1
|
Alonso-Navarro H, García-Martín E, Agúndez JAG, Jiménez-Jiménez FJ. Essential tremor - drug treatments present and future. Expert Rev Neurother 2025; 25:43-56. [PMID: 39648495 DOI: 10.1080/14737175.2024.2439514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION The main treatment options for essential tremor (ET), which is probably one of the most common movement disorders, have been propranolol and primidone, for many years. This review aims to synthesize therapeutic attempts with other drugs. AREAS COVERED We have reviewed the current state of the pharmacological treatment of ET, both in patients and in experimental models of this disease, with special emphasis on the data published in the last 5 years. Based on the results in experimental models of ET, proposals have been made for future alternative therapeutic options. EXPERT OPINION The use of drugs other than propranolol and primidone has not shown a greater degree of efficacy than these in the treatment of ET, although according to certain evidence-based guidelines topiramate and phenobarbital could be alternative drugs. The results on the effectiveness of other drugs have been variable. For patients with refractory ET, especially those with head tremor, local injections with botulinum toxin A may be useful. According to the results of various experimental models, T calcium channel blockers, modulators of GABAA receptors (GABAARs), GABAB receptors (GABABRs), and glutamatergic neurotransmission, and drugs that decrease the expression of LINGO-1 could be interesting options for the future, among others.
Collapse
Affiliation(s)
| | - Elena García-Martín
- UNEx, ARADyAL Instituto de Salud, University Institute of Molecular Pathology Biomarkers, Carlos III, Cáceres, Spain
| | - José A G Agúndez
- UNEx, ARADyAL Instituto de Salud, University Institute of Molecular Pathology Biomarkers, Carlos III, Cáceres, Spain
| | | |
Collapse
|
2
|
Loomis S, Samoylenko E, Virley D, McCreary AC. Nabiximols (NBX) suppresses tremor in a rat Harmaline model of essential tremor. Exp Neurol 2024; 382:114988. [PMID: 39368533 DOI: 10.1016/j.expneurol.2024.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders; despite this, there remains an unmet need for novel therapies. The treatment of rats with harmaline modulates the rhythmicity of inferior olivary neurons, resulting in generalized tremor with a frequency of 9-12 Hz in rats, comparable to that of human ET (4-12 Hz). PURPOSE Interestingly, cannabinoids reduce tremor, therefore we have assessed the cannabinoid nabiximols (NBX; marketed as Sativex) a complex botanical drug mixture, in the harmaline-rat model of ET. METHOD We tested the effects of acute (single dose) and subchronic (10 days) treatment of NBX (at 5.2, 10.4 and 20.8 mg kg-1 p.o.) administered prior to harmaline and acute NBX (20.8 mg kg-1) administered post-harmaline in male SD rats. Propranolol (20 mg kg-1 i.p.) was used as a positive control. Observed Scoring (OS) was carried out prior to placement in a tremor-monitoring apparatus for the calculation of Tremor Index (TI) and Motion Power Percentage (MPP). RESULTS Acute and subchronic NBX significantly attenuated harmaline-induced tremor at 10.4 and 20.8 mg kg-1, respectively, for each parameter (OS, TI, and MPP) when administered pre-harmaline as did propranolol (20 mg kg-1). NBX did not attenuate harmaline-induced tremor when administered post-harmaline. CONCLUSIONS These data suggest efficacy of acute and subchronic NBX to reduce tremors, based on OS, TI and MPP readouts if administered prior to harmaline. These data are the first to indicate the preclinical effects of an oral botanical cannabinoid formulation, NBX, in an animal model of ET.
Collapse
Affiliation(s)
- Sally Loomis
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK.
| | - Elena Samoylenko
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | - David Virley
- Jazz Pharmaceuticals Ltd., Sovereign House, Cambridge CB24 9BZ, UK
| | | |
Collapse
|
3
|
Orsucci D, Tessa A, Caldarazzo Ienco E, Trovato R, Natale G, Bilancieri G, Giuntini M, Napolitano A, Salvetti S, Vista M, Santorelli FM. Clinical and genetic features of dominant Essential Tremor in Tuscany, Italy: FUS, CAMTA1, ATXN1 and beyond. J Neurol Sci 2024; 460:123012. [PMID: 38626532 DOI: 10.1016/j.jns.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Essential Tremor (ET) is one of the most common neurological disorders. In most instances ET is inherited as an autosomal dominant trait with age-related penetrance (virtually complete in advanced age); however, ET genetics remains elusive. The current study aims to identify possibly pathogenic genetic variants in a group of well-characterized ET families. METHODS 34 individuals from 14 families with dominant ET were clinically evaluated and studied by whole exome sequencing studies (after excluding trinucleotide expansion disorders). RESULTS Most patients had pure ET. In 4 families, exome studies could identify a genetic variant potentially able to significantly alter the protein structure (CADD >20, REVEL score > 0.25), shared by all the affected individuals (in CAMTA1, FUS, MYH14, SGCE genes). In another family there were two variants in dominant genes (PCDH9 and SQSTM1). Moreover, an interrupted "intermediate" trinucleotide expansion in ATXN1 ("SCA1") was identified in a further family with pure ET. CONCLUSION Combining our observations together with earlier reports, we can conclude that ET genes confirmed in at least two families to date include CAMTA1 and FUS (reported here), as well as CACNA1G, NOTCH2NLC and TENM4. Most cases of familial ET, inherited with an autosomal dominant inheritance, may result from "mild" variants of many different genes that, when affected by more harmful genetic variants, lead to more severe neurological syndromes (still autosomal dominant). Thus, ET phenotype may be the "mild", incomplete manifestation of many other dominant neurogenetic diseases. These findings further support evidence of genetic heterogeneity for such disease(s). Author's keywords: cerebellar ataxias, movement disorders, neurogenetics, rare neurological disorders, tremor.
Collapse
Affiliation(s)
- D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| | - A Tessa
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | | | - R Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Natale
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Bilancieri
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - M Giuntini
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - A Napolitano
- Unit of Neurology, Apuane Hospital, Massa Carrara, Italy
| | - S Salvetti
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | |
Collapse
|
4
|
Shi Y, Cheng Y, Wang W, Tang L, Li W, Zhang L, Yuan Z, Zhu F, Duan Q. YANK2 activated by Fyn promotes glioma tumorigenesis via the mTOR-independent p70S6K activation pathway. Sci Rep 2024; 14:10507. [PMID: 38714727 PMCID: PMC11076283 DOI: 10.1038/s41598-024-61157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 05/10/2024] Open
Abstract
Glioma, particularly glioblastomas (GBM), is incurable brain tumor. The most targeted receptor tyrosine kinase (RTKs) drugs did not bring benefit to GBM patients. The mechanism of glioma growth continues to be explored to find more effective treatment. Here, we reported that Ser/Thr protein kinase YANK2 (yet another kinase 2) is upregulated in glioma tissues and promotes the growth and proliferation of glioma in vitro and in vivo. Further, we confirmed that oncogene Fyn directly activated YANK2 through phosphorylation its Y110, and Fyn-mediated YANK2 phosphorylation at Y110 site promotes glioma growth by increasing its stability. Finally, YANK2 was proved to be a novel upstream kinase of p70S6K and promotes glioma growth by directly phosphorylating p70S6K at T389. Taken together, we found a new mTOR-independent p70S6K activation pathway, Fyn-YANK2-p70S6K, which promotes glioma growth, and YANK2 is a potential oncogene and serves as a novel therapeutic target for glioma.
Collapse
Affiliation(s)
- Yue Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Clinical Laboratory, Zhengzhou Eighth People's Hospital, Zhengzhou, Henan, China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liu Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wensheng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liyuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zheng Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Feng Zhu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China.
- Medical and Industry Crossover Research Institute of Medical College, Henan University, Kaifeng, 475000, Henan, China.
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China.
- Medical and Industry Crossover Research Institute of Medical College, Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
5
|
Zheng Z, Zhu Z, Pu J, Zhou C, Cao L, Lv D, Lu J, Zhao G, Chen Y, Tian J, Yin X, Zhang B, Yan Y, Zhao G. Early-onset familial essential tremor is associated with nucleotide expansions of spinocerebellar ataxia in China. Mol Biol Rep 2024; 51:113. [PMID: 38227102 DOI: 10.1007/s11033-023-09023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Essential tremor (ET) is a neurological disease characterized by action tremor in upper arms. Although its high heritability and prevalence worldwide, its etiology and association with other diseases are still unknown. METHOD We investigated 10 common spinocerebellar ataxias (SCAs), including SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, SCA36, dentatorubral-pallidoluysian atrophy (DRPLA) in 92 early-onset familial ET pedigrees in China collected from 2016 to 2022. RESULT We found one SCA12 proband carried 51 CAG repeats within PPP2R2B gene and one SCA3 proband with intermediate CAG repeats (55) with ATXN3 gene. The other 90 ET probands all had normal repeat expansions. CONCLUSION Tremor can be the initial phenotype of certain SCA. For early-onset, familial ET patients, careful physical examinations are needed before genetic SCA screening.
Collapse
Affiliation(s)
- Zhilin Zheng
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Zeyu Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Gaohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Martuscello RT, Sivaprakasam K, Hartstone W, Kuo SH, Konopka G, Louis ED, Faust PL. Gene Expression Analysis of Laser-Captured Purkinje Cells in the Essential Tremor Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1166-1181. [PMID: 36242761 PMCID: PMC10359949 DOI: 10.1007/s12311-022-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is a common, progressive neurological disease characterized by an 8-12-Hz kinetic tremor. Despite its high prevalence, the patho-mechanisms of tremor in ET are not fully known. Through comprehensive studies in postmortem brains, we identified major morphological changes in the ET cerebellum that reflect cellular damage in Purkinje cells (PCs), suggesting that PC damage is central to ET pathogenesis. We previously performed a transcriptome analysis in ET cerebellar cortex, identifying candidate genes and several dysregulated pathways. To directly target PCs, we purified RNA from PCs isolated by laser capture microdissection and performed the first ever PC-specific RNA-sequencing analysis in ET versus controls. Frozen postmortem cerebellar cortex from 24 ETs and 16 controls underwent laser capture microdissection, obtaining ≥2000 PCs per sample. RNA transcriptome was analyzed via differential gene expression, principal component analysis (PCA), and gene set enrichment analyses (GSEA). We identified 36 differentially expressed genes, encompassing multiple cellular processes. Some ET (13/24) had greater dysregulation of these genes and segregated from most controls and remaining ETs in PCA. Characterization of genes/pathways enriched in this PCA and GSEA identified multiple pathway dysregulations in ET, including RNA processing/splicing, synapse organization/ion transport, and oxidative stress/inflammation. Furthermore, a different set of pathways characterized marked heterogeneity among ET patients. Our data indicate a range of possible mechanisms for the pathogenesis of ET. Significant heterogeneity among ET combined with dysregulation of multiple cellular processes supports the notion that ET is a family of disorders rather than one disease entity.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Karthigayini Sivaprakasam
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Whitney Hartstone
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 650 W 168th Street, BB302, New York, NY, USA
| | - Genevieve Konopka
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Suite NL9.114, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
d’Apolito M, Ceccarini C, Savino R, Adipietro I, di Bari I, Santacroce R, Curcetti M, D’Andrea G, Croce AI, Cesarano C, Polito AN, Margaglione M. A Novel KCNN2 Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:1380. [PMID: 37510285 PMCID: PMC10379157 DOI: 10.3390/genes14071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. AIM OF THE STUDY to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. METHODS Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. RESULTS The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (KCNN2) (NM_021614.3: c.1145G>A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The KCNN2 gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Savino
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna Nunzia Polito
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| |
Collapse
|
9
|
Chi W, Wu M, Wang HL, Wu QY, Zhang YP, Hu YN, Zhu YB, Lin XF, Chen T, Luo JW, Ruan XL, Li YF. Han family with essential tremor caused by the P421L variant of the TENM4 gene in China. Neurol Sci 2023; 44:2003-2015. [PMID: 36689009 DOI: 10.1007/s10072-023-06603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Essential tremor (ET) is an autosomal dominant inheritance disorder. Mutations in fusion sarcoma (FUS), mitochondrial serine peptidase 2 (HTRA2), teneurin transmembrane protein 4 (TENM4), sortilin1 (SORT1), SCN11A, and notch2N-terminal-like (NOTCH2NLC) genes are associated with familial ET. METHODS A proband with ET was tested using whole-exome sequencing and repeat-primed polymerase chain reaction. Subsequently, the family members were screened for the suspected mutation, and the results were verified using Sanger sequencing. The relationship between pedigree and phenotype was also analyzed, and structural and functional changes in the variants were predicted using bioinformatics analysis. RESULTS In a family with ET, the proband (III4) and the proband's father (II1), grandfather (I1), uncle (II2), and cousin (III5) all presented with involuntary tremors of both upper limbs. The responsible mutation was identified as TENM4 c.1262C > T (p.P421L), which showed genetic co-segregation in the family survey. AlphaFold predicted a change in the spatial position of TENM4 after the P421L mutation, which may have affected its stability. AlphaFold also predicted P421L to be a deleterious variation, which would lead to lower degrees of freedom of the TENM4 protein, thereby affecting the protein's structure and stability. According to the bioinformatics analysis, TENM4 (p.P421L) may reduce the signal reaching the nucleus by affecting the expression of TENM4 messenger RNA (mRNA), thereby impairing the normal oligodendrocyte differentiation process and leading to impaired myelination. CONCLUSION This study revealed that the TENM4 (p.P421L) pathogenic missense variation was responsible for ET in the proband.
Collapse
Affiliation(s)
- Wu Chi
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Emergency Department, Fujian Provincial Hospital, Fuzhou, 350001, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Institute of Emergency MedicineFujian Emergency Medical Center, Fuzhou, 350001, China
| | - Min Wu
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Han-Lu Wang
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qiu-Yan Wu
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yan-Ping Zhang
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Ya-Nan Hu
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Yao-Bin Zhu
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Traditional Chinese Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xin-Fu Lin
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.,Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Ting Chen
- Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Jie-Wei Luo
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Traditional Chinese Medicine, Fujian Provincial Hospital, Fuzhou, 350001, China.
| | - Xing-Lin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| | - Yun-Fei Li
- Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China. .,Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, China.
| |
Collapse
|
10
|
Zhou J, Van der Heijden ME, Salazar Leon LE, Lin T, Miterko LN, Kizek DJ, Perez RM, Pavešković M, Brown AM, Sillitoe RV. Propranolol Modulates Cerebellar Circuit Activity and Reduces Tremor. Cells 2022; 11:cells11233889. [PMID: 36497147 PMCID: PMC9740691 DOI: 10.3390/cells11233889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/10/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Tremor is the most common movement disorder. Several drugs reduce tremor severity, but no cures are available. Propranolol, a β-adrenergic receptor blocker, is the leading treatment for tremor. However, the in vivo circuit mechanisms by which propranolol decreases tremor remain unclear. Here, we test whether propranolol modulates activity in the cerebellum, a key node in the tremor network. We investigated the effects of propranolol in healthy control mice and Car8wdl/wdl mice, which exhibit pathophysiological tremor and ataxia due to cerebellar dysfunction. Propranolol reduced physiological tremor in control mice and reduced pathophysiological tremor in Car8wdl/wdl mice to control levels. Open field and footprinting assays showed that propranolol did not correct ataxia in Car8wdl/wdl mice. In vivo recordings in awake mice revealed that propranolol modulates the spiking activity of control and Car8wdl/wdl Purkinje cells. Recordings in cerebellar nuclei neurons, the targets of Purkinje cells, also revealed altered activity in propranolol-treated control and Car8wdl/wdl mice. Next, we tested whether propranolol reduces tremor through β1 and β2 adrenergic receptors. Propranolol did not change tremor amplitude or cerebellar nuclei activity in β1 and β2 null mice or Car8wdl/wdl mice lacking β1 and β2 receptor function. These data show that propranolol can modulate cerebellar circuit activity through β-adrenergic receptors and may contribute to tremor therapeutics.
Collapse
Affiliation(s)
- Joy Zhou
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meike E. Van der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Luis E. Salazar Leon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tao Lin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Lauren N. Miterko
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dominic J. Kizek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Ross M. Perez
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matea Pavešković
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-832-824-8913
| |
Collapse
|
11
|
Rekik A, Nasri A, Mrabet S, Gharbi A, Souissi A, Gargouri A, Kacem I, Gouider R. Non-motor features of essential tremor with midline distribution. Neurol Sci 2022; 43:5917-5925. [DOI: 10.1007/s10072-022-06262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
|
12
|
Bolton TAW, Van De Ville D, Régis J, Witjas T, Girard N, Levivier M, Tuleasca C. Graph Theoretical Analysis of Structural Covariance Reveals the Relevance of Visuospatial and Attentional Areas in Essential Tremor Recovery After Stereotactic Radiosurgical Thalamotomy. Front Aging Neurosci 2022; 14:873605. [PMID: 35677202 PMCID: PMC9168220 DOI: 10.3389/fnagi.2022.873605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Essential tremor (ET) is the most common movement disorder. Its pathophysiology is only partially understood. Here, we leveraged graph theoretical analysis on structural covariance patterns quantified from morphometric estimates for cortical thickness, surface area, and mean curvature in patients with ET before and one year after (to account for delayed clinical effect) ventro-intermediate nucleus (Vim) stereotactic radiosurgical thalamotomy. We further contrasted the observed patterns with those from matched healthy controls (HCs). Significant group differences at the level of individual morphometric properties were specific to mean curvature and the post-/pre-thalamotomy contrast, evidencing brain plasticity at the level of the targeted left thalamus, and of low-level visual, high-level visuospatial and attentional areas implicated in the dorsal visual stream. The introduction of cross-correlational analysis across pairs of morphometric properties strengthened the presence of dorsal visual stream readjustments following thalamotomy, as cortical thickness in the right lingual gyrus, bilateral rostral middle frontal gyrus, and left pre-central gyrus was interrelated with mean curvature in the rest of the brain. Overall, our results position mean curvature as the most relevant morphometric feature to understand brain plasticity in drug-resistant ET patients following Vim thalamotomy. They also highlight the importance of examining not only individual features, but also their interactions, to gain insight into the routes of recovery following intervention.
Collapse
Affiliation(s)
- Thomas A. W. Bolton
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Connectomics Laboratory, Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Dimitri Van De Ville
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Tatiana Witjas
- Neurology Department, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Centre de Résonance Magnétique Biologique et Médicale, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, Marseille, France
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Agúndez JAG, García-Martín E, Alonso-Navarro H, Rodríguez C, Díez-Fairén M, Álvarez I, Pastor P, Benito-León J, López-Alburquerque T, Jiménez-Jiménez FJ. Vitamin D Receptor and Binding Protein Gene Variants in Patients with Essential Tremor. Mol Neurobiol 2022; 59:3458-3466. [PMID: 35322382 DOI: 10.1007/s12035-022-02804-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/17/2022] [Indexed: 11/25/2022]
Abstract
Several studies have shown an association between some variants in the vitamin D receptor (VDR) and the GC vitamin D binding protein (GC) genes with the risk for Parkinson's disease or other neurological disorders. VDR rs2228570 has shown an association with essential tremor (ET) in a previous study. The aim of this study is to look for the association between several common variants in these genes and the risk for ET. We genotyped 272 patients diagnosed with familial ET and 272 age-matched controls using specific TaqMan assays for VDR rs2228570, VDR rs731236, VDR rs7975232, VDR rs739837, VDR rs78783628, GC rs7041, and GC rs4588 single nucleotide variants (SNVs). We found an association between GC rs7041 SNV and ET using recessive, codominant, and allelic models. Despite our results did not find an association between VDR rs2228570 and ET, the pooled data with those by a previous report suggest this association under recessive, codominant, and allelic models. None of the SNVs studied was related to the age at onset of tremor in ET patients. Data from the current study suggest an association between GC rs7041 and VDR rs2228570 SNVs and ET risk.
Collapse
Affiliation(s)
- José A G Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarker, ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarker, ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Hortensia Alonso-Navarro
- Section of Neurology, Ronda del Sur 10, E28500 Argamda del Rey (Madrid), C/ Marroquina 14, 3o B, 28030, Madrid, Spain
| | - Christopher Rodríguez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarker, ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Mónica Díez-Fairén
- Fundació Per La Recerça Biomèdica, Social Mútua de Terrassa, Terrassa, Barcelona, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Ignacio Álvarez
- Fundació Per La Recerça Biomèdica, Social Mútua de Terrassa, Terrassa, Barcelona, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Pau Pastor
- Fundació Per La Recerça Biomèdica, Social Mútua de Terrassa, Terrassa, Barcelona, Spain.,Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Julián Benito-León
- Service of Neurology, Department of Medicine, Hospital Doce de Octubre, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Félix Javier Jiménez-Jiménez
- Section of Neurology, Ronda del Sur 10, E28500 Argamda del Rey (Madrid), C/ Marroquina 14, 3o B, 28030, Madrid, Spain. .,Department of Medicine-Neurology, Hospital "Príncipe de Asturias." Universidad de Alcalá, C/ Marroquina 14, 3o B, 28030, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
14
|
Ondo W. Enhancing GABA inhibition is the next generation of medications for essential tremor. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 163:317-334. [PMID: 35750368 DOI: 10.1016/bs.irn.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Aminobutyric acid (GABA) is the most prevalent inhibitory CNS neurotransmitter. Activating GABA-A receptors hyperpolarizes cells via Cl- influx, which inhibits action potentials. Although the exact pathophysiologies of tremor are incompletely understood, proposed neuroanatomy extensively implicates GABA pathways. Pathological studies and imaging studies also show GABA abnormalities in patients with ET. Most importantly, medications that activate GABA-A receptors, such as primidone, often improve tremor. Ongoing clinical trials and physiology research should further refine potential future GABAergic targets and treatments, which are currently the most promising targets for pharmacological intervention.
Collapse
Affiliation(s)
- William Ondo
- Houston Methodist Hospital, Weill Cornel Medical School, Houston, TX, United States.
| |
Collapse
|
15
|
Kosmowska B, Wardas J. The Pathophysiology and Treatment of Essential Tremor: The Role of Adenosine and Dopamine Receptors in Animal Models. Biomolecules 2021; 11:1813. [PMID: 34944457 PMCID: PMC8698799 DOI: 10.3390/biom11121813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Essential tremor (ET) is one of the most common neurological disorders that often affects people in the prime of their lives, leading to a significant reduction in their quality of life, gradually making them unable to independently perform the simplest activities. Here we show that current ET pharmacotherapy often does not sufficiently alleviate disease symptoms and is completely ineffective in more than 30% of patients. At present, deep brain stimulation of the motor thalamus is the most effective ET treatment. However, like any brain surgery, it can cause many undesirable side effects; thus, it is only performed in patients with an advanced disease who are not responsive to drugs. Therefore, it seems extremely important to look for new strategies for treating ET. The purpose of this review is to summarize the current knowledge on the pathomechanism of ET based on studies in animal models of the disease, as well as to present and discuss the results of research available to date on various substances affecting dopamine (mainly D3) or adenosine A1 receptors, which, due to their ability to modulate harmaline-induced tremor, may provide the basis for the development of new potential therapies for ET in the future.
Collapse
Affiliation(s)
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, Poland;
| |
Collapse
|
16
|
Huang XR, Tang BS, Jin P, Guo JF. The Phenotypes and Mechanisms of NOTCH2NLC-Related GGC Repeat Expansion Disorders: a Comprehensive Review. Mol Neurobiol 2021; 59:523-534. [PMID: 34718964 DOI: 10.1007/s12035-021-02616-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023]
Abstract
The human-specific gene NOTCH2NLC is primarily expressed in radial glial cells and plays an important role in neuronal differentiation and cortical neurogenesis. Increasing studies were conducted to verify the relationship between NOTCH2NLC gene and many neurological diseases, such as neuronal intranuclear inclusion disease, essential tremor, multiple system atrophy, Parkinson's disease, Alzheimer's disease, and even oculopharyngodistal myopathy. Thus, we support the concept, NOTCH2NLC-related GGC repeat expansion disorders (NRED), to summarize all diseases with the GGC repeat expansion in the 5'UTR of NOTCH2NLC gene, regardless of their various clinical phenotypes. Here, we discuss the reported cases to analyze the clinical features of NOTCH2NLC-related GGC repeat expansion disorders, including dementia, parkinsonism, peripheral neuropathy and myopathy, leukoencephalopathy, and essential tremor. In addition, we outline radiological and pathological manifestations of NOTCH2NLC-related GGC repeat expansion disorders, and then present possible mechanisms, such as toxic polyG protein, toxic repeat RNA, the GGC repeat size, and the size and types of trinucleotide interruption. Therefore, this review provides a systematic description of NOTCH2NLC-related GGC repeat expansion disorders and emphasizes the significance for understanding this type of repeat expansion disease.
Collapse
Affiliation(s)
- Xiu-Rong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|