggest conducting further prospective studies to investigate the biological effects of Art/Zn in animal models at different concentrations for testing its clinical efficacy and safety in inhibiting SARS-CoV-2 activities.
Collapse
Affiliation(s)
- Fawziah A Al-Salmi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samy M El-Megharbel
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Chemistry, Zagazig University, P.O. Box 44519, Zagazig, 44519, Egypt
| | - Reham Z Hamza
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Zoology, Zagazig University, P.O. Box 44519, Zagazig, 44519, Egypt
| |
Collapse
|
29
|
Mohamed AR, Mostafa A, El Hassab MA, Hedeab GM, Mahmoud SH, George RF, Georgey HH, Abdel Gawad NM, El-Ashrey MK. Insights into targeting SARS-CoV-2: design, synthesis, in silico studies and antiviral evaluation of new dimethylxanthine derivatives. RSC Med Chem 2023; 14:899-920. [PMID: 37252103 PMCID: PMC10211320 DOI: 10.1039/d3md00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 05/31/2023] Open
Abstract
Aiming to achieve efficient activity against severe acute respiratory syndrome coronavirus (SARS-CoV-2), the expansion of the structure- and ligand-based drug design approaches was adopted, which has been recently reported by our research group. Purine ring is a corner stone in the development of SARS-CoV-2 main protease (Mpro) inhibitors. The privileged purine scaffold was elaborated to achieve additional affinity based on hybridization and fragment-based approaches. Thus, the characteristic pharmacophoric features that are required for the inhibition of Mpro and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 were utilized along with the crystal structure information of both targets. The designed pathways involved rationalized hybridization with large sulfonamide moieties and a carboxamide fragment for the synthesis of ten new dimethylxanthine derivatives. The synthesis was performed under diverse conditions to afford N-alkylated xanthine derivatives, and cyclization afforded tricyclic compounds. Molecular modeling simulations were used to confirm and gain insights into the binding interactions at both targets' active sites. The merit of designed compounds and the in silico studies resulted in the selection of three compounds that were evaluated in vitro to estimate their antiviral activity against SARS-CoV-2 (compounds 5, 9a and 19 with IC50 values of 38.39, 8.86 and 16.01 μM, respectively). Furthermore, oral toxicity of the selected antiviral candidates was predicted, in addition to cytotoxicity investigations. Compound 9a showed IC50 values of 8.06 and 3.22 μM against Mpro and RdRp of SARS-CoV-2, respectively, in addition to promising molecular dynamics stability in both target active sites. The current findings encourage further specificity evaluations of the promising compounds for confirming their specific protein targeting.
Collapse
Affiliation(s)
- Abdalla R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Mahmoud A El Hassab
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University Ras-Sedr South Sinai Egypt
| | - Gomaa M Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University Kingdom of Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University 11786 Cairo Egypt
| | - Nagwa M Abdel Gawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mohamed K El-Ashrey
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University Ras-Sedr South Sinai Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
30
|
Ismail MMF, El-Awady RR, Farrag AM, Mahmoud SH, Abo Shama NM, Mostafa A, Ali MA, Rashed MH, Ibrahim IH. Potential role of PIM1 inhibition in the treatment of SARS-CoV-2 infection. J Genet Eng Biotechnol 2023; 21:65. [PMID: 37211584 PMCID: PMC10200336 DOI: 10.1186/s43141-023-00520-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND SARS-CoV-2 infection involves disturbing multiple molecular pathways related to immunity and cellular functions. PIM1 is a serine/threonine-protein kinase found to be involved in the pathogenesis of several viral infections. One PIM1 substrate, Myc, was reported to interact with TMPRSS2, which is crucial for SARS-CoV-2 cell entry. PIM1 inhibitors were reported to have antiviral activity through multiple mechanisms related to immunity and proliferation. This study aimed to evaluate the antiviral activity of 2-pyridone PIM1 inhibitor against SARS-CoV-2 and its potential role in hindering the progression of COVID-19. It also aimed to assess PIM1 inhibitor's effect on the expression of several genes of Notch signaling and Wnt pathways. In vitro study was conducted on Vero-E6 cells infected by SARS-CoV-2 "NRC-03-nhCoV" virus. Protein-protein interaction of the study genes was assessed to evaluate their relation to cell proliferation and immunity. The effect of 2-pyridone PIM1 inhibitor treatment on viral load and mRNA expression of target genes was assessed at three time points. RESULTS Treatment with 2-pyridone PIM1 inhibitor showed potential antiviral activity against SARS-CoV-2 (IC50 of 37.255 µg/ml), significantly lowering the viral load. Functional enrichments of the studied genes include negative regulation of growth rate, several biological processes involved in cell proliferation, and Interleukin-4 production, with interleukin-6 as a predicted functional partner. These results suggest an interplay between study genes with relation to cell proliferation and immunity. Following in vitro SARS-CoV-2 infection, Notch pathway genes, CTNNB1, SUMO1, and TDG, were found to be overexpressed compared to uninfected cells. Treatment with 2-pyridone PIM1 inhibitor significantly lowers the expression levels of study genes, restoring Notch1 and BCL9 to the control level while decreasing Notch2 and CTNNB1 below control levels. CONCLUSION 2-pyridone PIM1 inhibitor could hinder cellular entry of SARS-CoV-2 and modulate several pathways implicated in immunity, suggesting a potential benefit in the development of anti-SARS-CoV-2 therapeutic approach.
Collapse
Affiliation(s)
- Magda M. F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R. El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11884 Cairo Egypt
| | - Amal M. Farrag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Noura M. Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Mohammed H. Rashed
- Department of Clinical Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Iman H. Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, 11884 Cairo Egypt
| |
Collapse
|
31
|
Parveen S, Ali MS, Al-Lohedan HA, Hoti N, Tabassum S. Molecular interaction of lysozyme with therapeutic drug azithromycin: Effect of sodium dodecyl sulfate on binding profile. Int J Biol Macromol 2023; 242:124844. [PMID: 37210056 DOI: 10.1016/j.ijbiomac.2023.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
This paper describes an inclusive biophysical study elucidating the interaction of therapeutic drug azithromycin (Azith) with hen egg white lysozyme (HEWL). Spectroscopic and computational tools have been employed to study the interaction of Azith with HEWL at pH 7.4. The fluorescence quenching constant values (Ksv) exhibited a decrease with the increase in temperature which revealed the occurrence of static quenching mechanism between Azith and HEWL. The thermodynamic data demonstrated that hydrophobic interactions were predominantly involved in the Azith-HEWL interaction. The negative value of standard Gibbs free energy (ΔG°) stated that the Azith-HEWL complex formed via spontaneous molecular interactions. The effect of sodium dodecyl sulfate (SDS) surfactant monomers on the binding propensity of Azith with HEWL was insignificant at lower concentrations however the binding significantly decreased at increased concentrations of the former. Far-UV CD data revealed alteration in the secondary structure of HEWL in the presence of Azith and the overall HEWL conformation changed. Molecular docking results revealed that the binding of Azith with HEWL takes place through hydrophobic interactions and hydrogen bonds.
Collapse
Affiliation(s)
- Sabiha Parveen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Sajid Ali
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | - Hamad A Al-Lohedan
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, the Kingdom of Saudi Arabia
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
32
|
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Allayeh AK, Zeng C, Hachim IY, Liu SL, Abu-Yousef IA, Majdalawieh AF, Zaher DM, Omar HA, Al-Tel TH. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem 2023; 254:115380. [PMID: 37075625 PMCID: PMC10106510 DOI: 10.1016/j.ejmech.2023.115380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environment and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
33
|
Ouyang Y, Chen Y, Shang J, Sun S, Wang X, Huan S, Xiong B, Zhang XB. Virus-like Plasmonic Nanoprobes for Quick Analysis of Antiviral Efficacy and Mutation-Induced Drug Resistance. Anal Chem 2023; 95:5009-5017. [PMID: 36893130 DOI: 10.1021/acs.analchem.2c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
As the pathogenic viruses and the variants of concern greatly threaten human health and global public safety, the development of convenient and robust strategies enabling rapid analysis of antiviral drug efficacy and mutation-induced resistance is quite important to prevent the spread of human epidemics. Herein, we introduce a simple single-particle detection strategy for quick analysis of anti-infective drugs against SARS-CoV-2 and mutation-induced drug resistance, by using the wild-type and mutant spike protein-functionalized AuNPs as virus-like plasmonic nanoprobes. Both the wild-type and mutant virus-like plasmonic nanoprobes can form core-satellite nanoassemblies with the ACE2@AuNPs, providing the opportunity to detect the drug efficacy and mutation-induced resistance by detecting the changes of nanoassemblies upon drug treatment with dark-field microscopy. As a demonstration, we applied the single-particle detection strategy for quantitative determination of antiviral efficacy and mutation-induced resistance of ceftazidime and rhein. The mutations in the receptor-binding domain of Omicron variant could lead to an increase of EC50 values of ceftazidime and rhein, formerly from 49 and 57 μM against wild-type SARS-CoV-2, to 121 and 340 μM, respectively. The mutation-induced remarkable decline in the inhibitory efficacy of drugs was validated with molecule docking analysis and virus-like plasmonic nanoprobe-based cell-incubation assay. Due to the generality and feasibility of the strategy for the preparation of virus-like plasmonic nanoprobes and single-particle detection, we anticipated that this simple and robust method is promising for the discovery and efficacy evaluation of anti-infective drugs against different pathogenic viruses.
Collapse
Affiliation(s)
- Yuzhi Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yancao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinhui Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shijie Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangbin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
34
|
Kayed AE, Kutkat O, Kandeil A, Moatasim Y, El Taweel A, El Sayes M, El-Shesheny R, Aboulhoda BE, Abdeltawab NF, Kayali G, Ali MA, Ramadan MA. Comparative pathogenic potential of avian influenza H7N3 viruses isolated from wild birds in Egypt and their sensitivity to commercial antiviral drugs. Arch Virol 2023; 168:82. [PMID: 36757481 PMCID: PMC9909137 DOI: 10.1007/s00705-022-05646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/03/2022] [Indexed: 02/10/2023]
Abstract
Active surveillance and studying the virological features of avian-origin influenza viruses are essential for early warning and preparedness for the next potential pandemic. During our active surveillance of avian influenza viruses in wild birds in Egypt in the period 2014-2017, multiple reassortant low-pathogenic avian influenza H7N3 viruses were isolated. In this study, we investigated and compared the infectivity, pathogenicity, and transmission of four different constellation forms of Egyptian H7N3 viruses in chickens and mice and assessed the sensitivity of these viruses to different commercial antiviral drugs in vitro. Considerable variation in virus pathogenicity was observed in mice infected with different H7N3 viruses. The mortality rate ranged from 20 to 100% in infected mice. Infected chickens showed only ocular clinical signs at three days postinfection as well as systemic viral infection in different organs. Efficient virus replication and transmission in chickens was observed within each group, indicating that these subtypes can spread easily from wild birds to poultry without prior adaptation. Mutations in the viral proteins associated with antiviral drug resistance were not detected, and all strains were sensitive to the antiviral drugs tested. In conclusion, all of the viruses studied had the ability to infect mice and chickens. H7N3 viruses circulating among wild birds in Egypt could threaten poultry production and public health.
Collapse
Affiliation(s)
- Ahmed E Kayed
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Omnia Kutkat
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed Kandeil
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yassmin Moatasim
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed El Taweel
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Mohamed El Sayes
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Rabeh El-Shesheny
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Nourtan F Abdeltawab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt
| | | | - Mohamed A Ali
- Environmental Research Division, Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 12613, Egypt.
| |
Collapse
|
35
|
Nainu F, Mamada SS, Emran TB. Prospective role of NSAIDs with antiviral properties for pharmacological management of postsurgical procedures during COVID-19. Int J Surg 2023; 109:109-111. [PMID: 36799818 PMCID: PMC10389334 DOI: 10.1097/js9.0000000000000101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Sukamto S. Mamada
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Talha B. Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
36
|
Hegazy A, Mahmoud SH, Elshaier YAMM, Shama NMA, Nasr NF, Ali MA, El-Shazly AM, Mostafa I, Mostafa A. Antiviral activities of plant-derived indole and β-carboline alkaloids against human and avian influenza viruses. Sci Rep 2023; 13:1612. [PMID: 36709362 PMCID: PMC9883826 DOI: 10.1038/s41598-023-27954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The persistent evolution of drug-resistant influenza strains represents a global concern. The innovation of new treatment approaches through drug screening strategies and investigating the antiviral potential of bioactive natural-based chemicals may address the issue. Herein, we screened the anti-influenza efficacy of some biologically active indole and β-carboline (βC) indole alkaloids against two different influenza A viruses (IAV) with varied host range ranges; seasonal influenza A/Egypt/NRC098/2019(H1N1) and avian influenza A/chicken/Egypt/N12640A/2016(H5N1). All compounds were first assessed for their half-maximal cytotoxic concentration (CC50) in MDCK cells and half-maximal inhibitory concentrations (IC50) against influenza A/H5N1. Intriguingly, Strychnine sulfate, Harmalol, Harmane, and Harmaline showed robust anti-H5N1 activities with IC50 values of 11.85, 0.02, 0.023, and 3.42 µg/ml, respectively, as compared to zanamivir and amantadine as control drugs (IC50 = 0.079 µg/ml and 17.59 µg/ml, respectively). The efficacy of the predefined phytochemicals was further confirmed against influenza A/H1N1 and they displayed potent anti-H1N1 activities compared to reference drugs. Based on SI values, the highly promising compounds were then evaluated for antiviral efficacy through plaque reduction assay and consistently they revealed high viral inhibition percentages at non-toxic concentrations. By studying the modes of antiviral action, Harmane and Harmalol could suppress viral infection via interfering mainly with the viral replication of the influenza A/H5N1 virus, whilst Harmaline exhibited a viricidal effect against the influenza A/H5N1 virus. Whereas, Strychnine sulfate elucidated its anti-influenza potency by interfering with viral adsorption into MDCK cells. Consistently, chemoinformatic studies showed that all studied phytochemicals illustrated HB formations with essential peptide cleft through the NH of indole moiety. Among active alkaloids, harmalol displayed the best lipophilicity metrics including ligand efficiency (LE) and ligand lipophilic efficiency (LLE) for both viruses. Compounds geometry and their ability to participate in HB formation are very crucial.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Menoufia, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Nasr Fawzy Nasr
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - M A Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613, Giza, Egypt
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.,Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Sharkia, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
37
|
Shokry S, Hegazy A, Abbas AM, Mostafa I, Eissa IH, Metwaly AM, Yahya G, El-Shazly AM, Aboshanab KM, Mostafa A. Phytoestrogen β-Sitosterol Exhibits Potent In Vitro Antiviral Activity against Influenza A Viruses. Vaccines (Basel) 2023; 11:228. [PMID: 36851106 PMCID: PMC9964242 DOI: 10.3390/vaccines11020228] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Influenza is a contagious infection in humans that is caused frequently by low pathogenic seasonal influenza viruses and occasionally by pathogenic avian influenza viruses (AIV) of H5, H7, and H9 subtypes. Recently, the clinical sector in poultry and humans has been confronted with many challenges, including the limited number of antiviral drugs and the rapid evolution of drug-resistant variants. Herein, the anti-influenza activities of various plant-derived phytochemicals were investigated against highly pathogenic avian influenza A/H5N1 virus (HPAIV H5N1) and seasonal low pathogenic human influenza A/H1N1 virus (LPHIV H1N1). Out of the 22 tested phytochemicals, the steroid compounds β-sitosterol and β-sitosterol-O-glucoside have very potent activity against the predefined influenza A viruses (IAV). Both steroids could induce such activity by affecting multiple stages during IAV replication cycles, including viral adsorption and replication with a major and significant impact on the virus directly in a cell-free status "viricidal effect". On a molecular level, several molecular docking studies suggested that β-sitosterol and β-sitosterol-O-glucoside exhibited viricidal effects through blocking active binding sites of the hemagglutinin surface protein, as well as showing inhibitory effects against replication through the binding with influenza neuraminidase activity and blocking the active sites of the M2 proton channel activity. The phytoestrogen β-sitosterol has structural similarity with the active form of the female sex hormone estradiol, and this similarity is likely one of the molecular determinants that enables the phytoestrogen β-sitosterol and its derivative to control IAV infection in vitro. This promising anti-influenza activity of β-sitosterol and its O-glycoside derivative, according to both in vitro and cheminformatics studies, recommend both phytochemicals for further studies going through preclinical and clinical phases as efficient anti-influenza drug candidates.
Collapse
Affiliation(s)
- Sara Shokry
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, Giza 12613, Egypt
| | - Ahmad M. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, King Salman International University (KSIU), Sinai 46612, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Assem M. El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Sharkia, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
38
|
Hemdan BA, Mostafa A, Elbatanony MM, El-Feky AM, Paunova-Krasteva T, Stoitsova S, El-Liethy MA, El-Taweel GE, Abu Mraheil M. Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities. PLoS One 2023; 18:e0282729. [PMID: 36888689 PMCID: PMC9994683 DOI: 10.1371/journal.pone.0282729] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
The leaves of Azadirachta indica L. and Melia azedarach L., belonging to Meliaceae family, have been shown to have medicinal benefits and are extensively employed in traditional folk medicine. Herein, HPLC analysis of the ethyl acetate fraction of the total methanolic extract emphasized the enrichment of both A. indica L., and M. azedarach L. leaves extracts with phenolic and flavonoids composites, respectively. Besides, 4 limonoids and 2 flavonoids were isolated using column chromatography. By assessing the in vitro antiviral activities of both total leaves extracts against Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2), it was found that A. indica L. and M. azedarach L. have robust anti-SARS-CoV-2 activities at low half-maximal inhibitory concentrations (IC50) of 8.451 and 6.922 μg/mL, respectively. Due to the high safety of A. indica L. and M. azedarach L. extracts with half-maximal cytotoxic concentrations (CC50) of 446.2 and 351.4 μg/ml, respectively, both displayed extraordinary selectivity indices (SI>50). A. indica L. and M. azedarach L. leaves extracts could induce antibacterial activities against both Gram-negative and positive bacterial strains. The minimal inhibitory concentrations of A. indica L. and M. azedarach L. leaves extracts varied from 25 to 100 mg/mL within 30 min contact time towards the tested bacteria. Our findings confirm the broad-spectrum medicinal value of A. indica L. and M. azedarach L. leaves extracts. Finally, additional in vivo investigations are highly recommended to confirm the anti-COVID-19 and antimicrobial activities of both plant extracts.
Collapse
Affiliation(s)
- Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Cairo, Egypt
- * E-mail: (AM); (MAM)
| | | | - Amal M. El-Feky
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohamed Azab El-Liethy
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Gamila E. El-Taweel
- Water Pollution Research Department, Environmental Microbiology Laboratory, National Research Centre, Dokki, Cairo, Egypt
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
- * E-mail: (AM); (MAM)
| |
Collapse
|
39
|
Muacevic A, Adler JR, Khawaja UA, Sanchez-Gonzalez M, Franck R. Chlorpheniramine Maleate Throat Spray for the Treatment of COVID-19-Induced Acute Viral Pharyngitis: Case Series. Cureus 2023; 15:e34310. [PMID: 36860214 PMCID: PMC9970260 DOI: 10.7759/cureus.34310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2023] [Indexed: 01/30/2023] Open
Abstract
Acute viral pharyngitis (AVP) is a common respiratory illness affecting many individuals. Despite symptomatic treatment management of AVP, therapies are lacking to target a broad spectrum of viruses and the inflammatory nature of the disease. Available for many years, Chlorpheniramine Maleate (CPM), is considered a low-cost and safe first-generation antihistamine displaying antiallergic, anti-inflammatory, and as of recently, identified as a broad-spectrum antiviral agent with activity against influenzas A/B viruses and SARS-CoV-2. Efforts have been made to identify repurposed drugs with favorable safety profiles that could significantly benefit the treatment of COVID-19-induced symptoms. The present case series highlights three patients in which a CPM-based throat spray was used to alleviate the symptoms of COVID-19-induced AVP. The CPM throat spray was associated with significant improvements in patient symptoms after approximately three days of use as opposed to the typical five to seven days reported elsewhere. While AVP is a self-limited syndrome and usually improves without pharmaceutical therapy, CPM throat spray may significantly reduce the overall time that the patient has symptoms. Additional clinical studies to evaluate the efficacy of CPM for the treatment of COVID-19-induced AVP are warranted.
Collapse
|
40
|
Wang Z, Ren J, Du J, Wang H, Liu J, Wang G. Niclosamide as a Promising Therapeutic Player in Human Cancer and Other Diseases. Int J Mol Sci 2022; 23:16116. [PMID: 36555754 PMCID: PMC9782559 DOI: 10.3390/ijms232416116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/03/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug for the treatment of parasitic infections. However, over the past few years, increasing evidence has shown that niclosamide could treat diseases beyond parasitic diseases, which include metabolic diseases, immune system diseases, bacterial and viral infections, asthma, arterial constriction, myopia, and cancer. Therefore, we systematically reviewed the pharmacological activities and therapeutic prospects of niclosamide in human disease and cancer and summarized the related molecular mechanisms and signaling pathways, indicating that niclosamide is a promising therapeutic player in various human diseases, including cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
41
|
Tulbah AS, Bader A, Ong HX, Traini D. In vitro evaluation of nebulized eucalyptol nano-emulsion formulation as a potential COVID-19 treatment. Saudi Pharm J 2022; 30:1691-1699. [PMID: 36164456 PMCID: PMC9494862 DOI: 10.1016/j.jsps.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus is a type of acute atypical respiratory disease representing the leading cause of death worldwide. Eucalyptol (EUC) known also as 1,8-cineole is a potential inhibitor candidate for COVID-19 (main protease-Mpro) with effective antiviral properties but undergoes physico-chemical instability and poor water solubility. Nano-emulsion (NE) is a promising drug delivery system to improve the stability and efficacy of drugs. This work focuses on studying the anti- COVID-19 activity of EUC by developing nebulized eucalyptol nano-emulsion (EUC-NE) as a potentially effective treatment for COVID-19. The EUC -NE formulation was prepared using Tween 80 as a surfactant. In vitro evaluation of the EUC-NE formulation displayed an entrapment efficiency of 77.49 %, a droplet size of 122.37 nm, and an EUC % release of 84.7 %. The aerodynamic characterization and cytotoxicity of EUC-NE formulation were assessed, and results showed high lung deposition and low inhibitory concentration. The antiviral mechanism of the EUC-NE formulation was performed, and it was found that it exerts its action by virucidal, viral replication, and viral adsorption. Our results confirmed the antiviral activity of the EUC-NE formulation against COVID-19 and the efficacy of nano-emulsion as a delivery system, which can improve the cytotoxicity and inhibitory activity of EUC.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia,Corresponding author
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, NSW, Australia,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| |
Collapse
|
42
|
Discovery of Novel Thioquinazoline- N-aryl-acetamide/ N-arylacetohydrazide Hybrids as Anti-SARS-CoV-2 Agents: Synthesis, in vitro Biological Evaluation, and Molecular Docking Studies. J Mol Struct 2022; 1276:134690. [PMCID: PMC9709698 DOI: 10.1016/j.molstruc.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
In the current investigation, two novel series of (tetrahydro)thioquinazoline-N-arylacetamides and (tetrahydro)thioquinazoline-N-arylacetohydrazides were designed, synthesized and investigated for their antiviral activity against SARS-CoV-2. The thioquinazoline-N-arylacetamide 17g as well as the tetrahydrothioquinazoline-N-arylacetohydrazides 18c and 18f showed potent antiviral activity with IC50 of 21.4, 38.45 and 26.4 µM, respectively. In addition, 18c and 18f demonstrated potential selectivity toward the SARS-CoV-2 over the host cells with SI of 10.67 and 16.04, respectively. Further evaluation of the mechanism of action of the three derivatives 17g, 18c, and 18f displayed that they can inhibit the virus at the adsorption as well as at the replication stages, in addition to their virucidal properties. In addition, 17g, 18c, and 18f demonstrated satisfactory physicochemical properties as well as drug-likeness properties to be further optimized for the discovery of novel antiviral agents. The docking simulation predicted the binding pattern of the target compounds rationalizing their differential activity based on their hydrophobic interaction and fitting in the hydrophobic S2 subsite of the binding site
Collapse
|
43
|
Hegazy A, Mostafa I, Elshaier YAMM, Mahmoud SH, Abo Shama NM, Shehata M, Yahya G, Nasr NF, El-Halawany AM, Ali MA, Ali MA, Mraheil MA, El-Shazly AM, Mostafa A. Robust Antiviral Activity of Santonica Flower Extract ( Artemisia cina) against Avian and Human Influenza A Viruses: In Vitro and Chemoinformatic Studies. ACS OMEGA 2022; 7:41212-41223. [PMID: 36406485 PMCID: PMC9670689 DOI: 10.1021/acsomega.2c04867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/20/2022] [Indexed: 05/25/2023]
Abstract
The evolution of drug-resistant viral strains following natural acquisition of resistance mutations is a major obstacle to antiviral therapy. Besides the improper prescription of the currently licensed anti-influenza medications, M2-blockers and neuraminidase inhibitors, to control poultry outbreaks/infections potentiates the emergence of drug-resistant influenza variants. Therefore, there is always a necessity to find out new alternatives with potent activity and high safety. Plant extracts and plant-based chemicals represent a historical antiviral resource with remarkable safety in vitro and in vivo to control the emerging and remerging health threats caused by viral infections. Herein, a panel of purified plant extracts and subsequent plant-derived chemicals were evaluated for their anti-avian influenza activity against zoonotic highly pathogenic influenza A/H5N1 virus. Interestingly, santonica flower extract (Artemisia cina) showed the most promising anti-H5N1 activity with a highly safe half-maximal cytotoxic concentration 50 (CC50 > 10 mg/mL) and inhibitory concentration 50 (IC50 of 3.42 μg/mL). To confirm the anti-influenza activity, we assessed the anti-influenza activity of the selected plant extracts against seasonal human influenza A/H1N1 virus and we found that santonica flower extract showed a robust anti-influenza activity that was comparable to the activity against influenza A/H5N1. Furthermore, the mode of action for santonica flower extract with strong inhibitory activity on the abovementioned influenza strains was elucidated, showing a virucidal effect. To go deeper about the activity of the chemometric component of the extract, the major constituent, santonin, was further selected for in vitro screening against influenza A/H5N1 (IC50 = 1.701 μg/mL) and influenza A/H1N1 (IC50 = 2.91 μg/mL). The oxygen of carbonyl functionality in the cyclohexene ring succeeded to form a hydrogen bond with the neuraminidase active site. Despite the fact that santonin revealed similarity to both reference neuraminidase inhibitors in forming hydrogen bonds with essential amino acids, it illustrated shape alignment to oseltamivir more than zanamivir according to Tanimoto algorithms. This study highlights the applicability of santonica flower extract as a promising natural antiviral against low and highly pathogenic influenza A viruses.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613Giza, Egypt
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig44519, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia32897, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza12622, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza12622, Egypt
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza12622, Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig44519, Egypt
| | - Nasr Fawzy Nasr
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613Giza, Egypt
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza11562, Egypt
| | - Mohamed Abdelalim Ali
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza District, 12613Giza, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza12622, Egypt
| | - Mobarak Abu Mraheil
- German Center for Infection Research (DZIF), Institute of Medical Microbiology, Justus-Liebig University, 35392Giessen, Germany
| | - Assem M El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida44813, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza12622, Egypt
| |
Collapse
|
44
|
Adel A, Elnaggar MS, Albohy A, Elrashedy AA, Mostafa A, Kutkat O, Abdelmohsen UR, Al-Sayed E, Rabeh MA. Evaluation of antiviral activity of Carica papaya leaves against SARS-CoV-2 assisted by metabolomic profiling. RSC Adv 2022; 12:32844-32852. [PMID: 36425179 PMCID: PMC9667237 DOI: 10.1039/d2ra04600h] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/11/2022] [Indexed: 07/31/2023] Open
Abstract
The COVID-19 pandemic caused a huge health crisis all over the globe. SARS-CoV-2 is the virus responsible for the disease and it is highly contagious leaving millions of confirmed infected cases and a dangerous death toll. Carica papaya is a tropical plant known for its antiviral activity since it possesses different classes of compounds that are believed to combat various viral classes. In this study, the extracts prepared from C. papaya leaves cultivated in Egypt were evaluated for their anti-SARS-CoV-2 activity using crystal violet assay and for their cytotoxicity through MTT assay. The total methanolic extract, n-hexane, ethyl acetate, and n-butanol fractions of papaya leaves were used in the study and the results revealed that the n-hexane fraction has a high anti-SARS-CoV-2 activity with an IC50 value = 1.98 μg mL-1. Moreover, it also showed a high selectivity index value = 104.7. Dereplication of the secondary metabolites in the crude methanolic extract of C. papaya leaves revealed the presence of different classes of compounds including sterols, terpenes, fatty acid, alkaloids and flavonoids that are known to possess antiviral activities against various classes of viruses. The current study was assisted by molecular docking, molecular dynamics simulation and MM-PBSA calculations for the annotated compounds against 6 SARS-CoV-2 target proteins. The results of these in silico-based investigations showed high to moderate binding on the targeted proteins. This postulation may instigate further research studies concerning the compounds responsible for this high anti-SARS-CoV-2 activity of the n-hexane fraction of C. papaya leaves.
Collapse
Affiliation(s)
- Amr Adel
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information 11865 Cairo Egypt
| | - Mohamed S Elnaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University 11566 Cairo Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt (BUE) Suez Desert Road ElSherouk City 11837 Cairo Egypt
| | - Ahmed A Elrashedy
- Natural and Microbial Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC) AlBohoos Street, Dokki 12311 Cairo Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre 12622 Giza Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre 12622 Giza Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University Minia 61111 Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University 11566 Cairo Egypt
| | - Mohamed A Rabeh
- Department of Pharmacognosy, Faculty of Pharmacy, Modern University for Technology and Information 11865 Cairo Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Giza Egypt
| |
Collapse
|
45
|
SARS-CoV-2 main protease (3CL pro) interaction with acyclovir antiviral drug/methyl-β-cyclodextrin complex: Physiochemical characterization and molecular docking. J Mol Liq 2022; 366:120292. [PMID: 36101854 PMCID: PMC9458544 DOI: 10.1016/j.molliq.2022.120292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
During the current outbreak of the novel coronavirus disease 2019 (COVID-19), researchers have examined several antiviral drugs with the potential to inhibit the proliferation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antiviral drug acyclovir (AVR), which is used to treat COVID-19, in complex with methyl-β-cyclodextrin (Mβ-CD) was examined in the solution and solid phases. UV-visible and fluorescence spectroscopic analyses confirmed that the guest (AVR) was included inside the host (Mβ-CD) cavity. A solid inclusion complex of AVR was prepared by co-precipitation, physical mixing, kneading, and bath sonication methods at a 1:1 ratio of Mβ-CD:AVR. The prepared Mβ-CD:AVR inclusion complex was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis. Phase solubility studies indicated the Mβ-CD:AVR inclusion complex exhibited a higher stability constant and linear enhancement in AVR solubility with increasing Mβ-CD concentrations. In silico analysis of the Mβ-CD/AVR inclusion complex confirmed that AVR drugs show potential as inhibitors of SARS-CoV-2 3C-like protease (3CLpro) receptors. Results obtained using the PatchDock and FireDock servers indicated that the most favorable docking ligand was Mβ-CD:AVR, which interacted with SARS-CoV-2 (3CLPro) protease inhibitors with high geometric shape complementarity scores (2522 and 5872) and atomic contact energy (-313.77 and -214.70 kcal mol-1). Our results suggest that the Mβ-CD/AVR inclusion complex inhibits the main protease of SARS-CoV-2, although further wet-lab experiments are needed to verify these findings.
Collapse
|
46
|
Saleh MM, Yousef N, Shafik SM, Abbas HA. Attenuating the virulence of the resistant superbug Staphylococcus aureus bacteria isolated from neonatal sepsis by ascorbic acid, dexamethasone, and sodium bicarbonate. BMC Microbiol 2022; 22:268. [PMID: 36348266 PMCID: PMC9644464 DOI: 10.1186/s12866-022-02684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. Methods Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. Results Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. Conclusions The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.
Collapse
|
47
|
Abou Taleb S, Moatasim Y, GabAllah M, Asfour MH. Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. J Drug Deliv Sci Technol 2022; 77:103921. [PMID: 36338534 PMCID: PMC9616482 DOI: 10.1016/j.jddst.2022.103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
Lung cancer and pandemic acute respiratory disease, COVID-19, are examples of the most worldwide widespread diseases. The aim of the current study is to develop cyclodextrin based nanosponge (CD-NS) for loading the flavonoid drug, quercitrin (QCT). This is to improve its solubility in an attempt to enhance its activity against lung cancer as well as SARS-CoV-2 virus responsible for COVID-19. Preparation of CD-NS was performed by ultrasound-assisted synthesis method. Two CDs were employed, namely, β cyclodextrin (βCD) and 2-hydroxy propyl-β-cyclodextrin (2-HPβCD) that were crosslinked with diphenyl carbonate, one at a time. QCT loaded CD-NS revealed entrapment efficiency and particle size ranged between 94.17 and 99.03% and 97.10–325.90 nm, respectively. QCT loaded 2-HPβCD-NS revealed smaller particle size compared with that of QCT loaded βCD-NS. Zeta potential absolute values of the prepared formulations were >20 mV, indicating physically stable nanosystems. The selected formulations were investigated by Fourier transform infrared spectroscopy, X-ray powder diffraction and scanning electron microscopy which proved the formation of QCT loaded CD-NS exhibiting porous structure. QCT exhibited partial and complete amorphization in βCD-NS and 2-HPβCD-NS, respectively. In vitro release revealed an improved release of QCT from CD-NS formulations. The biological activity of free QCT and QCT loaded CD-NS was investigated against lung cancer cell line A549 as well as SARS-CoV-2 virus. The results revealed that IC50 values of free QCT against lung cancer cell line A549 and SARS-CoV-2 were higher than those exhibited by QCT loaded CD-NS by 1.57–5.35 and 5.95–26.95 folds, respectively. QCT loaded 2-HPβCD-NS revealed enhanced in vitro release and superior biological activity compared with QCT loaded βCD-NS.
Collapse
Affiliation(s)
- Sally Abou Taleb
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt
| | - Marwa Hasanein Asfour
- Pharmaceutical Technology Department, National Research Centre, El-Buhouth Street, Dokki, Cairo, 12622, Egypt,Corresponding author
| |
Collapse
|
48
|
Barakat A, Mostafa A, Ali M, Al-Majid AM, Domingo LR, Kutkat O, Moatasim Y, Zia K, Ul-Haq Z, Elshaier YAMM. Design, Synthesis and In Vitro Evaluation of Spirooxindole-Based Phenylsulfonyl Moiety as a Candidate Anti-SAR-CoV-2 and MERS-CoV-2 with the Implementation of Combination Studies. Int J Mol Sci 2022; 23:ijms231911861. [PMID: 36233160 PMCID: PMC9569468 DOI: 10.3390/ijms231911861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/03/2022] Open
Abstract
The search for an effective anti-viral to inhibit COVID-19 is a challenge for the specialized scientific research community. This work investigated the anti-coronavirus activity for spirooxindole-based phenylsulfone cycloadducts in a single and combination protocols. The newly designed anti-SARS-CoV-2 therapeutics spirooxindoles synthesized by [3 + 2] cycloaddition reactions represent an efficient approach. One-pot multicomponent reactions between phenyl vinyl sulfone, substituted isatins, and amines afforded highly stereoselective anti-SARS-CoV-2 therapeutics spirooxindoles with three stereogenic centers. Herein, the newly synthesized spirooxindoles were assessed individually against the highly pathogenic human coronaviruses and proved to be highly potent and safer. Interestingly, the synergistic effect by combining the potent, tested spirooxindoles resulted in an improved antiviral activity as well as better host-cell safety. Compounds 4i and 4d represented the most potent activity against MERS-CoV with IC50 values of 11 and 23 µM, respectively. Both compounds 4c and 4e showed equipotent activity with the best IC50 against SARS-CoV-2 with values of 17 and 18 µM, respectively, then compounds 4d and 4k with IC50 values of 24 and 27 µM, respectively. Then, our attention oriented to perform a combination protocol as anti-SARS-CoV-2 for the best compounds with a different binding mode and accompanied with different pharmacophores. Combination of compound 4k with 4c and combination of compounds 4k with 4i proved to be more active and safer. Compounds 4k with 4i displayed IC50 = 3.275 µM and half maximal cytotoxic-concentration CC50 = 11832 µM. MD simulation of the most potential compounds as well as in silico ADMET properties were investigated. This study highlights the potential drug-like properties of spirooxindoles as a cocktail anti-coronavirus protocol.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - M. Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Komal Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32958, Egypt
- Correspondence: (A.B.); (Y.A.M.M.E.); Tel.: +966-11467-5901 (A.B.); Fax: +966-11467-5992 (A.B.)
| |
Collapse
|
49
|
de Almeida L, da Silva ALN, Rodrigues TS, Oliveira S, Ishimoto AY, Seribelli AA, Becerra A, Andrade WA, Ataide MA, Caetano CCS, de Sá KSG, Pelisson N, Martins RB, de Paula Souza J, Arruda E, Batah SS, Castro R, Frantz FG, Cunha FQ, Cunha TM, Fabro AT, Cunha LD, Louzada-Junior P, de Oliveira RDR, Zamboni DS. Identification of immunomodulatory drugs that inhibit multiple inflammasomes and impair SARS-CoV-2 infection. SCIENCE ADVANCES 2022; 8:eabo5400. [PMID: 36103544 PMCID: PMC9473568 DOI: 10.1126/sciadv.abo5400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces mild or asymptomatic COVID-19 in most cases, but some patients develop an excessive inflammatory process that can be fatal. As the NLRP3 inflammasome and additional inflammasomes are implicated in disease aggravation, drug repositioning to target inflammasomes emerges as a strategy to treat COVID-19. Here, we performed a high-throughput screening using a 2560 small-molecule compound library and identified FDA-approved drugs that function as pan-inflammasome inhibitors. Our best hit, niclosamide (NIC), effectively inhibits both inflammasome activation and SARS-CoV-2 replication. Mechanistically, induction of autophagy by NIC partially accounts for inhibition of NLRP3 and AIM2 inflammasomes, but NIC-mediated inhibition of NAIP/NLRC4 inflammasome are autophagy independent. NIC potently inhibited inflammasome activation in human monocytes infected in vitro, in PBMCs from patients with COVID-19, and in vivo in a mouse model of SARS-CoV-2 infection. This study provides relevant information regarding the immunomodulatory functions of this promising drug for COVID-19 treatment.
Collapse
Affiliation(s)
- Letícia de Almeida
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L. N. da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamara S. Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adriene Y. Ishimoto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda A. Seribelli
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Becerra
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Warrison A. Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco A. Ataide
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila C. S. Caetano
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keyla S. G. de Sá
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Natália Pelisson
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ronaldo B. Martins
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliano de Paula Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eurico Arruda
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sabrina S. Batah
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Ricardo Castro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiani G. Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando Q. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Thiago M. Cunha
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre T. Fabro
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Larissa D. Cunha
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Louzada-Junior
- Divisão de Imunologia Clínica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rene D. R. de Oliveira
- Divisão de Imunologia Clínica, Emergência, Doenças Infecciosas e Unidade de Terapia Intensiva, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S. Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Corresponding author.
| |
Collapse
|
50
|
Saloni, Kumari D, Ranjan P, Chakraborty T. A computational study of potential therapeutics for COVID-19 invoking conceptual density functional theory. Struct Chem 2022; 33:2195-2204. [PMID: 36097582 PMCID: PMC9452875 DOI: 10.1007/s11224-022-02048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
The pandemic, COVID-19, has caused social and economic disruption at a larger pace all over the world. Identification of an effective drug for the deadliest disease is still an exigency. One of the most promising approaches to combat the lethal disease is use of repurposed drugs. This study provides insights into some of the potential repurposed drugs viz. camostat mesylate, hydroxychloroquine, nitazoxanide, and oseltamivir in terms of the computational quantum chemical method. Properties of these compounds have been elucidated in terms of Conceptual Density Functional Theory (CDFT)-based descriptors, IR spectra, and thermochemical properties. Computed results specify that hydroxychloroquine is the most reactive drug among them. Thermochemical data reveals that camostat mesylate has the utmost heat capacity, entropy, and thermal energy. Our findings indicate that camostat mesylate and hydroxychloroquine may be investigated further as potential COVID-19 therapeutics. We anticipate that the current study will aid the scientific community to design and develop viable therapeutics against COVID-19.
Collapse
Affiliation(s)
- Saloni
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Dimple Kumari
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| | - Prabhat Ranjan
- Department of Mechatronics Engineering, Manipal University Jaipur, Dehmi Kalan-303007, Rajasthan, India
| | - Tanmoy Chakraborty
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, 201310, Greater Noida, UP India
| |
Collapse
|