1
|
Sheikh S, Beg AE, Baig MT, Ibrahim S, Huma A, Jabeen A, Anwar Z. High-performance liquid chromatographic method for determination of voriconazole in pure and gel formulation. PLoS One 2024; 19:e0315704. [PMID: 39680615 DOI: 10.1371/journal.pone.0315704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
For routine measurement of Voriconazole (VZ) in a pure and gel formulation, a quick and accurate RP-HPLC technique with UV detection (254 nm) was developed. With a flow rate of 1.0 ml/min using a mobile phase that contained acetonitrile and water mixed 50:50, v/v. Internal standard approach was used for quantification. The method shows good linearity (correlation coefficient = 0.9999) with acceptable accuracy, precision and robustness. Three elements were taken into account to measure robustness. Flow rate, mobile phase composition, and pH all have an impact on the response, but only the flow rate which causes a reduction in the concentration of the drug-has a significant impact on the response. Analyst, equipment, and days were taken into consideration for a precision measurement. The analytical procedure had good precision, as seen by the %RSD which is found to be less than 2.0. The proposed method was straightforward, extremely sensitive, exact, and accurate, and it had a retention time of less than 4 minutes, indicating that it is appropriate for daily quality control.
Collapse
Affiliation(s)
- Samina Sheikh
- Department of Pharmacy Practice, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Anwar Ejaz Beg
- Department of Pharmaceutics, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Mirza Tasawer Baig
- Department of Pharmacy Practice, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Sadaf Ibrahim
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Ambreen Huma
- Department of Pharmacognosy, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Aisha Jabeen
- Department of Pharmacology, Faculty of Pharmacy, Ziauddin University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Gadap Town, Karachi, Pakistan
| |
Collapse
|
2
|
Khandelwal R, Vasava M, Abhirami RB, Karsharma M. Recent advances in triazole synthesis via click chemistry and their pharmacological applications: A review. Bioorg Med Chem Lett 2024; 112:129927. [PMID: 39153663 DOI: 10.1016/j.bmcl.2024.129927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Click chemistry is a flexible method featuring only the most feasible and efficient chemical reactions. The synthesis of 1,2,3-triazole from azides and terminal acetylenes using copper(I) as a catalyst is an extremely powerful reaction due to the extreme dependability, good selectivity, and biocompatibility of the starting materials. Triazole molecules are more than simple passive linkers; through hydrogen bonding and dipole interactions, they rapidly bind with biological targets. Its applications in drug development are expanding, ranging from target-oriented in situ chemistry and combinatorial mechanisms for lead generation to bioconjugation methods to study proteins and DNA. The click chemistry has frequently been used to speed up drug discovery and optimization processes in the past few years. The click chemistry reaction based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a biochemical process with applications in medicinal chemistry and chemical biology. Thus, click reactions are an essential component of the toolkit for medicinal chemistry and help medicinal chemists overcome the barriers in chemical reactions, increase throughput, and improve the standards of compound libraries. The review highlights the recent advancements in the copper-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach for synthesizing biologically important triazole moieties with a greater emphasis on synthesis methodologies and pharmacological applications. Additionally, the triazole-based FDA-approved drugs are also discussed with their mode of action to highlight the importance of the click chemistry approach in synthesizing the bioactive triazole compounds.
Collapse
Affiliation(s)
- Riya Khandelwal
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Mahesh Vasava
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India.
| | - R B Abhirami
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| | - Manaswini Karsharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, India
| |
Collapse
|
3
|
Van de Vliet L, Vackier T, Thevissen K, Decoster D, Steenackers HP. Imidazoles and Quaternary Ammonium Compounds as Effective Therapies against (Multidrug-Resistant) Bacterial Wound Infections. Antibiotics (Basel) 2024; 13:949. [PMID: 39452215 PMCID: PMC11505196 DOI: 10.3390/antibiotics13100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet. METHODS In this study, the focus was on finding active synergistic combinations of imidazoles and quaternary ammonium compounds against (multidrug-resistant) bacterial pathogens through checkerboard assays. Experimental evolution in liquid culture was used to evaluate the possible emergence of resistance against the most active synergistic combination. RESULTS Several promising synergistic combinations were identified against an array of Gram-positive pathogens: miconazole/domiphen bromide, ketoconazole/domiphen bromide, clotrimazole/domiphen bromide, fluconazole/domiphen bromide and miconazole/benzalkonium chloride. Especially, miconazole with domiphen bromide exhibits potential, as it has activity at a low concentration against a broad range of pathogens and shows an absence of strong resistance development over 11 cycles of evolution. CONCLUSIONS This study provides valuable insight into the possible combinations of imidazoles and quaternary ammonium compounds that could be repurposed for (topical) wound treatment. Miconazole with domiphen bromide shows the highest application potential as a possible future wound therapy. However, further research is needed into the mode of action of these compounds and their efficacy and toxicity in vivo.
Collapse
Affiliation(s)
- Lauren Van de Vliet
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Thijs Vackier
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Karin Thevissen
- CMPG-PFI (Plant-Fungus Interactions Group of Centre of Microbial and Plant Genetics), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - David Decoster
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Hans P. Steenackers
- MiCA Lab, Centre of Microbial and Plant Genetics (CMPG), Department Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
4
|
Toepfer S, Keniya MV, Lackner M, Monk BC. Azole Combinations and Multi-Targeting Drugs That Synergistically Inhibit Candidozyma auris. J Fungi (Basel) 2024; 10:698. [PMID: 39452650 PMCID: PMC11508803 DOI: 10.3390/jof10100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024] Open
Abstract
Limited antifungal treatment options and drug resistance require innovative approaches to effectively combat fungal infections. Combination therapy is a promising strategy that addresses these pressing issues by concurrently targeting multiple cellular sites. The drug targets usually selected for combination therapy are from different cellular pathways with the goals of increasing treatment options and reducing development of resistance. However, some circumstances can prevent the implementation of combination therapy in clinical practice. These could include the increased risk of adverse effects, drug interactions, and even the promotion of drug resistance. Furthermore, robust clinical evidence supporting the superiority of combination therapy over monotherapy is limited and underscores the need for further research. Despite these challenges, synergies detected with different antifungal classes, such as the azoles and echinocandins, suggest that treatment strategies can be optimized by better understanding the underlying mechanisms. This review provides an overview of multi-targeting combination strategies with a primary focus on Candidozyma auris infections.
Collapse
Affiliation(s)
- Stephanie Toepfer
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Mikhail V. Keniya
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Michaela Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, 6020 Innsbruck, Austria;
| | - Brian C. Monk
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand;
| |
Collapse
|
5
|
Asmawi AA, Adam F, Mohd Azman NA, Abdul Rahman MB. Advancements in the nanodelivery of azole-based fungicides to control oil palm pathogenic fungi. Heliyon 2024; 10:e37132. [PMID: 39309766 PMCID: PMC11416272 DOI: 10.1016/j.heliyon.2024.e37132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
The cultivation of oil palms is of great importance in the global agricultural industry due to its role as a primary source of vegetable oil with a wide range of applications. However, the sustainability of this industry is threatened by the presence of pathogenic fungi, particularly Ganoderma spp., which cause detrimental oil palm disease known as basal stem rot (BSR). This unfavorable condition eventually leads to significant productivity losses in the harvest, with reported yield reductions of 50-80 % in severely affected plantations. Azole-based fungicides offer potential solutions to control BSR, but their efficacy is hampered by limited solubility, penetration, distribution, and bioavailability. Recent advances in nanotechnology have paved the way for the development of nanosized delivery systems. These systems enable effective fungicide delivery to target pathogens and enhance the bioavailability of azole fungicides while minimising environmental and human health risks. In field trials, the application of azole-based nanofungicides resulted in up to 75 % reduction in disease incidence compared to conventional fungicide treatments. These innovations offer opportunities for the development of sustainable agricultural practices. This review highlights the importance of oil palm cultivation concerning the ongoing challenges posed by pathogenic fungi and examines the potential of azole-based fungicides for disease control. It also reviews recent advances in nanotechnology for fungicide delivery, explores the mechanisms behind these nanodelivery systems, and emphasises the opportunities and challenges associated with azole-based nanofungicides. Hence, this review provides valuable insights for future nanofungicide development in effective oil palm disease control.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Jenjarom, 42610, Selangor, Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Nurul Aini Mohd Azman
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang, 26300, Pahang, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Foundry of Reticular Materials for Sustainability, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Haji Ali S, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, Synthesis, Investigation, and Biological Activity Assessments of (4-Substituted-Phenyl)- N-(3-morpholinopropyl)-3-phenylthiazol-2(3 H)-imine Derivatives as Antifungal Agents. ACS OMEGA 2024; 9:39326-39343. [PMID: 39346840 PMCID: PMC11425616 DOI: 10.1021/acsomega.3c07879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 10/01/2024]
Abstract
In this study, a series of novel thiazol-2(3H)-imine (2a-2j) were designed, synthesized, and characterized by means of 1H NMR, 13C NMR, and HRMS spectral analyses. In vitro antifungal activity was performed using a modified EUCAST protocol. Two of the synthesized compounds (2d and 2e) showed activity against Candida albicans and Candida parapsilosis. Compound 2e showed activity against C. parapsilosis (MIC50 = 1.23 μg/mL) for 48 h. This value is very similar to ketoconazole. The dynamic analysis of the potential compounds 2d and 2e revealed notable stability while interacting with the 14α-demethylase enzyme substrate. The absorption, distribution, metabolism, and excretion (ADME) studies of the candidate compound showed acceptable ADME parameter data and verified their drug-likeness characteristics. According to the results of this study, compound 4-(4-fluorophenyl)-N-(3-morpholinopropyl)-3-phenylthiazol-2(3H)-imine (2e) and its derivatives as 14α-demethylase inhibitors can be used as a new antifungal for further structural improvements and additional research.
Collapse
Affiliation(s)
- Sazan Haji Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hawler Medical University, Erbil 44000, Iraq
- Graduate Education Institute, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central Research Laboratory,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry,
Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
7
|
Lu T, Wang XM, Chen PX, Xi J, Yang HB, Zheng WF, Zhao YX. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Curr Genet 2024; 70:16. [PMID: 39276284 DOI: 10.1007/s00294-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of β-glucan, ergothioneine, ergosterol, and carotenoids. β-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.
Collapse
Affiliation(s)
- Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiao-Meng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng-Xu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Juan Xi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Han-Bing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Fa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Yan-Xia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
8
|
Kurnia D, Lestari S, Mayanti T, Gartika M, Nurdin D. Anti-Infection of Oral Microorganisms from Herbal Medicine of Piper crocatum Ruiz & Pav. Drug Des Devel Ther 2024; 18:2531-2553. [PMID: 38952486 PMCID: PMC11215520 DOI: 10.2147/dddt.s453375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/20/2024] [Indexed: 07/03/2024] Open
Abstract
The WHO Global Status Report on Oral Health 2022 reveals that oral diseases caused by infection with oral pathogenic microorganisms affect nearly 3.5 billion people worldwide. Oral health problems are caused by the presence of S. mutans, S. sanguinis, E. faecalis and C. albicans in the oral cavity. Synthetic anti-infective drugs have been widely used to treat oral infections, but have been reported to cause side effects and resistance. Various strategies have been implemented to overcome this problem. Synthetic anti-infective drugs have been widely used to treat oral infections, but they have been reported to cause side effects and resistance. Therefore, it is important to look for safe anti-infective alternatives. Ethnobotanical and ethnopharmacological studies suggest that Red Betel leaf (Piper crocatum Ruiz & Pav) could be a potential source of oral anti-infectives. This review aims to discuss the pathogenesis mechanism of several microorganisms that play an important role in causing health problems, the mechanism of action of synthetic oral anti-infective drugs in inhibiting microbial growth in the oral cavity, and the potential of red betel leaf (Piper crocatum Ruiz & Pav) as an herbal oral anti-infective drug. This study emphasises the importance of researching natural components as an alternative treatment for oral infections that is more effective and can meet global needs.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Seftiana Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang, Indonesia
| | - Meirina Gartika
- Department of Pediatric Dentistry, Faculty of Medicine, University of Padjadjaran, Bandung, Indonesia
| | - Denny Nurdin
- Departement of Conservative Dentistry, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
9
|
Sifaoui I, Rodríguez-Expósito RL, Reyes-Batlle M, Sutak R, Piñero JE, Lorenzo-Morales J. Amoebicidal Effect of COVID Box Molecules against Acanthamoeba: A Study of Cell Death. Pharmaceuticals (Basel) 2024; 17:808. [PMID: 38931475 PMCID: PMC11206913 DOI: 10.3390/ph17060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Acanthamoeba spp. can cause a sight threatening disease. At present, the current treatments used to treat Acanthamoeba spp. Infections, such as biguanide-based antimicrobials, remain inefficacious, with the appearance of resistant forms and high cytotoxicity to host cells. In this study, an initial screening was conducted against Acanthamoeba castellanii Neff and murine macrophages J774A.1 using alamarBlue™. Among the 160 compounds included in the cited box, 90% exhibited an inhibition of the parasite above 80%, while only 18.75% of the compounds inhibited the parasite with a lethality towards murine macrophage lower than 20%. Based on the amoebicidal activity, the cytotoxicity assay, and availability, Terconazole was chosen for the elucidation of the action mode in two clinical strains, Acanthamoeba culbertsoni and Acanthamoeba castellanii L10. A fluorescence image-based system and proteomic techniques were used to investigate the effect of the present azole on the cytoskeleton network and various programmed cell death features, including chromatin condensation and mitochondria dysfunction. Taking all the results together, we can suggest that Terconazole can induce programmed cell death (PCD) via the inhibition of sterol biosynthesis inhibition.
Collapse
Affiliation(s)
- Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38200 San Cristóbal de La Laguna, Spain; (I.S.); (R.L.R.-E.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Consorcio Centro de Investigación on Biomédica En Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38200 San Cristóbal de La Laguna, Spain; (I.S.); (R.L.R.-E.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Consorcio Centro de Investigación on Biomédica En Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - María Reyes-Batlle
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38200 San Cristóbal de La Laguna, Spain; (I.S.); (R.L.R.-E.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Consorcio Centro de Investigación on Biomédica En Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Czech Republic;
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38200 San Cristóbal de La Laguna, Spain; (I.S.); (R.L.R.-E.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Consorcio Centro de Investigación on Biomédica En Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38200 San Cristóbal de La Laguna, Spain; (I.S.); (R.L.R.-E.); (M.R.-B.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
- Consorcio Centro de Investigación on Biomédica En Red (CIBER), Área de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
10
|
Dladla M, Gyzenhout M, Marias G, Ghosh S. Azole resistance in Aspergillus fumigatus- comprehensive review. Arch Microbiol 2024; 206:305. [PMID: 38878211 DOI: 10.1007/s00203-024-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Aspergillus fumigatus is a ubiquitous filamentous fungus commonly found in the environment. It is also an opportunistic human pathogen known to cause a range of respiratory infections, such as invasive aspergillosis, particularly in immunocompromised individuals. Azole antifungal agents are widely used for the treatment and prophylaxis of Aspergillus infections due to their efficacy and tolerability. However, the emergence of azole resistance in A. fumigatus has become a major concern in recent years due to their association with increased treatment failures and mortality rates. The development of azole resistance in A. fumigatus can occur through both acquired and intrinsic mechanisms. Acquired resistance typically arises from mutations in the target enzyme, lanosterol 14-α-demethylase (Cyp51A), reduces the affinity of azole antifungal agents for the enzyme, rendering them less effective, while intrinsic resistance refers to a natural resistance of certain A. fumigatus isolates to azole antifungals due to inherent genetic characteristics. The current review aims to provide a comprehensive overview of azole antifungal resistance in A. fumigatus, discusses underlying resistance mechanisms, including alterations in the target enzyme, Cyp51A, and the involvement of efflux pumps in drug efflux. Impact of azole fungicide uses in the environment and the spread of resistant strains is also explored.
Collapse
Affiliation(s)
- Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marieka Gyzenhout
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | - Gert Marias
- Department of Plant Sciences, Division of Plant Pathology, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Birkat Al Mawz, Oman.
| |
Collapse
|
11
|
Levshin IB, Simonov AY, Panov AA, Grammatikova NE, Alexandrov AI, Ghazy ESMO, Ivlev VA, Agaphonov MO, Mantsyzov AB, Polshakov VI. Synthesis and Biological Evaluation of a Series of New Hybrid Amide Derivatives of Triazole and Thiazolidine-2,4-dione. Pharmaceuticals (Basel) 2024; 17:723. [PMID: 38931390 PMCID: PMC11206592 DOI: 10.3390/ph17060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
A series of hybrid compounds with triazole and thiazolidine nuclei connected by a linker has been synthesized and extensively studied. Various synthetic methods for the target compounds have been tested. A microbiological assessment of the obtained compounds was carried out on strains of pathogenic fungi C. albicans, C. non-albicans, multidrug-resistant C. auris, Rhizopus arrhizus, Aspergillus spp. and some dermatophytes and other yeasts. The lowest obtained MIC values for target compounds lie between 0.003 µg/mL and 0.5 µg/mL and therefore the compounds are not inferior or several times better than commercial azole drugs. The length of the acylpiperazine linker has a limited effect on antifungal activity. Some bioisosteric analogues were tested in microbiological analysis, but turned out to be weaker than the leader in activity. The highest activity was demonstrated by a compound with para-chlorobenzylidene substituent in the thiazolidine fragment. Molecular modelling was used to predict binding modes of synthesized molecules and rationalize experimentally observed SAR. The leader compound is twice more effective in inhibiting the formation of germ tubes by Candida albicans yeast cells compared to voriconazole. An increased level of Pdr5, an azoles drug efflux pump was observed, but the increase is lower than that caused by azoles. The results can be useful for further development of more powerful and safe antifungal agents.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander Yu. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (N.E.G.)
| | - Alexander I. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vasiliy A. Ivlev
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 17198 Moscow, Russia;
| | - Michael O. Agaphonov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.I.A.); (E.S.M.O.G.); (M.O.A.)
| | - Alexey B. Mantsyzov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia; (A.B.M.); (V.I.P.)
| |
Collapse
|
12
|
Xie F, Hao Y, Liu Y, Bao J, Wang R, Chi X, Wang T, Yu S, Jin Y, Li L, Jiang Y, Zhang D, Yan L, Ni T. From Synergy to Monotherapy: Discovery of Novel 2,4,6-Trisubstituted Triazine Hydrazone Derivatives with Potent Antifungal Potency In Vitro and In Vivo. J Med Chem 2024; 67:4007-4025. [PMID: 38381075 DOI: 10.1021/acs.jmedchem.3c02292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 μg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.
Collapse
Affiliation(s)
- Fei Xie
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yumeng Hao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yu Liu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Junhe Bao
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Ruina Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Xiaochen Chi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, China
| | - Ting Wang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Shichong Yu
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Yongsheng Jin
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Liping Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Dazhi Zhang
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| | - Lan Yan
- School of Pharmacy, The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), Naval Medical University, No.325 Guohe Road, Shanghai 200433, China
| | - Tingjunhong Ni
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.1239 Siping Road, Shanghai 200072, China
| |
Collapse
|
13
|
Hefny ZA, Ji B, Elsemman IE, Nielsen J, Van Dijck P. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiol 2024; 24:66. [PMID: 38413885 PMCID: PMC10898158 DOI: 10.1186/s12866-024-03213-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Candida albicans is a fungal pathogen causing human infections. Here we investigated differential gene expression patterns and functional enrichment in C. albicans strains grown under different conditions. METHODS A systematic GEO database search identified 239 "Candida albicans" datasets, of which 14 were selected after rigorous criteria application. Retrieval of raw sequencing data from the ENA database was accompanied by essential metadata extraction from dataset descriptions and original articles. Pre-processing via the tailored nf-core pipeline for C. albicans involved alignment, gene/transcript quantification, and diverse quality control measures. Quality assessment via PCA and DESeq2 identified significant genes (FDR < = 0.05, log2-fold change > = 1 or <= -1), while topGO conducted GO term enrichment analysis. Exclusions were made based on data quality and strain relevance, resulting in the selection of seven datasets from the SC5314 strain background for in-depth investigation. RESULTS The meta-analysis of seven selected studies unveiled a substantial number of genes exhibiting significant up-regulation (24,689) and down-regulation (18,074). These differentially expressed genes were further categorized into 2,497 significantly up-regulated and 2,573 significantly down-regulated Gene Ontology (GO) IDs. GO term enrichment analysis clustered these terms into distinct groups, providing insights into the functional implications. Three target gene lists were compiled based on previous studies, focusing on central metabolism, ion homeostasis, and pathogenicity. Frequency analysis revealed genes with higher occurrence within the identified GO clusters, suggesting their potential as antifungal targets. Notably, the genes TPS2, TPS1, RIM21, PRA1, SAP4, and SAP6 exhibited higher frequencies within the clusters. Through frequency analysis within the GO clusters, several key genes emerged as potential targets for antifungal therapies. These include RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101 which exhibited higher occurrence within the identified clusters. CONCLUSION This comprehensive study significantly advances our understanding of the dynamic nature of gene expression in C. albicans. The identification of genes with enhanced potential as antifungal drug targets underpins their value for future interventions. The highlighted genes, including TPS2, TPS1, RIM21, PRA1, SAP4, SAP6, RSP5, GLC7, SOD2, SOD5, SOD1, SOD6, SOD4, SOD3, and RIM101, hold promise for the development of targeted antifungal therapies.
Collapse
Affiliation(s)
- Zeinab Abdelmoghis Hefny
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium
| | - Boyang Ji
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark
| | - Ibrahim E Elsemman
- Department of Information Systems, Faculty of Computers and Information, Assiut University, Assiut, 2071515, Egypt
| | - Jens Nielsen
- BioInnovation Institute, Ole Maaløes Vej 3, Copenhagen, DK2200, Denmark.
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, SE41296, Sweden.
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, Leuven, B-3001, Belgium.
| |
Collapse
|
14
|
Berwal P, Rohilla S, Mathur N, Rani K. Synthesis, Molecular Docking, and Biological Evaluation of Novel Indole-triazole Conjugates. Curr Drug Discov Technol 2024; 21:e120324227917. [PMID: 38482620 DOI: 10.2174/0115701638295739240222074426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Indole-triazole conjugates have emerged as promising candidates for new drug development. Their distinctive structural characteristics, coupled with a wide array of biological activities, render them a captivating and promising field of research for the creation of novel pharmaceutical agents. OBJECTIVE This study aimed to synthesize indole-triazole conjugates to investigate the influence of various substituents on the functional characteristics of indole-triazole hybrids. It also aimed to study the binding modes of new hybrids with the DNA Gyrase using molecular docking studies. METHODS A new set of indole-triazole hybrids was synthesized and characterized using various physicochemical and spectral analyses. All hybrids underwent in-silico pharmacokinetic prediction studies. The antimicrobial efficacy of the hybrids was assessed using tube dilution and agar diffusion methods. Additionally, the in-vitro antioxidant activity of synthesized compounds was determined using the 1,1-diphenyl-2-picryl-hydrazyl free radical scavenging assay. Furthermore, in silico molecular docking studies were performed to enhance our comprehension of how the synthesized compounds interact at the molecular level with DNA gyrase. RESULTS Pharmacokinetic predictions of synthesized hybrids indicated favourable pharmacokinetic profiles, and none of the compounds violated the Lipinski rule of five. Notably, compound 6, featuring a cyclohexanol substituent, demonstrated superior antimicrobial and antioxidant activity (EC50 value = 14.23 μmol). Molecular docking studies further supported the in vitro antioxidant and antimicrobial findings, revealing that all compounds adeptly fit into the binding pocket of DNA Gyrase and engaged in interactions with crucial amino acid residues. CONCLUSION In summary, our research underscores the efficacy of molecular hybridization in shaping the physicochemical, pharmacokinetic, and biological characteristics of novel indole-triazole derivatives.
Collapse
Affiliation(s)
- Paras Berwal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Suman Rohilla
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Nancy Mathur
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Ketki Rani
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| |
Collapse
|
15
|
Rohilla S, Goyal G, Berwal P, Mathur N. A Review on Indole-triazole Molecular Hybrids as a Leading Edge in Drug Discovery: Current Landscape and Future Perspectives. Curr Top Med Chem 2024; 24:1557-1588. [PMID: 38766822 DOI: 10.2174/0115680266307132240509065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Molecular hybridization is a rational design strategy used to create new ligands or prototypes by identifying and combining specific pharmacophoric subunits from the molecular structures of two or more known bioactive derivatives. Molecular hybridization is a valuable technique in drug discovery, enabling the modulation of unwanted side effects and the creation of potential dual-acting drugs that combine the effects of multiple therapeutic agents. Indole-triazole conjugates have emerged as promising candidates for new drug development. The indole and triazole moieties can be linked through various synthetic strategies, such as click chemistry or other coupling reactions, to generate a library of diverse compounds for biological screening. The achievable structural diversity with indole-triazole conjugates offers avenues to optimize their pharmacokinetic and pharmacodynamic attributes, amplifying their therapeutic efficacy. Researchers have extensively tailored both indole and triazole frameworks with diverse modifications to comprehend their impact on the drug's pharmacokinetic and pharmacodynamic characteristics. The current review article endeavours to explore and discuss various research strategies to design indoletriazole hybrids and elucidate their significance in a variety of pathological conditions. The insights provided herein are anticipated to be beneficial for the researchers and will likely encourage further exploration in this field.
Collapse
Affiliation(s)
- Suman Rohilla
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Garima Goyal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Paras Berwal
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| | - Nancy Mathur
- Department of Pharmaceutical Chemistry, SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana, India
| |
Collapse
|
16
|
Kühbacher A, Merschak P, Haas H, Liebl M, Müller C, Gsaller F. The cytochrome P450 reductase CprA is a rate-limiting factor for Cyp51A-mediated azole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 2023; 67:e0091823. [PMID: 37815358 PMCID: PMC10648939 DOI: 10.1128/aac.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 10/11/2023] Open
Abstract
Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In Aspergillus fumigatus, major mechanisms of resistance involve increased expression of cyp51A encoding one of two isoenzymes targeted by azoles. Yet, the level of resistance caused by cyp51A upregulation, driven by either clinically relevant tandem repeat mutations within its promoter or the use of high expressing heterologous promoters, is limited. Cytochrome P450 enzymes such as Cyp51A rely on redox partners that provide electrons for their activity. A. fumigatus harbors several genes encoding putative candidate proteins including two paralogous cytochrome P450 reductases, CprA and CprB, and the cytochrome b 5 CybE. In this work, we investigated the contribution of each cprA, cprB, and cybE overexpression to cyp51A-mediated resistance to different medical and agricultural azoles. Using the bidirectional promoter PxylP, we conditionally expressed these genes in combination with cyp51A, revealing cprA as the main limiting factor. Similar to this approach, we overexpressed cprA in an azole-resistant background strain carrying a cyp51A allele with TR34 in its promoter, which led to a further increase in its resistance. Employing sterol measurements, we demonstrate an enhanced eburicol turnover during upregulation of either cprA or cyp51A, which was even more pronounced during their simultaneous overexpression. In summary, our work suggests that mutations leading to increased Cyp51A activity through increased electron supply could be key factors that elevate azole resistance.
Collapse
Affiliation(s)
- Alexander Kühbacher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Merschak
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian Liebl
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Christoph Müller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians Universität München, Munich, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Hernández-Ayala LF, Guzmán-López EG, Galano A. Quinoline Derivatives: Promising Antioxidants with Neuroprotective Potential. Antioxidants (Basel) 2023; 12:1853. [PMID: 37891932 PMCID: PMC10604020 DOI: 10.3390/antiox12101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Quinoline has been proposed as a privileged molecular framework in medicinal chemistry. Although by itself it has very few applications, its derivatives have diverse biological activities. In this work, 8536 quinoline derivatives, strategically designed using the CADMA-Chem protocol, are presented. This large chemical space was sampled, analyzed and reduced using selection and elimination scores that combine their properties of bioavailability, toxicity and manufacturability. After applying several filters, 25 derivatives were selected to investigate their acid-base, antioxidant and neuroprotective properties. The antioxidant activity was predicted based on the ionization potential and bond dissociation energies, parameters directly related to the transfer of hydrogen atoms and of a single electron, respectively. These two mechanisms are typically involved in the radical scavenging processes. The antioxidant efficiency was compared with reference compounds, and the most promising antioxidants were found to be more efficient than Trolox but less efficient than ascorbate. In addition, based on molecular docking simulations, some derivatives are expected to act as inhibitors of catechol-O methyltransferase (COMT), acetylcholinesterase (AChE) and monoamine oxidase type B (MAO-B) enzymes. Some structural insights about the compounds were found to enhance or decrease the neuroprotection activity. Based on the results, four quinoline derivatives are proposed as candidates to act as multifunctional antioxidants against Alzheimer's (AD) and Parkinson's (PD) diseases.
Collapse
Affiliation(s)
| | | | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, México City 09310, Mexico; (L.F.H.-A.); (E.G.G.-L.)
| |
Collapse
|
18
|
Mehta D, Saini V, Bajaj A. Recent developments in membrane targeting antifungal agents to mitigate antifungal resistance. RSC Med Chem 2023; 14:1603-1628. [PMID: 37731690 PMCID: PMC10507810 DOI: 10.1039/d3md00151b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/22/2023] [Indexed: 09/22/2023] Open
Abstract
Fungal infections cause severe and life-threatening complications especially in immunocompromised individuals. Antifungals targeting cellular machinery and cell membranes including azoles are used in clinical practice to manage topical to systemic fungal infections. However, continuous exposure to clinically used antifungal agents in managing the fungal infections results in the development of multi-drug resistance via adapting different kinds of intrinsic and extrinsic mechanisms. The unique chemical composition of fungal membranes presents attractive targets for antifungal drug discovery as it is difficult for fungal cells to modify the membrane targets for emergence of drug resistance. Here, we discussed available antifungal drugs with their detailed mechanism of action and described different antifungal resistance mechanisms. We further emphasized structure-activity relationship studies of membrane-targeting antifungal agents, and classified membrane-targeting antifungal agents on the basis of their core scaffold with detailed pharmacological properties. This review aims to pique the interest of potential researchers who could explore this interesting and intricate fungal realm.
Collapse
Affiliation(s)
- Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology Faridabad-121001 Haryana India
| |
Collapse
|
19
|
Antypenko L, Antypenko O, Karnaukh I, Rebets O, Kovalenko S, Arisawa M. 5,6-Dihydrotetrazolo[1,5-c]quinazolines: Toxicity prediction, synthesis, antimicrobial activity, molecular docking, and perspectives. Arch Pharm (Weinheim) 2023. [PMID: 36864600 DOI: 10.1002/ardp.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Antimicrobial resistance is a never-ending challenge, which should be considered seriously, especially when using unprescribed "over-the-counter" drugs. The synthesis and investigation of novel biologically active substances is among the directions to overcome this problem. Hence, 18 novel 5,6-dihydrotetrazolo[1,5-c]quinazolines were synthesized, their identity, purity, and structure were elucidated by elemental analysis, IR, LC-MS, 1 Н, and 13 C NMR spectra. According to the computational estimation, 15 substances were found to be of toxicity Class V, two of Class IV, and only one of Class II. The in vitro serial dilution method of antimicrobial screening against Escherichia coli, Staphylococcus aureus, Klebsiella aerogenes, Pseudomonas aeruginosa, and Candida albicans determined b3, c1, c6, and c10 as the "lead-compounds" for further modifications to increase the level of activity. Substance b3 demonstrated antibacterial activity that can be related to the calculated high affinity toward all studied proteins: 50S ribosomal protein L19 (PDB ID: 6WQN), sterol 14-alpha demethylase (PDB ID: 5TZ1), and ras-related protein Rab-9A (PDB ID: 1WMS). The structure-activity and structure-target affinity relationships are discussed. The targets for further investigations and the anatomical therapeutic chemical codes of drug similarity are predicted.
Collapse
Affiliation(s)
- Lyudmyla Antypenko
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Oleksii Antypenko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Iryna Karnaukh
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Oksana Rebets
- Bacteriological Laboratory, Zaporizhzhia Regional Hospital, Zaporizhzhia, Ukraine
| | - Sergiy Kovalenko
- Research Institute of Chemistry and Geology, Oles Honchar Dnipro National University, Dnipro, Ukraine
| | - Mieko Arisawa
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Prophylaxis of Antifungal Drugs against Systemic Fungemia induced by Oral Candidiasis in Mice. Curr Issues Mol Biol 2023; 45:1306-1313. [PMID: 36826030 PMCID: PMC9955410 DOI: 10.3390/cimb45020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Oral mucositis is highly prevalent among the elderly, for whom oral care is often difficult. Oral mucositis, such as candidiasis, can induce systemic fungemia. Antifungal prophylaxis may be useful in such cases to prevent systemic fungemia; however, studies on this are limited. The objective of this study was to demonstrate the effectiveness of antifungal prophylaxis to prevent systemic Candida dissemination compared to oral care using a mice model. Oral candidiasis was induced using chemotherapy and inoculation with C. albicans in 8-week-old male mice. Group A was given oral care, Group B was orally administered an antifungal drug, Group C was intravenously administered an antifungal drug, and Group D was used as the negative control group. Macroscopic features of the tongue surface, colony forming units (CFU) on the tongue, and blood culture for C. albicans were evaluated. CFU was significantly higher in Group A than in Groups B and C. The oral care group, but not the groups administered antifungal agents, showed significantly higher positive numbers of animals with C. albicans in the blood as compared to the control group, indicating the effectiveness of antifungal prophylaxis over oral care. Antifungal prophylaxis may be an option for the prevention of systemic fungemia in individuals with difficulty in oral care.
Collapse
|