1
|
Osolodkin DI, Kozlovskaya LI, Iusupov IR, Kurkin AV, Shustova EY, Orlov AA, Khvatov EV, Mutnykh ES, Kurashova SS, Vetrova AN, Yatsenko DO, Goryashchenko AS, Ivanov VN, Lukyanenko ER, Karpova EV, Stepanova DA, Volok VP, Sotskova SE, Dzagurova TK, Karganova GG, Lukashev AN, Ishmukhametov AA. Phenotypic assessment of antiviral activity for spiro-annulated oxepanes and azepenes. Chem Biol Drug Des 2024; 103:e14553. [PMID: 38789394 DOI: 10.1111/cbdd.14553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery. Here we present a primary assessment of antiviral activity of spiro-annulated derivatives of seven-membered heterocycles, oxepane and azepane, in phenotypic assays against viruses with different genomes, virion structures, and genome realization schemes: orthoflavivirus (tick-borne encephalitis virus, TBEV), enteroviruses (poliovirus, enterovirus A71, echovirus 30), adenovirus (human adenovirus C5), hantavirus (Puumala virus). Hit compounds inhibited reproduction of adenovirus C5, the only DNA virus in the studied set, in the yield reduction assay, and did not inhibit reproduction of RNA viruses.
Collapse
Affiliation(s)
- Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ildar R Iusupov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Elena Y Shustova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Alexey A Orlov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeny V Khvatov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Elena S Mutnykh
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | | | - Anna N Vetrova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Darya O Yatsenko
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | | | - Vladimir N Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Evgenia V Karpova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Daria A Stepanova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Viktor P Volok
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Svetlana E Sotskova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Tamara K Dzagurova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Galina G Karganova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander N Lukashev
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
- Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
2
|
Sehit E, Yao G, Battocchio G, Radfar R, Trimpert J, Mroginski MA, Süssmuth R, Altintas Z. Computationally Designed Epitope-Mediated Imprinted Polymers versus Conventional Epitope Imprints for the Detection of Human Adenovirus in Water and Human Serum Samples. ACS Sens 2024; 9:1831-1841. [PMID: 38489767 PMCID: PMC11059108 DOI: 10.1021/acssensors.3c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
Detection of pathogenic viruses for point-of-care applications has attracted great attention since the COVID-19 pandemic. Current virus diagnostic tools are laborious and expensive, while requiring medically trained staff. Although user-friendly and cost-effective biosensors are utilized for virus detection, many of them rely on recognition elements that suffer major drawbacks. Herein, computationally designed epitope-imprinted polymers (eIPs) are conjugated with a portable piezoelectric sensing platform to establish a sensitive and robust biosensor for the human pathogenic adenovirus (HAdV). The template epitope is selected from the knob part of the HAdV capsid, ensuring surface accessibility. Computational simulations are performed to evaluate the conformational stability of the selected epitope. Further, molecular dynamics simulations are executed to investigate the interactions between the epitope and the different functional monomers for the smart design of eIPs. The HAdV epitope is imprinted via the solid-phase synthesis method to produce eIPs using in silico-selected ingredients. The synthetic receptors show a remarkable detection sensitivity (LOD: 102 pfu mL-1) and affinity (dissociation constant (Kd): 6.48 × 10-12 M) for HAdV. Moreover, the computational eIPs lead to around twofold improved binding behavior than the eIPs synthesized with a well-established conventional recipe. The proposed computational strategy holds enormous potential for the intelligent design of ultrasensitive imprinted polymer binders.
Collapse
Affiliation(s)
- Ekin Sehit
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Guiyang Yao
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Giovanni Battocchio
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Rahil Radfar
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Jakob Trimpert
- Institute
of Virology, Free University of Berlin, 14163 Berlin, Germany
| | - Maria A. Mroginski
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Roderich Süssmuth
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Zeynep Altintas
- Institute
of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
- Institute
of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Kiel
Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany
| |
Collapse
|
3
|
Andavar C, Rajamanickam SN, Sampathkumar Y, Chandramohan D, Duraiswamy A, Thamilchelvam K, Prabhaharan M. Molecular docking and simulation studies of antiviral compounds against to fowl adenovirus type 4 receptor from - Psittacine bird - Melopsittacus undulates. Microb Pathog 2023:106208. [PMID: 37364799 DOI: 10.1016/j.micpath.2023.106208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023]
Abstract
The adenovirus family of adenoviridae includes mammalian adenoviruses (mastadenoviruses) and avian adenoviruses (avi-adenoviruses), which are known to cause cold or flu and HPS. A wide variety of afflicted birds, including chicken, pigeon, and psittacine species, have been reported to carry aviadenoviruses. Fowl adenovirus, which causes hydropericardium syndrome (FAdV). The disease is highly contagious and quickly spreads from one flock to another and from one farm to another using mechanical and horizontal transmission paths as well as contaminated litter. The drug Dehydroepiandrosterone (DHEA) is reported to have a significant binding affinity against the 7W83 receptors (-7.7 kcal/mol.) respectively. The study focuses on the therapeutic methodology development of Adenoviral infection. In order to discover useful combinations of the drugs in practice, molecular docking methods were also used to match fowl adenovirus protein with anti-viral compounds. To further support the docking effects, extensive molecular dynamics simulations were also used.
Collapse
Affiliation(s)
- Chandramohan Andavar
- Department of Biochemistry, Annai Violet Arts and Science College, University of Madras, Chennai, 600 053, Tamilnadu, India
| | - Senthil N Rajamanickam
- Department of Centralized Clinical Laboratory, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 007, Tamilnadu, India.
| | - Yuvaraj Sampathkumar
- Department of Integrated Research, Hexacara Bio Solutions, Chennai, 600 116, Tamilnadu, India
| | - Divya Chandramohan
- Department of Research and Development, Quantee Data Tech Pvt Ltd, Chennai, 600 116, Tamilnadu, India
| | - Anand Duraiswamy
- Department of Research and Development, Quantee Data Tech Pvt Ltd, Chennai, 600 116, Tamilnadu, India
| | - Kaushik Thamilchelvam
- Department of Research and Development, Quantee Data Tech Pvt Ltd, Chennai, 600 116, Tamilnadu, India.
| | - Marimuthu Prabhaharan
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamilnadu, India.
| |
Collapse
|
4
|
Fatoki TH. Human adenovirus DNA polymerase is evolutionarily and functionally associated with human telomerase reverse transcriptase based on in silico molecular characterization that implicate abacavir and zidovudine. FRONTIERS IN BIOINFORMATICS 2023; 3:1123307. [PMID: 37351013 PMCID: PMC10282644 DOI: 10.3389/fbinf.2023.1123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/29/2023] [Indexed: 06/24/2023] Open
Abstract
Human adenoviruses (HAdVs) are non-enveloped, small double stranded DNA (dsDNA) viruses that cause asymptomatic infections, clinical syndromes and significant susceptibility to infections in immunocompromised people. The aim of the present study was to identify critical host proteins and HAdV hypothetical proteins that could be developed as potential host-viral targets for antiHAdV therapy. Here, the function of selected hypothetical proteins of HAdV based on phylogenetic relationship with the therapeutic targets of antiretroviral drugs of human immunodeficiency virus (HIV) was predicted computationally, and characterized the molecular dynamics and binding affinity of DNA polymerase of HAdV. Thirty-eight hypothetical proteins (HPs) of human adenovirus (HAdV) were used in this study. The results showed that HAdV DNA polymerase (P03261) is related to Human TERT (O14746) and HLA-B (P01889) genes. The protein-protein interaction of human five molecular targets (PNP, TERT, CCR5, HLA-B, and NR1I2) of ARVDs are well-coordinated/networked with CD4, AHR, FKBP4, NR3C1, HSP90AA1, and STUB1 proteins in the anti-HIV infection mechanism. The results showed that the free energy score of abacavir and zidovudine binding to HAdV DNA polymerase are -5.8 and -5.4 kcal mol-1 respectively. Also, the control drug, cidofovir and ganciclovir have less binding affinity for DNA polymerase of HAdV when compare to that of abacavir and zidovudine. Similarity was observed in the binding of abacavir and zidovudine to HAdV DNA polymerase (ASP742, ALA743, LEU772, ARG773 and VAL776). In conclusion, combination of abacavir and zidovudine was predicted to be potential therapy for controlling HAdV infection targeting HAdV DNA polymerase.
Collapse
|
5
|
Elbeltagi R, Al-Beltagi M, Saeed NK, Bediwy AS, Toema O. May 2022 acute hepatitis outbreak, is there a role for COVID-19 and other viruses? World J Hepatol 2023; 15:364-376. [PMID: 37034240 PMCID: PMC10075009 DOI: 10.4254/wjh.v15.i3.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
There has been an increasing number of reported cases of acute hepatitis of unknown origin in previously healthy children since first reported on March 31, 2022. This clinical syndrome is identified by jaundice and markedly elevated liver enzymes with increased aspartate transaminase and/or alanine aminotransaminase (greater than 500 IU/L). We conducted an inclusive literature review with respect to acute hepatitis outbreaks in children using the search terms acute hepatitis, outbreak, children, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19), and adenovirus. According to the cumulative data presented in four main studies, the median age is 4 years, with a male predominance (1.3:1). Jaundice was the most common clinical manifestation (69%), followed by vomiting (63%), anorexia (52.9%), diarrhea (47.2%), abdominal pain (39%), pyrexia (33.3%), pale stool (30%), and dark urine (30%). Coryza and lethargy were reported in 16.6%, while pruritus was reported in 2% of cases. Acute liver failure was observed in 25% of cases. The exact mechanism of this acute hepatitis outbreak is still not entirely clear. Adenoviruses and SARS-CoV-2 were detected in a significant number of patients. Coinfection with adenovirus and SARS-CoV-2 could be a possible underlying mechanism. However, other possible infections and mechanisms must be considered in the pathogenesis of this condition. Acute hepatitis of unknown origin in children has been a serious problem since the start of the COVID-19 pandemic but has not yet been sufficiently addressed. Many questions remain regarding the underlying mechanisms leading to acute liver failure in children, and it is likely that extensive future research is needed.
Collapse
Affiliation(s)
- Reem Elbeltagi
- Department of Medicine, The Royal College of Surgeons in Ireland - Bahrain, Busiateen 15503, Muharraq, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Al Gharbia, Egypt
- Department of Pediatrics, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Nermin Kamal Saeed
- Department of Pathology, Microbiology Section, Salmaniya Medical Complex, Manama 12, Bahrain
- Department of Microbiology, Royal College of Surgeons in Ireland - Bahrain, Busaiteen 15503, Muharraq, Bahrain
| | - Adel Salah Bediwy
- Department of Chest Diseases, Faculty of Medicine, Tanta University, Tanta 31527, Al Gharbia, Egypt
- Department of Chest Diseases, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Al Gharbia, Egypt
| |
Collapse
|
6
|
Debnath SK, Debnath M, Srivastava R. Opportunistic etiological agents causing lung infections: emerging need to transform lung-targeted delivery. Heliyon 2022; 8:e12620. [PMID: 36619445 PMCID: PMC9816992 DOI: 10.1016/j.heliyon.2022.e12620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/03/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Lung diseases continue to draw considerable attention from biomedical and public health care agencies. The lung with the largest epithelial surface area is continuously exposed to the external environment during exchanging gas. Therefore, the chances of respiratory disorders and lung infections are overgrowing. This review has covered promising and opportunistic etiologic agents responsible for lung infections. These pathogens infect the lungs either directly or indirectly. However, it is difficult to intervene in lung diseases using available oral or parenteral antimicrobial formulations. Many pieces of research have been done in the last two decades to improve inhalable antimicrobial formulations. However, very few have been approved for human use. This review article discusses the approved inhalable antimicrobial agents (AMAs) and identifies why pulmonary delivery is explored. Additionally, the basic anatomy of the respiratory system linked with barriers to AMA delivery has been discussed here. This review opens several new scopes for researchers to work on pulmonary medicines for specific diseases and bring more respiratory medication to market.
Collapse
|
7
|
Yang K, Feng S, Luo Z. Oncolytic Adenovirus, a New Treatment Strategy for Prostate Cancer. Biomedicines 2022; 10:biomedicines10123262. [PMID: 36552019 PMCID: PMC9775875 DOI: 10.3390/biomedicines10123262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prostate cancer is the most common cancer and one of the leading causes of cancer mortality in males. Androgen-deprivation therapy (ADT) is an effective strategy to inhibit tumour growth at early stages. However, 10~50% of cases are estimated to progress to metastatic castration-resistant prostate cancer (mCRPC) which currently lacks effective treatments. Clinically, salvage treatment measures, such as endocrine therapy and chemotherapy, are mostly used for advanced prostate cancer, but their clinical outcomes are not ideal. When the existing clinical therapeutic methods can no longer inhibit the development of advanced prostate cancer, human adenovirus (HAdV)-based gene therapy and viral therapy present promising effects. Pre-clinical studies have shown its powerful oncolytic effect, and clinical studies are ongoing to further verify its effect and safety in prostate cancer treatment. Targeting the prostate by HAdV alone or in combination with radiotherapy and chemotherapy sheds light on patients with castration-resistant and advanced prostate cancer. This review summarizes the advantages of oncolytic virus-mediated cancer therapy, strategies of HAdV modification, and existing preclinical and clinical investigations of HAdV-mediated gene therapy to further evaluate the potential of oncolytic adenovirus in prostate cancer treatment.
Collapse
Affiliation(s)
- Kaiyi Yang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (K.Y.); (Z.L.)
| | - Shenghui Feng
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhijun Luo
- Provincial Key Laboratory of Tumour Pathogens and Molecular Pathology, Queen Mary School, Nanchang University, Nanchang 330031, China
- Correspondence: (K.Y.); (Z.L.)
| |
Collapse
|
8
|
Loutfy SA, Abdel-Salam AI, Moatasim Y, Gomaa MR, Abdel Fattah NF, Emam MH, Ali F, ElShehaby HA, Ragab EA, Alam El-Din HM, Mostafa A, Ali MA, Kasry A. Antiviral activity of chitosan nanoparticles encapsulating silymarin (Sil-CNPs) against SARS-CoV-2 ( in silico and in vitro study). RSC Adv 2022; 12:15775-15786. [PMID: 35685696 PMCID: PMC9132606 DOI: 10.1039/d2ra00905f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
To develop a specific treatment against COVID-19, we investigated silymarin-chitosan nanoparticles (Sil-CNPs) as an antiviral agent against SARS-CoV-2 using in silico and in vitro approaches. Docking of Sil and CNPs was carried out against SARS-CoV-2 spike protein using AutoDock Vina. CNPs and Sil-CNPs were prepared by the ionic gelation method and characterized by TEM, FT-IR, zeta analysis, and the membrane diffusion method to determine the drug release profile. Cytotoxicity was tested on both Vero and Vero E6 cell lines using the MTT assay. Minimum binding energies with spike protein and ACE2 were -6.6, and -8.0 kcal mol-1 for CNPs, and -8.9, and -9.7 kcal mol-1 for Sil, respectively, compared to -6.6 and -8.4 kcal mol-1 respectively for remdesivir (RMV). CNPs and Sil-CNPs were prepared at sizes of 29 nm and 82 nm. The CC50 was 135, 35, and 110 μg mL-1 for CNPs, Sil, and Sil-CNPs, respectively, on Vero E6. The IC50 was determined at concentrations of 0.9, 12 and 0.8 μg mL-1 in virucidal/replication assays for CNPs, Sil, and Sil-CNPs respectively using crystal violet. These results indicate antiviral activity of Sil-CNPs against SARS-CoV-2.
Collapse
Affiliation(s)
- Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Ahmed I Abdel-Salam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mokhtar R Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Nasra F Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Merna H Emam
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | - Fedaa Ali
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| | | | - Eman A Ragab
- Biochemistry Dept, Faculty of Science, Cairo University Egypt
| | - Hanaa M Alam El-Din
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University Fom El-Khalig 11796 Cairo Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC) Giza 12622 Egypt
| | - Amal Kasry
- Nanotechnology Research Center (NTRC), The British University in Egypt El-Shorouk City, Suez Desert Road P. O. Box 43 Cairo 11837 Egypt
| |
Collapse
|
9
|
Jaros S, Krogul-Sobczak A, Bażanów B, Florek M, Poradowski D, Nesterov DS, Śliwińska-Hill U, Kirillov AM, Smoleński P. Self-Assembly and Multifaceted Bioactivity of a Silver(I) Quinolinate Coordination Polymer. Inorg Chem 2021; 60:15435-15444. [PMID: 34546735 PMCID: PMC8527454 DOI: 10.1021/acs.inorgchem.1c02110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Coordination polymers have emerged as a new class of potent biologically active agents due to a variety of important characteristics such as the presence of bioactive metal centers and linkers, low toxicity, stability, tailorable structures, and bioavailability. The research on intermediate metabolites has also been explored with implications toward the development of selective anticancer, antimicrobial, and antiviral therapeutic strategies. In particular, quinolinic acid (H2quin) is a recognized metabolite in kynurenine pathway and potent neurotoxic molecule, which has been selected in this study as a bioactive building block for assembling a new silver(I) coordination polymer, [Ag(Hquin)(μ-PTA)]n·H2O (1). This product has been prepared from silver oxide, H2quin, and 1,3,5-triaza-7-phosphaadamantane (PTA), and fully characterized by standard methods including single-crystal X-ray diffraction. Compound 1 has revealed distinctive bioactive features, namely (i) a remarkable antiviral activity against herpes simplex virus type 1 (HSV-1) and adenovirus 36 (Ad-36), (ii) a significant antibacterial activity against clinically important bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), and (iii) a selective cytotoxicity against HeLa (human cervix carcinoma) cell line. The present work widens a growing family of bioactive coordination polymers with potent antiviral, antibacterial, and antiproliferative activity.
Collapse
Affiliation(s)
- Sabina
W. Jaros
- Faculty
of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Barbara Bażanów
- Department
of Pathology, Wrocław University of
Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Magdalena Florek
- Department
of Pathology, Wrocław University of
Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland
| | - Dominik Poradowski
- Department
of Biostructure and Animal Physiology, Wrocław
University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland
| | - Dmytro S. Nesterov
- Centro
de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Urszula Śliwińska-Hill
- Department
of Analytical Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 A, 50-566 Wrocław, Poland
| | - Alexander M. Kirillov
- Centro
de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de
Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Research
Institute of Chemistry, Peoples’
Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., 117198 Moscow, Russia
| | - Piotr Smoleński
- Faculty
of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
10
|
Botta L, Cesarini S, Zippilli C, Bizzarri BM, Fanelli A, Saladino R. Multicomponent reactions in the synthesis of antiviral compounds. Curr Med Chem 2021; 29:2013-2050. [PMID: 34620058 DOI: 10.2174/0929867328666211007121837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE Multicomponent reactions are considered green processes with high atom economy. In addition, they present advantages compared to the classic synthetic methods such as high efficiency and low wastes production. METHOD In these reactions two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION Multicomponent reactions can be applied to all the stages of the drug discovery and development process making them very useful in the search for new agents active against emerging (viral) pathogens.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Silvia Cesarini
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Claudio Zippilli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | | | - Angelica Fanelli
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| | - Raffaele Saladino
- Department Biological and Ecological Sciences, University of Tuscia, Viterbo. Italy
| |
Collapse
|
11
|
Mazzotta S, Berastegui-Cabrera J, Vega-Holm M, García-Lozano MDR, Carretero-Ledesma M, Aiello F, Vega-Pérez JM, Pachón J, Iglesias-Guerra F, Sánchez-Céspedes J. Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorg Chem 2021; 114:105095. [PMID: 34175724 DOI: 10.1016/j.bioorg.2021.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/09/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
Nowadays there is not an effective drug for the treatment of infections caused by human adenovirus (HAdV) which supposes a clinical challenge, especially for paediatric and immunosuppressed patients. Here, we describe the design, synthesis and biological evaluation as anti-adenovirus agents of a new library (57 compounds) of diester, monoester and triazole derivatives based on 3-amino-1,2-propanediol skeleton. Seven compounds (17, 20, 26, 34, 44, 60 and 66) were selected based on their high anti-HAdV activity at low micromolar concentration (IC50 from 2.47 to 5.75 µM) and low cytotoxicity (CC50 from 28.70 to >200 µM). In addition, our mechanistic assays revealed that compounds 20 and 44 might be targeting specifically the HAdV DNA replication process, and compound 66 would be targeting HAdV E1A mRNA transcription. For compounds 17, 20, 34 and 60, the mechanism of action seems to be associated with later steps after HAdV DNA replication.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - María Del Rosario García-Lozano
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain; Institute of Biomedicine of Seville (IBiS), SeLiver Group, University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain; Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, E-41071 Seville, Spain.
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain.
| |
Collapse
|
12
|
Mazzotta S, Berastegui-Cabrera J, Carullo G, Vega-Holm M, Carretero-Ledesma M, Mendolia L, Aiello F, Iglesias-Guerra F, Pachón J, Vega-Pérez JM, Sánchez-Céspedes J. Serinol-Based Benzoic Acid Esters as New Scaffolds for the Development of Adenovirus Infection Inhibitors: Design, Synthesis, and In Vitro Biological Evaluation. ACS Infect Dis 2021; 7:1433-1444. [PMID: 33073569 DOI: 10.1021/acsinfecdis.0c00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the years, human adenovirus (HAdV) has progressively been recognized as a significant viral pathogen. Traditionally associated with self-limited respiratory, gastrointestinal, and conjunctival infections, mainly in immunocompromised patients, HAdV is currently considered to be a pathogen presenting significant morbidity and mortality in both immunosuppressed and otherwise healthy individuals. Currently available therapeutic options are limited because of their lack of effectivity and related side effects. In this context, there is an urgent need to develop effective anti-HAdV drugs with suitable therapeutic indexes. In this work, we identified new serinol-derived benzoic acid esters as novel scaffolds for the inhibition of HAdV infections. A set of 38 compounds were designed and synthesized, and their antiviral activity and cytotoxicity were evaluated. Four compounds (13, 14, 27, and 32) inhibited HAdV infection at low micromolar concentrations (2.82-5.35 μM). Their half maximal inhibitory concentration (IC50) values were lower compared to that of cidofovir, the current drug of choice. All compounds significantly reduced the HAdV DNA replication process, while they did not block any step of the viral entry. Our results showed that compounds 13, 14, and 32 seem to be targeting the expression of the E1A early gene. Moreover, all four derivatives demonstrated a significant inhibition of human cytomegalovirus (HCMV) DNA replication. This new scaffold may represent a potential tool useful for the development of effective anti-HAdV drugs.
Collapse
Affiliation(s)
- Sarah Mazzotta
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Judith Berastegui-Cabrera
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Gabriele Carullo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
- Department of Biotechnology, Chemistry and Pharmacy, DoE 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Margarita Vega-Holm
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Marta Carretero-Ledesma
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| | - Lara Mendolia
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Fernando Iglesias-Guerra
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Jerónimo Pachón
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
- Department of Medicine, University of Seville, E-41009 Seville, Spain
| | - José Manuel Vega-Pérez
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Seville, Profesor García González 2, E-41071 Seville, Spain
| | - Javier Sánchez-Céspedes
- Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, E41013 Seville, Spain
| |
Collapse
|
13
|
Li J, Wei J, Xu Z, Jiang C, Li M, Chen J, Li Y, Yang M, Gu Y, Wang F, Shu Y, Yang Y, Sun L, Liu Y. Cytokine/Chemokine Expression Is Closely Associated Disease Severity of Human Adenovirus Infections in Immunocompetent Adults and Predicts Disease Progression. Front Immunol 2021; 12:691879. [PMID: 34163488 PMCID: PMC8215364 DOI: 10.3389/fimmu.2021.691879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing human Adenovirus (HAdV) infections complicated with acute respiratory distress syndrome (ARDS) even fatal outcome were reported in immunocompetent adolescent and adult patients. Here, we characterized the cytokine/chemokine expression profiles of immunocompetent patients complicated with ARDS during HAdV infection and identified biomarkers for disease severity/progression. Forty-eight cytokines/chemokines in the plasma samples from 19 HAdV-infected immunocompetent adolescent and adult patients (ten complicated with ARDS) were measured and analyzed in combination with clinical indices. Immunocompetent patients with ARDS caused by severe acute respiratory disease coronavirus (SARS-CoV)-2, 2009 pandemic H1N1 (panH1N1) or bacteria were included for comparative analyses. Similar indices of disease course/progression were found in immunocompetent patients with ARDS caused by HAdV, SARS-CoV-2 or panH1N infections, whereas the HAdV-infected group showed a higher prevalence of viremia, as well as increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK). Expression levels of 33 cytokines/chemokines were increased significantly in HAdV-infected patients with ARDS compared with that in healthy controls, and many of them were also significantly higher than those in SARS-CoV-2-infected and panH1N1-infected patients. Expression of interferon (IFN)-γ, interleukin (IL)-1β, hepatocyte growth factor (HGF), monokine induced by IFN-γ (MIG), IL-6, macrophage-colony stimulating factor (M-CSF), IL-10, IL-1α and IL-2Ra was significantly higher in HAdV-infected patients with ARDS than that in those without ARDS, and negatively associated with the ratio of the partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FiO2). Analyses of the receiver operating characteristic curve (ROC) showed that expression of IL-10, M-CSF, MIG, HGF, IL-1β, IFN-γ and IL-2Ra could predict the progression of HAdV infection, with the highest area under the curve (AUC) of 0.944 obtained for IL-10. Of note, the AUC value for the combination of IL-10, IFN-γ, and M-CSF reached 1. In conclusion, the “cytokine storm” occurred during HAdV infection in immunocompetent patients, and expression of IL-10, M-CSF, MIG, HGF, IL-1β, IFN-γ and IL-2Ra was closely associated with disease severity and could predict disease progression.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Chunmei Jiang
- Department of Infectious Disease, The People's Hospital of Longhua, Shenzhen, China
| | - Mianhuan Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jie Chen
- Research and Development Department, Guangzhou Sagene Biotech Co., Ltd., Guangzhou, China
| | - Yanjie Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Minghui Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuchen Gu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
14
|
Karimi A, Moradi MT, Rabiei M, Alidadi S. In vitro anti-adenoviral activities of ethanol extract, fractions, and main phenolic compounds of pomegranate ( Punica granatum L.) peel. Antivir Chem Chemother 2021; 28:2040206620916571. [PMID: 32306749 PMCID: PMC7169357 DOI: 10.1177/2040206620916571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Adenovirus causes a number of diseases in human, and can cause serious infection in severely immunosuppressed individuals. Despite the seriousness of adenovirus infection, there is no definitely approved anti-adenoviral therapy. Many studies have shown that compounds derived from medicinal plants have antiviral activity. Therefore, this study evaluated in vitro anti-adenoviral activity of ethanol extract, fractions, and main phenolic compounds of pomegranate peel. Methods The ethanol extract of pomegranate peel was prepared with maceration method and fractionated by consecutive liquid/liquid partition. The cytotoxic and anti-adenovirus activities of the extract, fractions, and main phenolic compounds (ellagic acid, punicalagin and gallic acid) were evaluated on Hep-2 cell line using MTT assay. Inhibitory effect on adsorption and post-adsorption phases of the virus replication cycle was also evaluated. Results Pomegranate peel extract had a desirable effect against adenovirus with IC50 of 5.77 µg/mL and selectivity index of 49.9. Among the fractions and compounds, the n-butanol fraction and gallic acid had the highest anti-adenoviral activity with IC50 of 2.16 µg/mL and 4.67 µM and selectivity indices of 122.5 and 10.5, respectively. The crude extract, n-butanol fraction and gallic acid inhibited the virus replication in post-adsorption phase (p < 0.01). Conclusion Pomegranate peel extract, especially its n-butanol fraction, could serve as a new promising anti-adenovirus agent due to high inhibitory effect against adenovirus replication. The effect of the n-butanol fraction may be related to the synergistic effect or other compounds of this fraction. Further understanding of the bioassay guided isolation of natural compounds of this fraction seems essential.
Collapse
Affiliation(s)
- Ali Karimi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad-Taghi Moradi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Rabiei
- Department of Pathobiology, Infectious Disease and Public Health, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Somayeh Alidadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| |
Collapse
|
15
|
Mali SN, Pandey A. Multiple QSAR and molecular modelling for identification of potent human adenovirus inhibitors. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Włoch A, Stygar D, Bahri F, Bażanów B, Kuropka P, Chełmecka E, Pruchnik H, Gładkowski W. Antiproliferative, Antimicrobial and Antiviral Activity of β-Aryl-δ-iodo-γ-lactones, Their Effect on Cellular Oxidative Stress Markers and Biological Membranes. Biomolecules 2020; 10:biom10121594. [PMID: 33255306 PMCID: PMC7760079 DOI: 10.3390/biom10121594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 02/08/2023] Open
Abstract
The aim of this work was the examination of biological activity of three selected racemic cis-β-aryl-δ-iodo-γ-lactones. Tested iodolactones differed in the structure of the aromatic fragment of molecule, bearing isopropyl (1), methyl (2), or no substituent (3) on the para position of the benzene ring. A broad spectrum of biological activity as antimicrobial, antiviral, antitumor, cytotoxic, antioxidant, and hemolytic activity was examined. All iodolactones showed bactericidal activity against Proteus mirabilis, and lactones 1,2 were active against Bacillus cereus. The highest cytotoxic activity towards HeLa and MCF7 cancer cell lines and NHDF normal cell line was found for lactone 1. All assessed lactones significantly disrupted antioxidative/oxidative balance of the NHDF, and the most harmful effect was determined by lactone 1. Contrary to lactone 1, lactones 2 and 3 did not induce the hemolysis of erythrocytes after 48 h of incubation. The differences in activity of iodolactones 1–3 in biological tests may be explained by their different impact on physicochemical properties of membrane as the packing order in the hydrophilic area and fluidity of hydrocarbon chains. This was dependent on the presence and type of alkyl substituent. The highest effect on the membrane organization was observed for lactone 1 due to the presence of bulky isopropyl group on the benzene ring.
Collapse
Affiliation(s)
- Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| | - Dominika Stygar
- Department of Physiology in Zabrze, Medical University of Silesia, Poniatowskiego 15, 40-751 Katowice, Poland;
| | - Fouad Bahri
- Laboratory of Microbiology and Plant Biology, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Barbara Bażanów
- Department of Veterinary Microbiology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375 Wrocław, Poland;
| | - Piotr Kuropka
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Medical University of Silesia, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland;
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (A.W.); (W.G.); Tel.: +48-713205461 (W.G.)
| |
Collapse
|
17
|
Ugurel OM, Mutlu O, Sariyer E, Kocer S, Ugurel E, Inci TG, Ata O, Turgut-Balik D. Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13). Int J Biol Macromol 2020; 163:1687-1696. [PMID: 32980406 PMCID: PMC7513821 DOI: 10.1016/j.ijbiomac.2020.09.138] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 has caused COVID-19 outbreak with nearly 2 M infected people and over 100K death worldwide, until middle of April 2020. There is no confirmed drug for the treatment of COVID-19 yet. As the disease spread fast and threaten human life, repositioning of FDA approved drugs may provide fast options for treatment. In this aspect, structure-based drug design could be applied as a powerful approach in distinguishing the viral drug target regions from the host. Evaluation of variations in SARS-CoV-2 genome may ease finding specific drug targets in the viral genome. In this study, 3458 SARS-CoV-2 genome sequences isolated from all around the world were analyzed. Incidence of C17747T and A17858G mutations were observed to be much higher than others and they were on Nsp13, a vital enzyme of SARS-CoV-2. Effect of these mutations was evaluated on protein-drug interactions using in silico methods. The most potent drugs were found to interact with the key and neighbor residues of the active site responsible from ATP hydrolysis. As result, cangrelor, fludarabine, folic acid and polydatin were determined to be the most potent drugs which have potency to inhibit both the wild type and mutant SARS-CoV-2 helicase. Clinical data supporting these findings would be important towards overcoming COVID-19.
Collapse
Affiliation(s)
- Osman Mutluhan Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey; Altinbas University, School of Engineering and Natural Science, Department of Basic Science, 34217 Bagcilar, Istanbul, Turkey
| | - Ozal Mutlu
- Marmara University, Faculty of Arts and Sciences, Department of Biology, Goztepe Campus, 34722 Kadikoy, Istanbul, Turkey
| | - Emrah Sariyer
- Artvin Coruh University, Vocational School of Health Services, Medical Laboratory Techniques, Artvin, Turkey
| | - Sinem Kocer
- Istanbul Yeni Yuzyil University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 34010 Cevizlibag, Istanbul, Turkey
| | - Erennur Ugurel
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey
| | - Tugba Gul Inci
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey
| | - Oguz Ata
- Altinbas University, School of Engineering and Natural Science, Department of Software Engineering, 34217 Bagcilar, Istanbul, Turkey
| | - Dilek Turgut-Balik
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, Istanbul, Turkey.
| |
Collapse
|
18
|
Toth K, Hussein ITM, Tollefson AE, Ying B, Spencer JF, Eagar J, James SH, Prichard MN, Wold WSM, Bowlin TL. Filociclovir Is a Potent In Vitro and In Vivo Inhibitor of Human Adenoviruses. Antimicrob Agents Chemother 2020; 64:e01299-20. [PMID: 32816736 PMCID: PMC7577159 DOI: 10.1128/aac.01299-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022] Open
Abstract
Human adenovirus (HAdV) infection is common in the general population and can cause a range of clinical manifestations, among which pneumonia and keratoconjunctivitis are the most common. Although HAdV infections are mostly self-limiting, infections in immunocompromised individuals can be severe. No antiviral drug has been approved for treating adenoviruses. Filociclovir (FCV) is a nucleoside analogue which has successfully completed phase I human clinical safety studies and is now being developed for treatment of human cytomegalovirus (HCMV)-related disease in immunocompromised patients. In this report, we show that FCV is a potent broad-spectrum inhibitor of HAdV types 4 to 8, with 50% effective concentrations (EC50s) ranging between 1.24 and 3.6 μM and a 50% cytotoxic concentration (CC50) of 100 to 150 μM in human foreskin fibroblasts (HFFs). We also show that the prophylactic oral administration of FCV (10 mg/kg of body weight) 1 day prior to virus challenge and then daily for 14 days to immunosuppressed Syrian hamsters infected intravenously with HAdV6 was sufficient to prevent morbidity and mortality. FCV also mitigated tissue damage and inhibited virus replication in the liver. The 10-mg/kg dose had similar effects even when the treatment was started on day 4 after virus challenge. Furthermore, FCV administered at the same dose after intranasal challenge with HAdV6 partially mitigated body weight loss but significantly reduced pathology and virus replication in the lung. These findings suggest that FCV could potentially be developed as a pan-adenoviral inhibitor.
Collapse
Affiliation(s)
- Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Jessica Eagar
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Scott H James
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mark N Prichard
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
19
|
Saha B, Parks RJ. Recent Advances in Novel Antiviral Therapies against Human Adenovirus. Microorganisms 2020; 8:E1284. [PMID: 32842697 PMCID: PMC7563841 DOI: 10.3390/microorganisms8091284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Human adenovirus (HAdV) is a very common pathogen that typically causes minor disease in most patients. However, the virus can cause significant morbidity and mortality in certain populations, including young children, the elderly, and those with compromised immune systems. Currently, there are no approved therapeutics to treat HAdV infections, and the standard treatment relies on drugs approved to combat other viral infections. Such treatments often show inconsistent efficacy, and therefore, more effective antiviral therapies are necessary. In this review, we discuss recent developments in the search for new chemical and biological anti-HAdV therapeutics, including drugs that are currently undergoing preclinical/clinical testing, and small molecule screens for the identification of novel compounds that abrogate HAdV replication and disease.
Collapse
Affiliation(s)
- Bratati Saha
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Robin J. Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
20
|
Chen MJ, Chang KJ, Hsu CC, Lin PY, Jui-Ling Liu C. Precaution and prevention of coronavirus disease 2019 infection in the eye. J Chin Med Assoc 2020; 83:648-650. [PMID: 32332516 PMCID: PMC7202097 DOI: 10.1097/jcma.0000000000000334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 01/08/2023] Open
Abstract
Although current studies suggested that conjunctivitis is not a common presentation of coronavirus disease 2019 (COVID-19), several studies have reported the presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in ocular secretions. Coronavirus had not yet been successfully cultured from tears or conjunctival swabs in humans, neither SARS-CoV-2 nor SARS-CoV. However, live feline coronavirus has been isolated from conjunctival swabs. In addition, infection of COVID-19 through unprotected eye exposure had been suspected in several articles. Reports of ophthalmologists and otolaryngologists died of COVID-19 also raised concern on ocular transmission. As a result, we strongly suggest that personal protective equipment (PPE) should cover the mouth, nose, and eyes of ophthalmologists, especially when conjunctivitis caused by SARS-CoV-2 is clinically indistinguishable from other viral follicular conjunctivitis.
Collapse
Affiliation(s)
- Meng-Jou Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Pei-Yu Lin
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| | - Catherine Jui-Ling Liu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan, ROC
| |
Collapse
|
21
|
Majee P, Shankar U, Pasadi S, Muniyappa K, Nayak D, Kumar A. Genome-wide analysis reveals a regulatory role for G-quadruplexes during Adenovirus multiplication. Virus Res 2020; 283:197960. [DOI: 10.1016/j.virusres.2020.197960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
|
22
|
Abu-Zaied M, Hammad SF, Halaweish FT, Elgemeie GH. Sofosbuvir Thio-analogues: Synthesis and Antiviral Evaluation of the First Novel Pyridine- and Pyrimidine-Based Thioglycoside Phosphoramidates. ACS OMEGA 2020; 5:14645-14655. [PMID: 32596602 PMCID: PMC7315579 DOI: 10.1021/acsomega.0c01364] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2020] [Indexed: 05/31/2023]
Abstract
The synthesis and antiviral screening of the first reported series of pyridine- and pyrimidine-based thioglycoside phosphoramidates are herein reported. They were prepared through two synthetic steps: The first step is via coupling of mercapto-derivatized heterocyclic bases with the appropriate α-bromo per-acetylated sugars. The second one is the hydrolysis of the acetate esters under basic conditions that were consequently conjugated with the phosphoramidating reagent to afford the desired thioglycoside protides. Eight compounds were evaluated for their antiviral activities against different viral cell lines, namely, adenovirus 7, HAV (hepatitis A) HM175, Coxsackievirus B4, and HSV-1 (herpes simplex virus type 1), in addition to the antiviral bioassay against ED-43/SG-Feo (VYG) replicon of HCV (hepatitis C virus) genotype 4a. Both compounds 5b and 11 showed notable antiviral activity against Coxsackie virus B4, reflected from the CC50 values of 17 and 20 μg/100 μL and IC50 values of 4.5 and 6.0 μg/100 μL, respectively. Same two compounds elicited remarkable activities toward herpes simplex virus type 1, represented by CC50 values of 17 and 16 μg/100 μL and IC50 values of 6.3 and 6.6 μg/100 μL, respectively. Combination of 11 with acyclovir elicited a notable synergistic activity in comparison with acyclovir alone, as inferred from herpes simplex polymerase enzyme inhibitory assay values of 2.64 and 4.78 μg/100 mL, respectively. Only compound 11 elicited a remarkable activity against HCV. Potential promising activities of compound 11 have been shown with respect to CC50, IC50, and enzyme assay inhibitory activities.
Collapse
Affiliation(s)
| | - Sherif F. Hammad
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
- Basic
and Applied Sciences Institute, Egypt-Japan
University of Science and Technology (E-JUST), P.O Box 179, New Borg El-Arab City, Alexandria 21934, Egypt
| | - Fathi T. Halaweish
- Department
of Chemistry & Biochemistry, South Dakota
State University, Brookings, South Dakota 57007, United States
| | - Galal Hamza Elgemeie
- Chemistry
Department, Faculty of Science, Helwan University, Helwan, Cairo 11795, Egypt
| |
Collapse
|
23
|
Dickherber ML, Garnett-Benson C. NAD-linked mechanisms of gene de-repression and a novel role for CtBP in persistent adenovirus infection of lymphocytes. Virol J 2019; 16:161. [PMID: 31864392 PMCID: PMC6925507 DOI: 10.1186/s12985-019-1265-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Adenovirus (AdV) infection is ubiquitous in the human population and causes acute infection in the respiratory and gastrointestinal tracts. In addition to lytic infections in epithelial cells, AdV can persist in a latent form in mucosal lymphocytes, and nearly 80% of children contain viral DNA in the lymphocytes of their tonsils and adenoids. Reactivation of latent AdV is thought to be the source of deadly viremia in pediatric transplant patients. Adenovirus latency and reactivation in lymphocytes is not well studied, though immune cell activation has been reported to promote productive infection from latency. Lymphocyte activation induces global changes in cellular gene expression along with robust changes in metabolic state. The ratio of free cytosolic NAD+/NADH can impact gene expression via modulation of transcriptional repressor complexes. The NAD-dependent transcriptional co-repressor C-terminal Binding Protein (CtBP) was discovered 25 years ago due to its high affinity binding to AdV E1A proteins, however, the role of this interaction in the viral life cycle remains unclear. METHODS The dynamics of persistently- and lytically-infected cells are evaluated. RT-qPCR is used to evaluate AdV gene expression following lymphocyte activation, treatment with nicotinamide, or disruption of CtBP-E1A binding. RESULTS PMA and ionomycin stimulation shifts the NAD+/NADH ratio in lymphocytic cell lines and upregulates viral gene expression. Direct modulation of NAD+/NADH by nicotinamide treatment also upregulates early and late viral transcripts in persistently-infected cells. We found differential expression of the NAD-dependent CtBP protein homologs between lymphocytes and epithelial cells, and inhibition of CtBP complexes upregulates AdV E1A expression in T lymphocyte cell lines but not in lytically-infected epithelial cells. CONCLUSIONS Our data provide novel insight into factors that can regulate AdV infections in activated human lymphocytes and reveal that modulation of cellular NAD+/NADH can de-repress adenovirus gene expression in persistently-infected lymphocytes. In contrast, disrupting the NAD-dependent CtBP repressor complex interaction with PxDLS-containing binding partners paradoxically alters AdV gene expression. Our findings also indicate that CtBP activities on viral gene expression may be distinct from those occurring upon metabolic alterations in cellular NAD+/NADH ratios or those occurring after lymphocyte activation.
Collapse
Affiliation(s)
- Megan L Dickherber
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
24
|
Biliavska L, Pankivska Y, Povnitsa O, Zagorodnya S. Antiviral Activity of Exopolysaccharides Produced by Lactic Acid Bacteria of the Genera Pediococcus, Leuconostoc and Lactobacillus against Human Adenovirus Type 5. ACTA ACUST UNITED AC 2019; 55:medicina55090519. [PMID: 31443536 PMCID: PMC6780409 DOI: 10.3390/medicina55090519] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Background and objectives: The use of antagonistic probiotic microorganisms and their byproducts represents a promising approach for the treatment of viral diseases. In the current work, the effect of exopolysaccharides (EPSs) produced by lactic acid bacteria from different genera on the structural and functional characteristics of cells and the development of adenoviral infection in vitro was studied. Materials and Methods: Cytotoxicity of six EPSs of lactic acid bacteria of the genera Lactobacillus, Leuconostoc and Pediococcus was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The influence of the EPSs on the infectivity of human adenovirus type 5 (HAdV-5) and on the cell cycle under a condition of adenovirus infection was studied using plaque reduction assay and flow cytometric analysis, respectively. Results: It was shown that exopolysaccharides were non-toxic to Madin-Darby bovine kidney cells (MDBK) as they reduced their viability by 3-17%. A change in the distribution of the cell cycle phases in the non-infected cell population treated with EPSs was observed. The analysis demonstrated an increase in the number of cells in the S phase by 47% when using EPSs 15a and a decrease in the number of cells in the G1 phase by 20-27% when treated with the EPSs 15a, 33a, and 19s. The use of EPSs did not led to the normalization of the life cycle of HAdV-5 infected cells to the level of non-infected cells. The EPSs showed low virucidal activity and reduced the HAdV-5 infectivity to 85%. Among the studied exopolysaccharides, anti-adenovirus activity was found for EPS 26a that is produced by Lactobacillus spp. strain. The treatment of cells with the EPS following virus adsorption completely (100%) suppressed the formation and release of HAdV-5 infectious. Conclusions: EPS 26a possessed distinct anti-HAdV-5 activity and the obtained data demonstrate the potential of using exopolysaccharides as anti-adenoviral agents.
Collapse
Affiliation(s)
- Liubov Biliavska
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine.
| | - Yulia Pankivska
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Povnitsa
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Svitlana Zagorodnya
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| |
Collapse
|
25
|
Anti-Adenoviral Activity of 2-(3-Chlorotetrahydrofuran-2-yl)-4-Tosyl-5-(Perfluoropropyl)-1,2,3-Triazole. ACTA ACUST UNITED AC 2018; 54:medicina54050081. [PMID: 30400656 PMCID: PMC6262482 DOI: 10.3390/medicina54050081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022]
Abstract
Background and objectives: A considerable increase in the levels of adenoviral diseases among both adults and children necessitate the development of effective methods for its prevention and treatment. The synthesis of the new fluorinated 1,2,3-triazoles, and the study of the mechanisms of their action, are promising for the development of efficient antiviral drugs of our time. Materials and Methods: Antiviral activity and cell cytotoxic effect of 2-(3-chlorotetrahydrofuran-2-yl)-4-tosyl-5-(perfluoropropyl)-1,2,3-triazole (G29) were determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The influence of the compound on the infectivity of human adenovirus type 5 (HAdV-5) was carried out via the cytomorphology method. The influence of the compound on the cell cycle under a condition of adenovirus infection was studied using flow cytometric analysis of propidium iodide-stained cells. Results: It was found that G29 suppressed HAdV-5 reproduction by 50% in concentrations of 37 μg/mL. Furthermore, the compound reduced the titer of virus obtained de novo, and inhibited HAdV-5 inclusion bodies formation by 84–90%. The use of fluorinated compounds under the conditions of adenovirus infection decreased the number of apoptotic cells by 11% and the number of cells in S phase by 21–42% compared to the profile of infected cells. Conclusions: The fluorinated compound G29 showed moderate activity against HAdV-5 based on several mechanisms. It led to the normalization of the life cycle of cells infected with adenovirus to the level of non-infected cells and caused the obstruction of HAdV-5 reproduction, inducing the formation of non-infectious virus progeny.
Collapse
|
26
|
Ali AA, Halldén G. Development of Oncolytic Adenoviruses for the Management of Prostate Cancer. Prostate Cancer 2018. [DOI: 10.5772/intechopen.73515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Ghashghaei O, Caputo S, Sintes M, Revés M, Kielland N, Estarellas C, Luque FJ, Aviñó A, Eritja R, Serna-Gallego A, Marrugal-Lorenzo JA, Pachón J, Sánchez-Céspedes J, Treadwell R, de Moliner F, Vendrell M, Lavilla R. Multiple Multicomponent Reactions: Unexplored Substrates, Selective Processes, and Versatile Chemotypes in Biomedicine. Chemistry 2018; 24:14513-14521. [PMID: 29974986 DOI: 10.1002/chem.201802877] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Multiple multicomponent reactions rapidly assemble complex structures. Despite being very productive, the lack of selectivity and the reduced number of viable transformations restrict their general application in synthesis. Hereby, we describe a rationale for a selective version of these processes based in the preferential generation of intermediates which are less reactive than the initial substrates. In this way, applying the Groebke-Blackburn-Bienaymé reaction on a range of α-polyamino-polyazines, we prepared a family compact heterocyclic scaffolds with relevant applications in medicinal and biological chemistry (live cell imaging probes, selective binders for DNA quadruplexes, and antiviral agents against human adenoviruses). The approach has general character and yields complex molecular targets in a selective, tunable and direct manner.
Collapse
Affiliation(s)
- Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Samantha Caputo
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Miquel Sintes
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Marc Revés
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Nicola Kielland
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Carolina Estarellas
- Departament de Fisicoquímica, Facultat de Farmàcia, and IBUB, Universitat de Barcelona, Prat de la Riba 171, 08921, Santa Coloma, de Gramenet, Spain
| | - F Javier Luque
- Departament de Fisicoquímica, Facultat de Farmàcia, and IBUB, Universitat de Barcelona, Prat de la Riba 171, 08921, Santa Coloma, de Gramenet, Spain
| | - Anna Aviñó
- Department of Chemical & Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034-, Barcelona, Spain
| | - Ramón Eritja
- Department of Chemical & Biomolecular Nanotechnology, Institute for Advanced Chemistry of Catalonia (IQAC), CSIC, Jordi Girona 18-26, 08034-, Barcelona, Spain
| | - Ana Serna-Gallego
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío/Institute of Biomedicine of, Seville (IBiS)/CSIC/, University of Seville, Spain
| | - José Antonio Marrugal-Lorenzo
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío/Institute of Biomedicine of, Seville (IBiS)/CSIC/, University of Seville, Spain
| | - Jerónimo Pachón
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío/, Institute of Biomedicine of Seville (IBiS)/CSIC/, University of Seville &, Department of Medicine, University of Seville, Seville, Spain
| | - Javier Sánchez-Céspedes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, University Hospital Virgen del Rocío/, Institute of Biomedicine of Seville (IBiS)/CSIC/, University of Seville &, Department of Medicine, University of Seville, Seville, Spain
| | - Ryan Treadwell
- MRC/UoE Centre for Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Fabio de Moliner
- MRC/UoE Centre for Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Marc Vendrell
- MRC/UoE Centre for Inflammation Research, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Institute of, Biomedicine (IBUB), University of Barcelona, Barcelona Science Park, Baldiri Reixac 10-12, Barcelona, 08028, Spain.,CIBER-BBN, Networking Centre for Bioengineering, Biomaterials & Nanomedicine, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| |
Collapse
|
28
|
Maisonneuve E, Cateau E, Leveque N, Kaaki S, Beby-Defaux A, Rodier MH. Acanthamoeba castellanii is not be an adequate model to study human adenovirus interactions with macrophagic cells. PLoS One 2017; 12:e0178629. [PMID: 28591183 PMCID: PMC5462383 DOI: 10.1371/journal.pone.0178629] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/16/2017] [Indexed: 11/18/2022] Open
Abstract
Free living amoebae (FLA) including Acanthamoeba castellanii, are protozoa that feed on different microorganisms including viruses. These microorganisms show remarkable similarities with macrophages in cellular structures, physiology or ability to phagocyte preys, and some authors have therefore wondered whether Acanthamoeba and macrophages are evolutionary related. It has been considered that this amoeba may be an in vitro model to investigate relationships between pathogens and macrophagic cells. So, we intended in this study to compare the interactions between a human adenovirus strain and A. castellanii or THP-1 macrophagic cells. The results of molecular and microscopy techniques following co-cultures experiments have shown that the presence of the adenovirus decreased the viability of macrophages, while it has no effect on amoebic viability. On another hand, the viral replication occurred only in macrophages. These results showed that this amoebal model is not relevant to explore the relationships between adenoviruses and macrophages in in vitro experiments.
Collapse
Affiliation(s)
- Elodie Maisonneuve
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- * E-mail:
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| | - Nicolas Leveque
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, Poitiers, France
| | - Sihem Kaaki
- Unité de pathologie ultrastructurale et expérimentale, Laboratoire d’anatomie et cytologie pathologiques, CHU la Milètrie, Poitiers, France
| | - Agnès Beby-Defaux
- Laboratoire de virologie et mycobactériologie, CHU La Milètrie, Poitiers, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions, Equipe Microbiologie de l’Eau, UMR CNRS 7267, Université de Poitiers, Poitiers, France
- Laboratoire de parasitologie et mycologie médicale, CHU La Milètrie, Poitiers, France
| |
Collapse
|
29
|
Grim SA, Reid GE, Clark NM. Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients. Expert Opin Pharmacother 2017; 18:767-779. [PMID: 28425766 PMCID: PMC7103702 DOI: 10.1080/14656566.2017.1322063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite the improved outcomes in solid organ transplantation with regard to prevention of rejection and increased patient and graft survival, infection remains a common cause of morbidity and mortality. Respiratory viruses are a frequent and potentially serious cause of infection after solid organ transplantation. Furthermore, clinical manifestations of respiratory virus infection (RVI) may be more severe and unusual in solid organ transplant recipients (SOTRs) compared with the non-immunocompromised population. Areas covered: This article reviews the non-influenza RVIs that are commonly encountered in SOTRs. Epidemiologic and clinical characteristics are highlighted and available treatment options are discussed. Expert opinion: New diagnostic tools, particularly rapid molecular assays, have expanded the ability to identify specific RVI pathogens in SOTRs. This is not only useful from a treatment standpoint but also to guide infection control practices. More data are needed on RVIs in the solid organ transplant population, particularly regarding their effect on rejection and graft dysfunction. There is also a need for new antiviral agents active against these infections as well as markers that can identify which patients would most benefit from treatment.
Collapse
Affiliation(s)
- Shellee A. Grim
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Gail E. Reid
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| | - Nina M. Clark
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
30
|
Amber R, Adnan M, Tariq A, Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J Pharm Pharmacol 2016; 69:109-122. [PMID: 27905101 PMCID: PMC7166987 DOI: 10.1111/jphp.12669] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/23/2016] [Indexed: 01/13/2023]
Abstract
Objectives Bronchitis is a common respiratory tract infection of humans mainly caused by influenza virus, rhinovirus, adenovirus, coronavirus and respiratory syncytial virus. The aim of this review was to gather fragmented literature on ethnomedicinal plants used against bronchitis in the Himalayan region and their in-vitro validation against bronchitis causing viral pathogens. Key findings Present review contains ethnomedicines of total 55 plants from different countries of the Himalayas. Most of the literature reported was from India followed by Pakistan, China and Nepal. Familiarly used plant families for bronchitis treatment in the Himalayan region were Leguminosae (six plants) and Lamiaceae (five plants). Leaves and roots were the most common parts used in ethnomedicines against bronchitis. Of these 55 plants, only six plants have been studied in vitro against viral pathogens causing bronchitis. Different compounds like monoterpenoids, flavonoids, triterpenoids, iridoid glycosides, sesquiterpenes, benzoic and phenolic compounds were reportedly isolated from these plant extracts having strong antiviral potential. Summary The Himalayan regions possess variety of ethnomedicinal plants used against respiratory diseases, but still there are only few studies related with their in-vitro validation. We invite the attention of researchers for detailed ethnopharmacological and phytochemical studies on unexplored plants used to treat bronchitis for the development of novel antiviral drugs.
Collapse
Affiliation(s)
- Rahila Amber
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Adnan
- Department of Botany, Kohat University of Science and Technology, Kohat, Pakistan
| | - Akash Tariq
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sakina Mussarat
- Department of Botany, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
31
|
Nguyen TH, Ballmann MZ, Do HT, Truong HN, Benkő M, Harrach B, van Raaij MJ. Crystal structure of raptor adenovirus 1 fibre head and role of the beta-hairpin in siadenovirus fibre head domains. Virol J 2016; 13:106. [PMID: 27334597 PMCID: PMC4918002 DOI: 10.1186/s12985-016-0558-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Most adenoviruses recognize their host cells via an interaction of their fibre head domains with a primary receptor. The structural framework of adenovirus fibre heads is conserved between the different adenovirus genera for which crystal structures have been determined (Mastadenovirus, Aviadenovirus, Atadenovirus and Siadenovirus), but genus-specific differences have also been observed. The only known siadenovirus fibre head structure, that of turkey adenovirus 3 (TAdV-3), revealed a twisted beta-sandwich resembling the reovirus fibre head architecture more than that of other adenovirus fibre heads, plus a unique beta-hairpin embracing a neighbouring monomer. The TAdV-3 fibre head was shown to bind sialyllactose. METHODS Raptor adenovirus 1 (RAdV-1) fibre head was expressed, crystallized and its structure was solved and refined at 1.5 Å resolution. The structure could be solved by molecular replacement using the TAdV-3 fibre head structure as a search model, despite them sharing a sequence identity of only 19 %. Versions of both the RAdV-1 and TAdV-3 fibre heads with their beta-hairpin arm deleted were prepared and their stabilities were compared with the non-mutated proteins by a thermal unfolding assay. RESULTS The structure of the RAdV-1 fibre head contains the same twisted ABCJ-GHID beta-sandwich and beta-hairpin arm as the TAdV-3 fibre head. However, while the predicted electro-potential surface charge of the TAdV-3 fibre head is mainly positive, the RAdV-1 fibre head shows positively and negatively charged patches and does not appear to bind sialyllactose. Deletion of the beta-hairpin arm does not affect the structure of the raptor adenovirus 1 fibre head and only affects the stability of the RAdV-1 and TAdV-3 fibre heads slightly. CONCLUSIONS The high-resolution structure of RAdV-1 fibre head is the second known structure of a siadenovirus fibre head domain. The structure shows that the siadenovirus fibre head structure is conserved, but differences in the predicted surface charge suggest that RAdV-1 uses a different natural receptor for cell attachment than TAdV-3. Deletion of the beta-hairpin arm shows little impact on the structure and stability of the siadenovirus fibre heads.
Collapse
Affiliation(s)
- Thanh H Nguyen
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, E-28049, Madrid, Spain.,Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Mónika Z Ballmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Huyen T Do
- Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hai N Truong
- Genetic Engineering Laboratory, Institute of Biotechnology (IBT-VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mark J van Raaij
- Departamento de Estructura de Macromoléculas, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
32
|
Alexeeva I, Nosach L, Palchykovska L, Usenko L, Povnitsa O. Synthesis and Comparative Study of Anti-Adenoviral Activity of 6-Azacytidine and Its Analogues. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:565-78. [PMID: 26167665 DOI: 10.1080/15257770.2015.1034363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents the results of synthesis and study of cytotoxicity and the anti-adenoviral activity of new N4-derivatives of 6-azacytidine and its α-L-glycopyranosyl analogues obtained by the simplified one-pot version of the silyl condensation method. The resulting acylated 4-methylmercapto-1,2,4-triazin-3(2Н)-one glycosides then underwent the amination and/or ammonolysis to provide 6-azacytidine glycoside analogues (2-6, 12, 15, 17) and compounds with modifications at both base and sugar fragments (11, 15). The evaluation of cytotoxicity and antiviral activity of new compounds against AdV5 showed high selectivity indexes for N4-methyl-6-azacytidine (2) and N,O-tetraacetyl-6-azacytidine (8). High anti-adenoviral activity of N4-methyl-6-azacytidine as well as very low cytotoxicity may suggest its further investigation as potential compound for the therapy of AdV infection.
Collapse
Affiliation(s)
- Inna Alexeeva
- a Institute of Molecular Biology and Genetics, National Academy of Sciences , Kyiv , Ukraine
| | | | | | | | | |
Collapse
|
33
|
Hayden FG. Advances in antivirals for non-influenza respiratory virus infections. Influenza Other Respir Viruses 2014; 7 Suppl 3:36-43. [PMID: 24215380 PMCID: PMC6492651 DOI: 10.1111/irv.12173] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progress in the development of antivirals for non‐influenza respiratory viruses has been slow with the result that many unmet medical needs and few approved agents currently exist. This commentary selectively reviews examples of where specific agents have provided promising clinical benefits in selected target populations and also considers potential therapeutics for emerging threats like the SARS and Middle East respiratory syndrome coronaviruses. Recent studies have provided encouraging results in treating respiratory syncytial virus infections in lung transplant recipients, serious parainfluenza virus and adenovirus infections in immunocompromised hosts, and rhinovirus colds in outpatient asthmatics. While additional studies are needed to confirm the efficacy and safety of the specific agents tested, these observations offer the opportunity to expand therapeutic studies to other patient populations.
Collapse
Affiliation(s)
- Frederick G Hayden
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
34
|
Sergeeva EI, Ternovoi VA, Demina OK, Demina AV, Korneev DV, Shikov AN, Beryllo SA, Agafonov AP, Sergeev AN. Development and verification of real-time PCR assay for identification of viral agents causing acute respiratory infections in human beings. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2013; 28:168-174. [PMID: 32214648 PMCID: PMC7088833 DOI: 10.3103/s0891416813040083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Indexed: 11/30/2022]
Abstract
A multiplex polymerase chain reaction (PCR) for identification of four viruses causing acute respiratory diseases in human beings was developed. The analytical sensitivity of developed RT-PCR for identification of adenovirus, respiratory-syncytial virus, flu viruses types A and B, and actual subtypes of type A flu virus (seasonal and pandemic variants H1N1, seasonal H3N2, and viruses of bird flu that are pathogenic to human beings H5 and H7) was 1 × 103 genome equivalents per milliliter. Diagnostic sensitivity for flu virus type A and B, and also subtypes H1 (seasonal H1N1, pandemic variant of H1N1 of year 2009), H3, H5 was 1 × 103–104 viral particles per milliliter. The method developed has high specificity and does not have positive signal in experiments with DNA/cDNA of human beings and viral DNA. We have studied 50 samples using the developed set. Etiology was defined in 33 samples.
Collapse
|
35
|
Abstract
Human adenoviruses function as genetic models and vectors for gene therapy. Upper respiratory, gastrointestinal or ocular infections usually have mild course without any major complication in immunocompetent individuals. However, reactivation from latency in immunocompromised patients may lead to death. Depending on the underlying diseases, different adenovirus serotypes damage different organs. In children with severe combined immunodeficiency syndrome, serotypes of species A and C induce lung, liver or bladder inflammation. Paediatric hematopoietic stem cell transplantation is frequently followed by serotype 31-induced pneumonia, enteritis, cystitis. B serotypes can destroy transplanted organs. In AIDS patients, D and novel F serotypes cause enteritis. Recombinants of B serotypes induce urinary tract infections. Progression of lymphomas, tumours, and systemic lupus erythematosus might be facilitated by immunosuppressive effects of adenoviruses. As far as the diagnostic work-up of adenoviruses, detection of viral DNA and virus copy number is predictive, while serology testing is quite unreliable. For treatment, cidofovir derivates, ribavirin, ganciclovir, vidarabine and microRNA have been used.
Collapse
Affiliation(s)
- Balázs Stercz
- Semmelweis Egyetem, Általános Orvostudományi Kar Orvosi Mikrobiológiai Intézet Budapest
| | | | | |
Collapse
|
36
|
Waye MMY. New insights into how adenovirus might lead to obesity: An oxidative stress theory. Free Radic Res 2011; 45:880-7. [DOI: 10.3109/10715762.2011.571684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|