1
|
Sun G, Li B, Li Y, McClements DJ. Construction of biopolymer-based hydrogel beads for encapsulation, retention, and colonic delivery of tributyrin: Development of functional beverages (fortified bubble tea). Food Res Int 2024; 197:115165. [PMID: 39593376 DOI: 10.1016/j.foodres.2024.115165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/28/2024]
Abstract
Tributyrin (TB) can be hydrolyzed into short chain fatty acids (butyric acid) in the gastrointestinal tract, which are claimed to exhibit beneficial health effects in the colon. However, digestion of tributyrin in the stomach and small intestine may promote its absorption in the upper gastrointestinal tract, thereby reducing its potential colonic health benefits. In this study, we therefore developed a novel method of encapsulating emulsified tributyrin within biopolymer-based hydrogel beads (≈ 800 μm) that were then encapsulated inside the boba beads (≈ 8-10 mm) found in bubble tea. The hydrogel beads were designed to retain and protect the tributyrin under upper gastrointestinal tract (GIT) conditions, but then release it within the colon. The concentration of tributyrin within the boba beads was 33.3 mg/g, which is above the value reported to exhibit health benefits. The morphology, encapsulation properties, water holding capacity, stability, and swelling properties of the tributyrin-loaded boba beads were characterized. Tapioca-based beads exhibited a larger degree of swelling when incubated in water for 12h (>95 %), whereas agar-based beads did not (< 20 %). In addition, the potential gastrointestinal fate of both free and encapsulated tributyrin oil droplets was assessed using an in vitro digestion model. The free tributyrin oil droplets were almost completely hydrolyzed (103.2 %) by the end of the small intestine phase, whereas the tributyrin oil droplets encapsulated within the agar-based (29.4 %) or tapioca-based (40.3 %) boba beads were much more resistant to digestion. The tapioca-based beads were partially broken down as they passed through the simulated GIT, while the agar-based beads maintained their structural integrity. The tapioca-based beads were gradually broken down as they passed through the simulated GIT, while the agar-based ones maintained their structural integrity. Agar beads were also harder, more resilient, and chewier than the tapioca ones. Both types of boba beads tended to swell and disintegrate when heated to high temperatures (90 °C), with the effect being more pronounced for the agar beads. Overall, our results suggest that the agar-based boba beads had greater potential for the delivery of tributyrin to the colon than the tapioca-based ones. The recent popularity of bubble tea means that it may be a suitable vehicle for delivering bioactive food components, like functional lipids, vitamins, nutraceuticals, or probiotics.
Collapse
Affiliation(s)
- Gege Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | | |
Collapse
|
2
|
Garg A, Lavania K. Recent opportunities and application of gellan gum based drug delivery system for intranasal route. Daru 2024; 32:947-965. [PMID: 39361194 PMCID: PMC11555193 DOI: 10.1007/s40199-024-00543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/24/2024] [Indexed: 11/12/2024] Open
Abstract
OBJECTIVES In the recent years, in-situ hydrogel based on gellan gum has been investigated for delivery of various drug molecules particularly to treat neurological disorders via intranasal route. The major objective of the present manuscript is to review the recent research studies exploring gellan gum as ionic triggered in-situ gel for intranasal administration to enhance absorption of drugs and to increase their therapeutic efficacy. METHODS This review include literature from 1982 to 2023 and were collected from various scientific electronic databases like Scopus, PubMed and Google Scholar to review source, chemistry, ionotropic gelation mechanism, and recent research studies for gellan gum based in-situ hydrogel for intransasl administration.Keywords such as gellan gum, in-situ hydrogel, intranasal administration and brain targeting were used to search literature. The present review included the research studies which explored gellan gum based in-situ gel for intranasal drug delivery. RESULTS The findings have shown enhanced biavailability of various drugs upon intranasal administration using gellan-gum based in-situ hydrogel.Moreover, the review indicated that intranasal administration of in-situ hydrogel facilitate to overcome blood brain barrier effectively. Hence, significantly higher drug concentration was found to be achieved in brain tissues upon intranasal administration than that of other routes like oral and intravenous. CONCLUSION The present work conducted a comprehensive review for gellan gum based in-situ hydrogel particularly for intransal administration to overcome BBB. The study concluded that gellan gum based in-situ hydrogel could be potential promising delivery system for intranasal administration to improve bioavailability and efficacy of drugs specifically to treat neurological disorders.
Collapse
Affiliation(s)
- Anuj Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road P.O- Chaumuhan, Mathura, 281406, U.P, India.
| | - Khushboo Lavania
- College of Pharmacy, BSA College of Engineering and Technology, Mathura, India
| |
Collapse
|
3
|
Rafiq M, Ahmed J, Alturaifi HA, Awwad NS, Ibrahium HA, Mir S, Maalik A, Sabahat S, Hassan S, Khan ZUH. Recent developments in the biomedical and anticancer applications of chitosan derivatives. Int J Biol Macromol 2024; 283:137601. [PMID: 39549805 DOI: 10.1016/j.ijbiomac.2024.137601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Chitosan is a natural polymer derived from chitin. It has significant applications in various fields due to its unique physicochemical properties, biocompatibility, and biodegradability. These important properties of chitosan make it an attractive candidate for various anti-cancer activities and biomedical applications, including tissue engineering. This review emphasizes the latest literature on anticancer applications of chitosan derivatives and in-depth study of biomedical applications. This review highlights the importance of biomedical applications and anti-cancer activities like breast, liver, colon, gastric, melanoma, colorectal, cervical, oral, and lymphoma cancer. Currently, there is a notable absence of recent reviews that comprehensively address these aspects such as Alejandro Elizalde-Cárdenas, et al. 2024, focuses only on Biomedical applications of Cs and its derivatives (Elizalde-Cárdenas et al., 2024). Jingxian Ding, et al. 2022 discussed the applications of Cs in some Cancer treatments (Mabrouk et al., 2024). However, our article aims to provide a comprehensive overview of the latest advancements in Cs derivatives in both fields. This manuscript is designed with proper diagrams, flow sheets and summarized tables to enhance the understanding of the reader. It also highlights recent advancements in the development of various chitosan derivatives, offering a comprehensive perspective for researchers and practitioners to further progress in biomedical and anticancer technologies.
Collapse
Affiliation(s)
- Muqadas Rafiq
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Jalal Ahmed
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Huriyyah A Alturaifi
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sadullah Mir
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan.
| | - Aneela Maalik
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Sana Sabahat
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Safia Hassan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| | - Zia Ul Haq Khan
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Park Road, Chak Shahzad, Islamabad 44000, Pakistan
| |
Collapse
|
4
|
Padnya P, Shiabiev I, Pysin D, Gerasimova T, Ranishenka B, Stanavaya A, Abashkin V, Shcharbin D, Shi X, Shen M, Nazarova A, Stoikov I. Non-Viral Systems Based on PAMAM-Calix-Dendrimers for Regulatory siRNA Delivery into Cancer Cells. Int J Mol Sci 2024; 25:12614. [PMID: 39684325 DOI: 10.3390/ijms252312614] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer is one of the most common diseases in developed countries. Recently, gene therapy has emerged as a promising approach to cancer treatment and has already entered clinical practice worldwide. RNA interference-based therapy is a promising method for cancer treatment. However, there are a number of limitations that require vectors to deliver therapeutic nucleic acids to target tissues and organs. Active research is currently underway to find highly effective, low-toxic nanomaterials capable of acting as nanocarriers. In this study, we demonstrated for the first time the ability of symmetrical polyamidoamine dendronized thiacalix[4]arenes (PAMAM-calix-dendrimers) to form stable positively charged complexes with siRNAs, protect them from enzymatic degradation, and efficiently deliver gene material to HeLa cells. A distinctive feature of PAMAM-calix-dendrimers was the unusual decrease in hemo- and cytotoxicity with increasing generation, while these compounds did not cause toxic effects at concentrations required for siRNA binding and delivery. A comparative analysis of the efficiency of complex formation of PAMAM-calix-dendrimers and classical PAMAM dendrimers with siRNAs was also performed. The findings may facilitate the creation of novel unique gene delivery systems for cancer nanomedicine development.
Collapse
Affiliation(s)
- Pavel Padnya
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Dmitry Pysin
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russia
| | - Bahdan Ranishenka
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Alesia Stanavaya
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, 27 Akademicheskaya St., 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| |
Collapse
|
5
|
Seegobin N, McCoubrey LE, Vignal C, Waxin C, Abdalla Y, Fan Y, Awad A, Murdan S, Basit AW. Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. Drug Deliv Transl Res 2024:10.1007/s13346-024-01736-1. [PMID: 39527394 DOI: 10.1007/s13346-024-01736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC. This approach leverages the dual anti-inflammatory action of TFC and the local production of anti-inflammatory short-chain fatty acids from the degradation of PLGA by colonic gut microbiota. NPs were produced by nanoprecipitation and characterised for their drug release profile in vitro. The efficacy of the enhanced PLGA-TFC NPs was then tested in a C57BL/6 DSS colitis mouse model. The release profile of TFC from the enhanced PLGA NPs showed a 40% burst release within the first hour, followed by up to 80% drug release in the colonic environment. Notably, the degradation of PLGA by colonic gut microbiota did not significantly influence TFC release. In the mouse model, neither PLGA NPs alone nor TFC alone showed significant effects on weight loss compared to the TFC-loaded PLGA NPs, emphasising the enhanced efficacy potential of the combined formulation. Altogether, these results suggest a promising role of NP delivery systems in enhancing TFC efficacy, marking a significant step towards reducing dosage and associated side effects in IBD treatment. This study underscores the potential of PLGA-TFC NPs in providing targeted and effective therapy for IBD.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Drug Product Development, GSK R&D, Ware, SG12 0GX, UK
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Yue Fan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK.
| |
Collapse
|
6
|
Rahmani Kheyrollahi M, Mohammadnejad J, Eidi A, Jafary H. Synthesis and in vitro study of surface-modified and anti-EGFR DNA aptamer -conjugated chitosan nanoparticles as a potential targeted drug delivery system. Heliyon 2024; 10:e38904. [PMID: 39435057 PMCID: PMC11491906 DOI: 10.1016/j.heliyon.2024.e38904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Nowadays, finding effective approaches for cancer therapy is one of the significant issues related to human health all over the world. Hence, in this research, we designed and synthesized a novel targeted DDS based on surface-modified chitosan (CS) for the effective delivery of noscapine (NO). As the surface of CS nanoparticles was firstly modified with carboxyl groups and followed by covalent conjugation of DNA-aptamer (Ap) as targeting and receptor blocker agent. Secondly, NO, as a chemotherapeutic agent, was loaded into prepared nano-complex and synthetics were effectively characterized via various analytical devices, including FT-IR, 1H NMR, DLS, Zeta potential analyzer, TGA, TEM, and SEM to verify quality and quantity of synthetics. Drug loading was obtained about 25 % and sustained drug release was observed for nano-complex at different pHs. Then, the cell viability assay was performed on MCF-7 (as breast cancer cell) and HFF-1 (as normal cell) cell lines to investigate cancer cell inhibition potency of nano-complex. Cell viability of cancer cells was 19.84 ± 1.87 % (for C-CS-Ap-NO) and 75.43 ± 2.64 % (for C-CS-Ap) after 72 h of treatment with 400 nM concentration. These results have been confirming the excellent potency of synthesized novel nano-complex as practical DDS in cancer therapy.
Collapse
Affiliation(s)
- Maryam Rahmani Kheyrollahi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515/775, Iran
| | - Javad Mohammadnejad
- Department of Life science engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515/775, Iran
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, P.O. Box 14515/775, Iran
| |
Collapse
|
7
|
Alshammari ND, Elkanayati R, Vemula SK, Al Shawakri E, Uttreja P, Almutairi M, Repka MA. Advancements in Colon-Targeted Drug Delivery: A Comprehensive Review on Recent Techniques with Emphasis on Hot-Melt Extrusion and 3D Printing Technologies. AAPS PharmSciTech 2024; 25:236. [PMID: 39379609 DOI: 10.1208/s12249-024-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
This review investigates the progression and effectiveness of colon-targeted drug delivery systems, offering a comprehensive understanding of the colon's anatomy and physiological environment. Recognizing the distinctive features of the colon is crucial for successfully formulating oral dosage forms that precisely target specific areas in the gastrointestinal tract (GIT) while minimizing side effects through mitigating off-target sites. This understanding forms the basis for designing effective targeted drug delivery systems. The article extensively examines diverse approaches to formulating drugs for colonic targeting, highlighting key polymers and excipients in their production. Special emphasis is given to innovative approaches such as hot-melt extrusion (HME) and three-dimensional printing (3D-P), renowned for their accuracy in drug release kinetics and intricate dosage form geometry. However, challenges arise regarding material standardization and the complex network of regulatory clearances required to confirm safety and effectiveness. The review provides insights into each application's advantages and potential challenges. Furthermore, it sheds light on the local diseases that necessitate colon targeting and the available marketed products, providing an overview of the current state of colon-targeted drug delivery systems. Additionally, the review emphasizes the importance of testing drugs in a controlled in vitro environment during the development phase. It also discusses the future directions for successful development in this field. By integrating knowledge across anatomy, formulation techniques, and assessment methodologies, this review is a valuable resource for researchers navigating the dynamic field of colonic drug delivery.
Collapse
Affiliation(s)
- Nouf D Alshammari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, 91431, Arar, Saudi Arabia
| | - Rasha Elkanayati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India.
| | - Esraa Al Shawakri
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Mashan Almutairi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
8
|
Vemula SK, Narala S, Uttreja P, Narala N, Daravath B, Kalla CSA, Baisa S, Munnangi SR, Chella N, Repka MA. Quality by Design (QbD) Approach to Develop Colon-Specific Ketoprofen Hot-Melt Extruded Pellets: Impact of Eudragit ® S 100 Coating on the In Vitro Drug Release. Pharmaceutics 2024; 16:1265. [PMID: 39458597 PMCID: PMC11509973 DOI: 10.3390/pharmaceutics16101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND A pelletizer paired with hot-melt extrusion technology (HME) was used to develop colon-targeted pellets for ketoprofen (KTP). Thermal stability and side effects in the upper gastrointestinal tract made ketoprofen more suitable for this work. METHODS The pellets were prepared using the enzyme-triggered polymer Pectin LM in the presence of HPMC HME 4M, followed by pH-dependent Eudragit® S 100 coating to accommodate the maximum drug release in the colon by minimizing drug release in the upper gastrointestinal tract (GIT). Box-Behnken Design (BBD) was used for response surface optimization of the proportion of different independent variables like Pectin LM (A), HPMC HME 4M (B), and Eudragit® S 100 (C) required to lower the early drug release in upper GIT and to extend the drug release in the colon. RESULTS Solid-state characterization studies revealed that ketoprofen was present in a solid solution state in the hot-melt extruded polymer matrix. The desired responses of the prepared optimized KTP pellets obtained by considering the designed space showed 1.20% drug release in 2 h, 3.73% in the first 5 h of the lag period with the help of Eudragit® S 100 coating, and 93.96% in extended release up to 24 h in the colonic region. CONCLUSIONS Hence, developing Eudragit-coated hot-melt extruded pellets could be a significant method for achieving the colon-specific release of ketoprofen.
Collapse
Affiliation(s)
- Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
| | - Prateek Uttreja
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
| | - Bhaskar Daravath
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM Deemed to be University, Rudraram, Patancheru, Sangareddy, Hyderabad 502329, Telangana, India;
| | | | - Srikanth Baisa
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Michael A. Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA (P.U.)
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA
| |
Collapse
|
9
|
Layek B. A Comprehensive Review of Xanthan Gum-Based Oral Drug Delivery Systems. Int J Mol Sci 2024; 25:10143. [PMID: 39337626 PMCID: PMC11431853 DOI: 10.3390/ijms251810143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthan gum (XG) is an exopolysaccharide synthesized by the aerobic fermentation of simple sugars using Xanthomonas bacteria. It comprises a cellulosic backbone with a trisaccharide side chain connected to alternative glucose residues in the main backbone through α (1→3) linkage. XG dissolves readily in cold and hot water to produce a viscous solution that behaves like a pseudoplastic fluid. It shows excellent resistance to enzymatic degradation and great stability throughout a broad temperature, pH, or salt concentration range. Additionally, XG is nontoxic, biocompatible, and biodegradable, making it a suitable carrier for drug delivery. Furthermore, the carboxylic functions of pyruvate and glucuronic acid offer a considerable opportunity for chemical modification to meet the desired criteria for a specific application. Therefore, XG or its derivatives in conjunction with other polymers have frequently been studied as matrices for tablets, nanoparticles, microparticles, and hydrogels. This review primarily focuses on the applications of XG in various oral delivery systems over the past decade, including sustained-release formulations, gastroretentive dosage forms, and colon-targeted drug delivery. Source, production methods, and physicochemical properties relevant to drug delivery applications of XG have also been discussed.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
10
|
Shendge RS, Zalte TS, Khade SB. Polymeric microspheres redefining the landscape of colon-targeted delivery: A contemporary update. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 11:100156. [DOI: 10.1016/j.ejmcr.2024.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Kim GL, Song JG, Han HK. Enhanced Oral Efficacy of Semaglutide via an Ionic Nanocomplex with Organometallic Phyllosilicate in Type 2 Diabetic Rats. Pharmaceutics 2024; 16:886. [PMID: 39065583 PMCID: PMC11280289 DOI: 10.3390/pharmaceutics16070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to develop an effective oral formulation of semaglutide, a glucagon-like peptide-1 receptor agonist, using an organometallic phyllosilicate-based colonic delivery system. The core nanocomplex (AMP-Sema) of 3-aminopropyl-functionalized magnesium phyllosilicate (AMP) and semaglutide was prepared via electrostatic interactions. Subsequently, AMP-Sema was coated with a polymer showing pH-dependent solubility (Eudragit® S100) for preferential colonic delivery. The surface-coated nanoparticles (EAMP-Sema) showed a narrow size distribution, and the encapsulated semaglutide maintained its conformational stability. The pH-dependent drug release property of EAMP-Sema yielded around 20% and 62% drug release at pH 1.2 and 7.4, respectively. The nanoparticles exhibited significantly decreased size and surface charge at pH 7.4, which indicated the pH-dependent dissolution of the coating layer. Furthermore, EAMP-Sema effectively improved the membrane permeability and metabolic stability of semaglutide in the gastrointestinal tract. It protected the encapsulated drugs from proteolysis in simulated intestinal fluids and increased drug transport by 2.5-fold in Caco-2 cells. Consequently, orally administered EAMP-Sema (equivalent to 8 mg/kg of semaglutide) showed significant therapeutic benefits, yielding effective glycemic control and weight loss in high-fat diet/streptozotocin (40 mg/kg)-induced type 2 diabetic rats. These results demonstrate that EAMP-Sema could improve the efficacy of orally administered semaglutide by enhancing the GI stability and cellular uptake of protein drugs.
Collapse
Affiliation(s)
| | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea
| |
Collapse
|
12
|
Kumar A, Vaiphei KK, Singh N, Datta Chigurupati SP, Paliwal SR, Paliwal R, Gulbake A. Nanomedicine for colon-targeted drug delivery: strategies focusing on inflammatory bowel disease and colon cancer. Nanomedicine (Lond) 2024; 19:1347-1368. [PMID: 39105753 PMCID: PMC11318742 DOI: 10.1080/17435889.2024.2350356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024] Open
Abstract
The nanostructured drug-delivery systems for colon-targeted drug delivery are a promising field of research for localized diseases particularly influencing the colonic region, in other words, ulcerative colitis, Crohn's disease, and colorectal cancer. There are various drug-delivery approaches designed for effective colonic disease treatment, including stimulus-based formulations (enzyme-triggered systems, pH-sensitive systems) and magnetically driven drug-delivery systems. In addition, targeted drug delivery by means of overexpressed receptors also offers site specificity and reduces drug resistance. It also covers GI tract-triggered emulsifying systems, nontoxic plant-derived nanoformulations as advanced drug-delivery techniques as well as nanotechnology-based clinical trials toward colonic diseases. This review gives insight into advancements in colon-targeted drug delivery to meet site specificity or targeted drug-delivery requirements.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Naveen Singh
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Sri Pada Datta Chigurupati
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| | - Shivani Rai Paliwal
- Department of Pharmacy, Guru Ghasidas Vishwavidhyalaya (A Central University), Koni Bilaspur, Chhattisgarh, 495009, India
| | - Rishi Paliwal
- Nanomedicine & Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Assam, 781101, India
| |
Collapse
|
13
|
Manna S, Karmakar S, Sen O, Sinha P, Jana S, Jana S. Recent updates on guar gum derivatives in colon specific drug delivery. Carbohydr Polym 2024; 334:122009. [PMID: 38553200 DOI: 10.1016/j.carbpol.2024.122009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Colon specific delivery of therapeutics have gained much attention of pharmaceutical researchers in the recent past. Colonic specific targeting of drugs is used not only for facilitating absorption of protein or peptide drugs, but also localization of therapeutic agents in colon to treat several colonic disorders. Among various biopolymers, guar gum (GG) exhibits pH dependent swelling, which allows colon specific release of drug. GG also shows microbial degradation in the colonic environment which makes it a suitable excipient for developing colon specific drug delivery systems. The uncontrolled swelling and hydration of GG can be controlled by structural modification or by grafting with another polymeric moiety. Several graft copolymerized guar gum derivatives are investigated for colon targeting of drugs. The efficacy of various guar gum derivatives are evaluated for colon specific delivery of drugs. The reviewed literature evidenced the potentiality of guar gum in localizing drugs in the colonic environment. This review focuses on the synthesis of several guar gum derivatives and their application in developing various colon specific drug delivery systems including matrix tablets, coated formulations, nano or microparticulate delivery systems and hydrogels.
Collapse
Affiliation(s)
- Sreejan Manna
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Sandip Karmakar
- Department of Pharmacy, Sanaka Educational Trust's Group of Institutions, Durgapur, West Bengal 713212, India
| | - Olivia Sen
- Department of Pharmaceutical Technology, Brainware University, Barasat, Kolkata, West Bengal 700125, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Subrata Jana
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh 484887, India
| | - Sougata Jana
- Department of Health and Family Welfare, Directorate of Health Services, Kolkata-700091, West Bengal, India.
| |
Collapse
|
14
|
Su L, Song G, Zhou T, Tian H, Xin H, Zou X, Xu Y, Jin X, Gui S, Lu X. Colon-targeted oral nanoliposomes loaded with psoralen alleviate DSS-induced ulcerative colitis. Biomater Sci 2024; 12:3212-3228. [PMID: 38757193 DOI: 10.1039/d4bm00321g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Oral administration, while convenient, but complex often faces challenges due to the complexity of the digestive environment. In this study, we developed a nanoliposome (NLP) encapsulating psoralen (P) and coated it with chitosan (CH) and pectin (PT) to formulate PT/CH-P-NLPs. PT/CH-P-NLPs exhibit good biocompatibility, superior to liposomes loaded with psoralen and free psoralen alone. After oral administration, PT/CH-P-NLPs remain stable in the stomach and small intestine, followed by a burst release of psoralen after reaching the slightly alkaline and gut microbiota-rich colon segment. In the DSS-induced ulcerative colitis of mice, PT/CH-P-NLPs showed significant effects on reducing inflammation, mitigating oxidative stress, protecting the integrity of the colon mucosal barrier, and modulating the gut microbiota. In conclusion, the designed nanoliposomes demonstrated the effective application of psoralen in treating ulcerative colitis.
Collapse
Affiliation(s)
- Liqian Su
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Gaoqing Song
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Tao Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hongmei Tian
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Hui Xin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing 102629, People's Republic of China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, People's Republic of China
| | - Xuemei Lu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of BasicMedical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, People's Republic of China.
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, People's Republic of China
| |
Collapse
|
15
|
Kadian S, Gopalakrishnan S, Selvamani V, Khan S, Meyer T, Thomas R, Rana MM, Irazoqui PP, Verma MS, Rahimi R. Smart Capsule for Targeted Detection of Inflammation Levels Inside the GI Tract. IEEE Trans Biomed Eng 2024; 71:1565-1576. [PMID: 38096093 PMCID: PMC11187759 DOI: 10.1109/tbme.2023.3343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Effective management of Inflammatory Bowel Disease (IBD) is contingent upon frequent monitoring of inflammation levels at targeted locations within the gastrointestinal (GI) tract. This is crucial for assessing disease progression and detecting potential relapses. To address this need, a novel single-use capsule technology has been devised that enables region-specific inflammation measurement, thereby facilitating repeatable monitoring within the GI tract. The capsule integrates a pH-responsive coating for location-specific activation, a chemiluminescent paper-based myeloperoxidase (MPO) sensor for inflammation detection, and a miniaturized photodetector, complemented by embedded electronics for real-time wireless data transmission. Demonstrating linear sensitivity within the physiological MPO concentration range, the sensor is capable of effectively identifying inflammation risk in the GI fluid. Luminescence emitted by the sensor, proportional to MPO concentration, is converted into an electrical signal by the photodetector, generating a quantifiable energy output with a sensitivity of 6.14 µJ/U.ml-1. The capsule was also tested with GI fluids collected from pig models simulating various inflammation states. Despite the physiological complexities, the capsule consistently activated in the intended region and accurately detected MPO levels with less than a 5% variation between readings in GI fluid and a PBS solution. This study heralds a significant step towards minimally invasive, in situ GI inflammation monitoring, potentially revolutionizing personalized IBD management and patient-specific therapeutic strategies.
Collapse
|
16
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Hamza JR, Mahmood H, Shoukat H, Maqbool I, Ashraf MA. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine (Lond) 2024; 19:755-777. [PMID: 38334078 DOI: 10.2217/nnm-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Jam Riyan Hamza
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA
| | - Hassan Mahmood
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | | |
Collapse
|
17
|
Soltani F, Kamali H, Akhgari A, Afrasiabi Garekani H, Nokhodchi A, Sadeghi F. Formulation and optimization of a single-layer coat for targeting budesonide pellets to the descending Colon. Pharm Dev Technol 2024; 29:212-220. [PMID: 38392961 DOI: 10.1080/10837450.2024.2321250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
The current budesonide formulations are inadequate for addressing left-sided colitis, and patients might hesitate to use an enema for a prolonged time. This study focuses on developing a single-layer coating for budesonide pellets targeting the descending colon. Pellets containing budesonide (1.5%w/w), PVP K30 (5%w/w), lactose monohydrate (25%w/w) and Avicel pH 102 (68.5%w/w) were prepared using extrusion spheronization technique. Coating formulations were designed using response surface methodology with pH and time-dependent Eudragits. Dissolution tests were conducted at different pH levels (1.2, 6.5, 6.8, and 7.2). Optimal coating formulation, considering coating level and the Eudragit (S + L) ratio to the total coating weight, was determined. Budesonide pellets were coated with the optimized composition and subjected to continuous dissolution testing simulating the gastrointestinal tract. The coating, with 48% S, 12% L, and 40% RS at a 10% coating level, demonstrated superior budesonide delivery to the descending colon. Coated pellets had a spherical shape with a uniform 30 µm thickness coating, exhibiting pH and time-dependent release. Notably, zero-order release kinetics was observed for the last 9 h in colonic conditions. The study suggests that an optimized single-layer coating, incorporating pH and time-dependent polymers, holds promise for consistently delivering budesonide to the descending colon.
Collapse
Affiliation(s)
- Fatemeh Soltani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, Arundel Building, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Pharmaceutical Research Inc, Coral Springs, Florida, USA
| | - Fatemeh Sadeghi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
18
|
Subbaiah MAM, Rautio J, Meanwell NA. Prodrugs as empowering tools in drug discovery and development: recent strategic applications of drug delivery solutions to mitigate challenges associated with lead compounds and drug candidates. Chem Soc Rev 2024; 53:2099-2210. [PMID: 38226865 DOI: 10.1039/d2cs00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon Bristol Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Bangalore, PIN 560099, India.
| | - Jarkko Rautio
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Nicholas A Meanwell
- The Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
- Department of Medicinal Chemistry, The College of Pharmacy, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Rabeh ME, Vora LK, Moore JV, Bayan MF, McCoy CP, Wylie MP. Dual stimuli-responsive delivery system for self-regulated colon-targeted delivery of poorly water-soluble drugs. BIOMATERIALS ADVANCES 2024; 157:213735. [PMID: 38154402 DOI: 10.1016/j.bioadv.2023.213735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Inflammatory bowel disease (IBD) are chronic inflammatory conditions which cause significant patient morbidity. Local drug delivery to the colon can improve treatment efficacy and reduce side effects associated with IBD treatment. Smart drug delivery systems are designed to regulate the release of therapeutic agents at the desired site of action. pH-responsive drug carriers have been previously utilised for improved oral drug delivery beyond stomach harsh conditions. Additionally, the colon possesses a diverse microbiome secreting bioactive molecules e.g., enzymes, that can be exploited for targeted drug delivery. We herein synthesised and characterised a 2-hydroxyethyl methacrylate and methacrylic acid copolymer, crosslinked with an azobenzyl crosslinker, that displayed pH- and enzyme-responsive properties. The swelling and drug release from hydrogel were analysed in pH 1.2, 6.5 and 7.4 buffers, and in the presence of rat caecal matter using metronidazole and mesalamine as model BCS Class I and IV drugs, respectively. Swelling studies displayed pH-responsive swelling behaviour, where swelling was maximum at pH 7.4 and minimum at pH 1.2 (69 % versus 32 %). Consequently, drug release was limited in gastric and small intestinal conditions but increased significantly when exposed to colonic conditions containing caecal matter. This system displays promising capacity for achieving colon-targeted drug delivery with enhanced dissolution of poorly water-soluble drugs for local treatment of IBD and other colon-targeted therapies.
Collapse
Affiliation(s)
- Mohmmad E Rabeh
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Jessica V Moore
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohammad F Bayan
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; Faculty of Pharmacy, Philadelphia University, P.O Box 1, Amman 19392, Jordan
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
20
|
El-Kawy OA, Shweeta HA, Abdelgawad MR. Preparation and evaluation of radiolabeled acetaminosalol microspheres: A new potential selective radiotracer for ulcerative colitis early diagnosis. J Labelled Comp Radiopharm 2024; 67:4-17. [PMID: 37935385 DOI: 10.1002/jlcr.4070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 09/18/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Acetaminosalol labeling reaction with technetium-99m was optimized, and the radiocomplex was obtained in a high radiochemical yield of 98.9 ± 0.6% and high stability (>30 h). The tracer was characterized, and its binding to the PPARγ receptor was assessed in silico. To reduce radiation exposure to non-target organs and increase accumulation in the colon, the tracer was formulated as pH-sensitive microspheres with a mean particle size of 201 ± 2.1 μm, a polydispersity index of 0.18, a 25.3 ± 3.6 zeta potential, and 98.6 ± 0.33% entrapment efficiency. The system suitability was assessed in vivo in normal and ulcerative rats, and the biodistribution profile in the colon showed 56.5 ± 1.4% localization within 4 h. Blocking study suggested the selectivity of the tracer to the target receptor. Overall, the reported data encouraged the potential use of the labeled microspheres to target ulcerative colitis.
Collapse
Affiliation(s)
- O A El-Kawy
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | - H A Shweeta
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | | |
Collapse
|
21
|
Oliveira A, Rodrigues LC, Soares da Costa D, Fernandes EM, Reis RL, Neves NM, Leão P, Martins A. COX-2 inhibitor delivery system aiming intestinal inflammatory disorders. BIOMATERIALS ADVANCES 2024; 156:213712. [PMID: 38056110 DOI: 10.1016/j.bioadv.2023.213712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/10/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Selective COX-2 inhibitors such as etoricoxib (ETX) are potentially indicated for the treatment of intestinal inflammatory disorders. However, their systemic administration provokes some off-site secondary effects, decreasing the desirable local effectiveness. To circumvent such limitations, herein an ETX delivery system based on electrospun fibrous meshes (eFMs) was proposed. ETX at different concentrations (1, 2, and 3 mg mL-1) was loaded into eFMs, which not affect the morphology and the mechanical properties of this drug delivery system (DDS). The ETX showed a burst release within the first 12 h, followed by a faster release until 36 h, gradually decreasing over time. Importantly, the ETX studied concentrations were not toxic to human colonic cells (i.e. epithelial and fibroblast). Moreover, the DDS loading the highest concentration of ETX, when tested with stimulated human macrophages, promoted a reduction of PGE2, IL-8 and TNF-α secretion. Therefore, the proposed DDS may constitute a safe and efficient treatment of colorectal diseases promoted by inflammatory disorders associated with COX-2.
Collapse
Affiliation(s)
- Ana Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro Leão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimaraes, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
22
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
23
|
Mishra Y, Mishra V, Aljabali AAA, El-Tanani M, Naikoo GA, Charbe N, Chava SR, Tambuwala MM. 3D Printed Personalized Colon-targeted Tablets: A Novel Approach in Ulcerative Colitis Management. Curr Drug Deliv 2024; 21:1211-1225. [PMID: 37718525 DOI: 10.2174/1567201821666230915150544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara (Punjab)-144411, India
| | - Alaa A A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Gowhar A Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, Salalah PC 211, Oman
| | - Nitin Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | | | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS. United Kingdom
| |
Collapse
|
24
|
Wang Y, Liu L, Zhu Y, Wang L, Yu DG, Liu LY. Tri-Layer Core-Shell Fibers from Coaxial Electrospinning for a Modified Release of Metronidazole. Pharmaceutics 2023; 15:2561. [PMID: 38004540 PMCID: PMC10674365 DOI: 10.3390/pharmaceutics15112561] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Polymers are the backbone of drug delivery. Electrospinning has greatly enriched the strategies that have been explored for developing novel drug delivery systems using polymers during the past two decades. In this study, four different kinds of polymers, i.e., the water-soluble polymer poly (vinyl alcohol) (PVA), the insoluble polymer poly(ε-caprolactone) (PCL), the insoluble polymer Eudragit RL100 (ERL100) and the pH-sensitive polymer Eudragit S100 (ES100) were successfully converted into types of tri-layer tri-polymer core-shell fibers through bi-fluid coaxial electrospinning. During the coaxial process, the model drug metronidazole (MTD) was loaded into the shell working fluid, which was an emulsion. The micro-formation mechanism of the tri-layer core-shell fibers from the coaxial emulsion electrospinning was proposed. Scanning electron microscope and transmission electron microscope evaluations verified the linear morphology of the resultant fibers and their obvious tri-layer multiple-chamber structures. X-ray diffraction and Fourier transform infrared spectroscopy measurements demonstrated that the drug MTD presented in the fibers in an amorphous state and was compatible with the three polymeric matrices. In vitro dissolution tests verified that the three kinds of polymer could act in a synergistic manner for a prolonged sustained-release profile of MTD in the gut. The drug controlled-release mechanisms were suggested in detail. The protocols reported here pioneer a new route for creating a tri-layer core-shell structure from both aqueous and organic solvents, and a new strategy for developing advanced drug delivery systems with sophisticated drug controlled-release profiles.
Collapse
Affiliation(s)
- Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Lin Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Yuanjie Zhu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Liangzhe Wang
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China;
| | - Li-ying Liu
- Naval Medical Center, Naval Medical University, Shanghai 200433, China; (L.L.); (Y.Z.); (L.W.)
| |
Collapse
|
25
|
Lin S, Wu F, Zhang Y, Chen H, Guo H, Chen Y, Liu J. Surface-modified bacteria: synthesis, functionalization and biomedical applications. Chem Soc Rev 2023; 52:6617-6643. [PMID: 37724854 DOI: 10.1039/d3cs00369h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The past decade has witnessed a great leap forward in bacteria-based living agents, including imageable probes, diagnostic reagents, and therapeutics, by virtue of their unique characteristics, such as genetic manipulation, rapid proliferation, colonization capability, and disease site targeting specificity. However, successful translation of bacterial bioagents to clinical applications remains challenging, due largely to their inherent susceptibility to environmental insults, unavoidable toxic side effects, and limited accumulation at the sites of interest. Cell surface components, which play critical roles in shaping bacterial behaviors, provide an opportunity to chemically modify bacteria and introduce different exogenous functions that are naturally unachievable. With the help of surface modification, a wide range of functionalized bacteria have been prepared over the past years and exhibit great potential in various biomedical applications. In this article, we mainly review the synthesis, functionalization, and biomedical applications of surface-modified bacteria. We first introduce the approaches of chemical modification based on the bacterial surface structure and then highlight several advanced functions achieved by modifying specific components on the surface. We also summarize the advantages as well as limitations of surface chemically modified bacteria in the applications of bioimaging, diagnosis, and therapy and further discuss the current challenges and possible solutions in the future. This work will inspire innovative design thinking for the development of chemical strategies for preparing next-generation biomedical bacterial agents.
Collapse
Affiliation(s)
- Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yifan Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Huan Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yanmei Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
26
|
Jing S, Chen H, Liu E, Zhang M, Zeng F, Shen H, Fang Y, Muhitdinov B, Huang Y. Oral pectin/oligochitosan microspheres for colon-specific controlled release of quercetin to treat inflammatory bowel disease. Carbohydr Polym 2023; 316:121025. [PMID: 37321723 DOI: 10.1016/j.carbpol.2023.121025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, life quality-reducing disease with no cures available yet. To develop an effective medication suitable for long-term use is an urgent but unmet need. Quercetin (QT) is a natural dietary flavonoid with good safety and multifaceted pharmacological activities against inflammation. However, orally administrated quercetin yields unproductive outcomes for IBD treatment because of its poor solubility and extensive metabolism in the gastrointestinal tract. In this work, a colon-targeted QT delivery system (termed COS-CaP-QT) was developed, of which the pectin (PEC)/Ca2+ microspheres were prepared and then crosslinked by oligochitosan (COS). The drug release profile of COS-CaP-QT was pH-dependent and colon microenvironment-responsive, and COS-CaP-QT showed preferential distribution in the colon. The mechanism study showed that QT triggered the Notch pathway to regulate the proliferation of T helper 2 (Th2) cells and group 3 innate lymphoid cells (ILC3s) and the inflammatory microenvironment was remodeled. The in vivo therapeutic results revealed that COS-CaP-QT could relieve the colitis symptoms and maintain the colon length and intestinal barrier integrity.
Collapse
Affiliation(s)
- Shisuo Jing
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Huayuan Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| | - Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Feng Zeng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China
| | - Yuefei Fang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Bahtiyor Muhitdinov
- Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China; Institute of Bioorganic Chemistry, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Yongzhuo Huang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Shanghai Institute of Materia Medica, CAS, Shanghai 201203, China.
| |
Collapse
|
27
|
Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol 2023; 11:1270364. [PMID: 37781530 PMCID: PMC10540072 DOI: 10.3389/fbioe.2023.1270364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Over the past several decades, there has been significant growth in the design and development of more efficient and advanced biomaterials based on non-cellulosic biological macromolecules. In this context, hydrogels based on stimuli-responsive non-cellulosic biological macromolecules have garnered significant attention because of their intrinsic physicochemical properties, biological characteristics, and sustainability. Due to their capacity to adapt to physiological pHs with rapid and reversible changes, several researchers have investigated pH-responsive-based non-cellulosic polymers from various materials. pH-responsive hydrogels release therapeutic substances in response to pH changes, providing tailored administration, fewer side effects, and improved treatment efficacy while reducing tissue damage. Because of these qualities, they have been shown to be useful in a wide variety of applications, including the administration of chemotherapeutic drugs, biological material, and natural components. The pH-sensitive biopolymers that are utilized most frequently include chitosan, alginate, hyaluronic acid, guar gum, and dextran. In this review article, the emphasis is placed on pH stimuli-responsive materials that are based on biological macromolecules for the purposes of drug administration.
Collapse
Affiliation(s)
- Udaykumar Vegad
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Megha Patel
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Sanjay Chauhan
- Graduate School of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
- Institute of Process and Particle Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
28
|
Mathews HF, Pieper MI, Jung SH, Pich A. Compartmentalized Polyampholyte Microgels by Depletion Flocculation and Coacervation of Nanogels in Emulsion Droplets. Angew Chem Int Ed Engl 2023; 62:e202304908. [PMID: 37387670 DOI: 10.1002/anie.202304908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM-C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM-C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core-shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maria I Pieper
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
29
|
Yang X, Yang Y, Yu H, Zhou Y. Self-Assembled Polymers for Gastrointestinal Tract Targeted Delivery through the Oral Route: An Update. Polymers (Basel) 2023; 15:3538. [PMID: 37688164 PMCID: PMC10490001 DOI: 10.3390/polym15173538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Gastrointestinal tract (GIT) targeted drug delivery systems have gained growing attention as potential carriers for the treatment of different diseases, especially local colonic diseases. They have lower side effects as well as enhanced oral delivery efficiency because of various therapeutics that are vulnerable to acidic and enzymatic degradation in the upper GIT are protected. The novel and unique design of self-assembled nanostructures, such as micelles, hydrogels, and liposomes, which can both respond to external stimuli and be further modified, making them ideal for specific, targeted medical needs and localized drug delivery treatments through the oral route. Therefore, the aim of this review was to summarize and critically discuss the pharmaceutical significance and therapeutic feasibility of a wide range of natural and synthetic biomaterials for efficient drug targeting to GIT using the self-assembly method. Among various types of biomaterials, natural and synthetic polymer-based nanostructures have shown promising targeting potential due to their innate pH responsiveness, sustained and controlled release characteristics, and microbial degradation in the GIT that releases the encapsulated drug moieties.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Yang
- Pingshan General Hospital, Southern Medical University, Shenzhen 518118, China
- Pingshan District Peoples’ Hospital of Shenzhen, Shenzhen 518118, China
| | - Haiyan Yu
- Pingshan General Hospital, Southern Medical University, Shenzhen 518118, China
- Pingshan District Peoples’ Hospital of Shenzhen, Shenzhen 518118, China
| | - Yi Zhou
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
30
|
Carvalho SG, Dos Santos AM, Polli Silvestre AL, Tavares AG, Chorilli M, Daflon Gremião MP. Multifunctional systems based on nano-in-microparticles as strategies for drug delivery: advances, challenges, and future perspectives. Expert Opin Drug Deliv 2023; 20:1231-1249. [PMID: 37786284 DOI: 10.1080/17425247.2023.2263360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.
Collapse
Affiliation(s)
- Suzana Gonçalves Carvalho
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Aline Martins Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Alberto Gomes Tavares
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences - São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
31
|
Vashishat A, Singh A, Kurmi BD, Gupta GD, Singh D. A short appraisal of polylactic-co-glycolic acid based polymer nanotechnology for colon cancer: recent advances and literature evidences. Ther Deliv 2023; 14:459-472. [PMID: 37559461 DOI: 10.4155/tde-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
The currently available formulations provided non-targeted treatment of colon cancer, the deadliest cancer variant. Due to biopharmaceutical hindrances, the majority of the drugs are unable to reach the target site. Polylactic-co-glycolic acid (PLGA) is one of the versatile polymers in cancer treatment, diagnostics and theranostics. The unique mechanism of surface modifications in PLGA properties in colon cancer has been a keen interest to be used in different nanoparticles for improving biopharmaceutical attributes. The ongoing use of these smart nano-carriers has allowed targeted delivery of several active components on a wide scale. The main goal of this review is to compile information on PLGA-based nanocarriers which possess several desirable properties for drug delivery applications, including biocompatibility, biodegradability and tunable drug-release kinetics.
Collapse
Affiliation(s)
- Abhinav Vashishat
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140417, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Dilpreet Singh
- University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
32
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
33
|
Tian Z, Wu X, Peng L, Yu N, Gou G, Zuo W, Yang J. pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt for treating colon cancer. Int J Biol Macromol 2023; 242:124819. [PMID: 37178894 DOI: 10.1016/j.ijbiomac.2023.124819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Due to its poor prognosis and propensity for metastasizing, colon cancer, a frequent cancer of the gastrointestinal system, has a high morbidity and mortality rate. However, the harsh physiological conditions of the gastrointestinal tract can cause the anti-cancer medicine bufadienolides (BU) to lose some of its structure, impairing its ability to fight cancer. In this study, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt (HE BU NCs) were successfully constructed by a solvent evaporation method to improve the bioavailability, release characteristics and intestinal transport ability of BU. In vitro, studies have shown that HE BU NCs could improve BU internalization, significantly induce apoptosis, decrease mitochondrial membrane potential, and increase ROS levels in tumour cells. In vivo, experiments showed that HE BU NCs effectively targeted intestinal sites, increased their retention time, and exerted antitumor activity through Caspase-3 and Bax/Bcl-2 ratio pathways. In conclusion, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt could protect bufadienolides from the destruction of an acidic environment, achieve synergistic release in the intestinal site, improve oral bioavailability, and ultimately exert anti-colon cancer effects, which is a promising strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
- Zonghua Tian
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Xia Wu
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Li Peng
- Department of Hospital Pharmacy, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan 750004, PR China
| | - Na Yu
- Department of Medical Chemistry, School of Basic Medicine, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Guojing Gou
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Wenbao Zuo
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Jianhong Yang
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| |
Collapse
|
34
|
Yang Y, Chen W, Wang M, Shen J, Tang Z, Qin Y, Yu DG. Engineered Shellac Beads-on-the-String Fibers Using Triaxial Electrospinning for Improved Colon-Targeted Drug Delivery. Polymers (Basel) 2023; 15:polym15102237. [PMID: 37242812 DOI: 10.3390/polym15102237] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Colon-targeted drug delivery is gradually attracting attention because it can effectively treat colon diseases. Furthermore, electrospun fibers have great potential application value in the field of drug delivery because of their unique external shape and internal structure. In this study, a core layer of hydrophilic polyethylene oxide (PEO) and the anti-colon-cancer drug curcumin (CUR), a middle layer of ethanol, and a sheath layer of the natural pH-sensitive biomaterial shellac were used in a modified triaxial electrospinning process to prepare beads-on-the-string (BOTS) microfibers. A series of characterizations were carried out on the obtained fibers to verify the process-shape/structure-application relationship. The results of scanning electron microscopy and transmission electron microscopy indicated a BOTS shape and core-sheath structure. X-ray diffraction results indicated that the drug in the fibers was in an amorphous form. Infrared spectroscopy revealed the good compatibility of the components in the fibers. In vitro drug release revealed that the BOTS microfibers provide colon-targeted drug delivery and zero-order drug release. Compared to linear cylindrical microfibers, the obtained BOTS microfibers can prevent the leakage of drugs in simulated gastric fluid, and they provide zero-order release in simulated intestinal fluid because the beads in BOTS microfibers can act as drug reservoirs.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Wei Chen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Jiachen Shen
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Zheng Tang
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yongming Qin
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
35
|
Shahdadi Sardou H, Sadeghi F, Afrasiabi Garekani H, Akhgari A, Hossein Jafarian A, Abbaspour M, Nokhodchi A. Comparison of 5-ASA layered or matrix pellets coated with a combination of ethylcellulose and Eudragits L and S in the treatment of ulcerative colitis in rats. Int J Pharm 2023; 640:122981. [PMID: 37120124 DOI: 10.1016/j.ijpharm.2023.122981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
The aim of this study was to evaluate and optimize the combination of time and pH-dependent polymers as a single coating for the design of the colon-specific drug delivery system of 5-aminosalicylic acid (5-ASA) pellets. 5-ASA matrix pellets with a 70% drug load were prepared by the extrusion-spheronization method. The optimal coating formula which included Eudragit S (ES)+Eudragit L (EL)+Ethylcellulose (EC) was predicted for the targeted drug delivery to the colonic area by a 32 factorial design. The ratio of ES:EL:EC and coating level were considered as independent variables while the responses were the release of less than 10% of the drug within 2 h (Y1), the release of 60-70% within 10 h at pH 6.8 (Y2) and lag time of less than 1 h at pH 7.2 (Y3). Also, 5-ASA layered pellets were prepared by the powder layering of 5-ASA on nonpareils (0.4-0.6 mm) in a fluidized bed coater and then coated with the same optimum coating composition. The coated 5-ASA layered or matrix pellets were tested in a rat model of ulcerative colitis (UC) and compared with the commercial form of 5-ASA pellets (Pentasa®). The ratio of ES:EL:EC of 33:52:15 w/w at a coating level of 7% was discovered as the optimum coating for the delivery of 5-ASA matrix pellets to the colon. The coated 5-ASA pellets were spherical with uniform coating as shown by SEM and met all of our release criteria as predicted. In-vivo studies demonstrated that the optimum 5-ASA layered or matrix pellets had superior anti-inflammatory activities than Pentasa® in terms of colitis activity index (CAI), colon damage score (CDS), colon/body weight ratio and colon's tissue enzymes of glutathione (GSH) and malondialdehyde (MDA). The optimum coating formulation showed a high potential for colonic delivery of 5-ASA layered or matrix pellets and triggered drug release based on pH and time.
Collapse
Affiliation(s)
- Hossein Shahdadi Sardou
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Afrasiabi Garekani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Nokhodchi
- Lupin Research Inc, Coral Springs, Florida, USA; School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
36
|
Guo M, Ling J, Xu X, Ouyang X. Delivery of Doxorubicin by Ferric Ion-Modified Mesoporous Polydopamine Nanoparticles and Anticancer Activity against HCT-116 Cells In Vitro. Int J Mol Sci 2023; 24:ijms24076854. [PMID: 37047825 PMCID: PMC10095579 DOI: 10.3390/ijms24076854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
In clinical cancer research, photothermal therapy is one of the most effective ways to increase sensitivity to chemotherapy. Here, we present a simple and effective method for developing a nanotherapeutic agent for chemotherapy combined with photothermal therapy. The nanotherapeutic agent mesoporous polydopamine-Fe(III)-doxorubicin-hyaluronic acid (MPDA-Fe(III)-DOX-HA) was composed of mesoporous polydopamine modified by ferric ions and loaded with the anticancer drug doxorubicin (DOX), as well as an outer layer coating of hyaluronic acid. The pore size of the mesoporous polydopamine was larger than that of the common polydopamine nanoparticles, and the particle size of MPDA-Fe(III)-DOX-HA nanoparticles was 179 ± 19 nm. With the presence of ferric ions, the heat generation effect of the MPDA-Fe(III)-DOX-HA nanoparticles in the near-infrared light at 808 nm was enhanced. In addition, the experimental findings revealed that the active targeting of hyaluronic acid to tumor cells mitigated the toxicity of DOX on normal cells. Furthermore, under 808 nm illumination, the MPDA-Fe(III)-DOX-HA nanoparticles demonstrated potent cytotoxicity to HCT-116 cells, indicating a good anti-tumor effect in vitro. Therefore, the system developed in this work merits further investigation as a potential nanotherapeutic platform for photothermal treatment of cancer.
Collapse
Affiliation(s)
- Mengwen Guo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xinyi Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaokun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
37
|
Kulkarni R, Fanse S, Burgess DJ. Mucoadhesive drug delivery systems: a promising noninvasive approach to bioavailability enhancement. Part II: formulation considerations. Expert Opin Drug Deliv 2023; 20:413-434. [PMID: 36803264 DOI: 10.1080/17425247.2023.2181332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Mucoadhesive drug delivery systems (MDDS) are specifically designed to interact and bind to the mucosal layer of the epithelium for localized, prolonged, and/or targeted drug delivery. Over the past 4 decades, several dosage forms have been developed for localized as well as systemic drug delivery at different anatomical sites. AREAS COVERED The objective of this review is to provide a detailed understanding of the different aspects of MDDS. Part II describes the origin and evolution of MDDS, followed by a discussion of the properties of mucoadhesive polymers. Finally, a synopsis of the different commercial aspects of MDDS, recent advances in the development of MDDS for biologics and COVID-19 as well as future perspectives are provided. EXPERT OPINION A review of the past reports and recent advances reveal MDDS as highly versatile, biocompatible, and noninvasive drug delivery systems. The rise in the number of approved biologics, the introduction of newer highly efficient thiomers, as well as the recent advances in the field of nanotechnology have led to several excellent applications of MDDS, which are predicted to grow significantly in the future.
Collapse
Affiliation(s)
- Radha Kulkarni
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Suraj Fanse
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Diane J Burgess
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
38
|
Liu D, Wei M, Yan W, Xie H, Sun Y, Yuan B, Jin Y. Potential applications of drug delivery technologies against radiation enteritis. Expert Opin Drug Deliv 2023; 20:435-455. [PMID: 36809906 DOI: 10.1080/17425247.2023.2183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION The incidence of abdominal tumors, such as colorectal and prostate cancers, continually increases. Radiation therapy is widely applied in the clinical treatment of patients with abdominal/pelvic cancers, but it often unfortunately causes radiation enteritis (RE) involving the intestine, colon, and rectum. However, there is a lack of suitable treatment options for effective prevention and treatment of RE. AREAS COVERED Conventional clinical drugs for preventing and treating RE are usually applied by enemas and oral administration. Innovative gut-targeted drug delivery systems including hydrogels, microspheres, and nanoparticles are proposed to improve the prevention and curation of RE. EXPERT OPINION The prevention and treatment of RE have not attracted sufficient attention in the clinical practice, especially compared to the treatment of tumors, although RE takes patients great pains. Drug delivery to the pathological sites of RE is a huge challenge. The short retention and weak targeting of conventional drug delivery systems affect the therapeutic efficiency of anti-RE drugs. Novel drug delivery systems including hydrogels, microspheres, and nanoparticles can allow drugs long-term retention in the gut and targeting the inflammation sites to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
39
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
40
|
Huang H, Lyu Y, Nan K. Soft robot-enabled controlled release of oral drug formulations. SOFT MATTER 2023; 19:1269-1281. [PMID: 36723379 DOI: 10.1039/d2sm01624a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The creation of highly effective oral drug delivery systems (ODDSs) has long been the main objective of pharmaceutical research. Multidisciplinary efforts involving materials, electronics, control, and pharmaceutical sciences encourage the development of robot-enabled ODDSs. Compared with conventional rigid robots, soft robots potentially offer better mechanical compliance and biocompatibility with biological tissues, more versatile shape control and maneuverability, and multifunctionality. In this paper, we first describe and highlight the importance of manipulating drug release kinetics, i.e. pharmaceutical kinetics. We then introduce an overview of state-of-the-art soft robot-based ODDSs comprising resident, shape-programming, locomotive, and integrated soft robots. Finally, the challenges and outlook regarding future soft robot-based ODDS development are discussed.
Collapse
Affiliation(s)
- Hao Huang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yidan Lyu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Kewang Nan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
Versaci M, Morabito FC. Numerical Approaches for Recovering the Deformable Membrane Profile of Electrostatic Microdevices for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:1688. [PMID: 36772726 PMCID: PMC9920444 DOI: 10.3390/s23031688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Recently, a circular symmetrical nonlinear stationary 2D differential model for biomedical micropumps, where the amplitude of the electrostatic field is locally proportional to the curvature of the membrane, was studied in detail. Starting from this, in this work, we first introduce a positive and limited function to model the dielectric properties of the material constituting the membrane according to experimental evidence which highlights that electrostatic capacitance variation occurs when the membrane deforms. Therefore, we present and discuss algebraic conditions of existence, uniqueness, and stability, even with the fringing field formulated according to the Pelesko-Driskoll theory, which is known to take these effects into account with terms characterized by reduced computational loads. These conditions, using "gold standard" numerical approaches, allow the optimal numerical recovery of the membrane profile to be achieved under different load conditions and also provide an important criterion for choosing the intended use of the device starting from the choice of the material constituting the membrane and vice versa. Finally, important insights are discussed regarding the pull-in voltage and electrostatic pressure.
Collapse
Affiliation(s)
- Mario Versaci
- DICEAM Department, "Mediterranea" University, 89124 Reggio Calabria, Italy
| | | |
Collapse
|
42
|
Advances in Oral Drug Delivery Systems: Challenges and Opportunities. Pharmaceutics 2023; 15:pharmaceutics15020484. [PMID: 36839807 PMCID: PMC9960885 DOI: 10.3390/pharmaceutics15020484] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
The oral route is the most preferred route for systemic and local drug delivery. However, the oral drug delivery system faces the harsh physiological and physicochemical environment of the gastrointestinal tract, which limits the bioavailability and targeted design of oral drug delivery system. Innovative pharmaceutical approaches including nanoparticulate formulations, biomimetic drug formulations, and microfabricated devices have been explored to optimize drug targeting and bioavailability. In this review, the anatomical factors, biochemical factors, and physiology factors that influence delivering drug via oral route are discussed and recent advance in conventional and novel oral drug delivery approaches for improving drug bioavailability and targeting ability are highlighted. We also address the challenges and opportunities of oral drug delivery systems in future.
Collapse
|
43
|
Yang Y, Du H, Zou G, Song Z, Zhou Y, Li H, Tan C, Chen H, Fischetti VA, Li J. Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: A review. J Control Release 2023; 353:634-649. [PMID: 36464065 DOI: 10.1016/j.jconrel.2022.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
Intestinal flora regulation is an effective method to intervene and treat diseases associated with microbiome imbalance. In addition to conventional probiotic supplement, phage delivery has recently exhibited great prospect in modifying gut flora composition and regulating certain gene expression of gut bacteria. However, the protein structure of phage is vulnerable to external factors during storage and delivery, which leads to the loss of infection ability and flora regulation function. Encapsulation strategy provides an effective solution for improving phage stability and precisely controlling delivery dosage. Different functional materials including enzyme-responsive and pH-responsive polymers have been used to construct encapsulation carriers to protect phages from harsh conditions and release them in the colon. Meanwhile, diverse carriers showed different characteristics in structure and function, which influenced their protective effect and delivery efficiency. This review systematically summarizes recent research progress on the phage encapsulation and delivery, with an emphasis on function properties of carrier systems in the protection effect and colon-targeted delivery. The present review may provide a theoretical reference for the encapsulation and delivery of phage as microbiota modulator, so as to expedite the development of functional material and delivery carrier, as well as the advances in practical application of intestinal flora regulation.
Collapse
Affiliation(s)
- Yufan Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Geng Zou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Li
- Faculty of Bioscience Engineering, Ghent University, Gent 9000, Belgium
| | - Chen Tan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York 10065, USA
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York 10065, USA; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
44
|
Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022; 15:pharmaceutics15010108. [PMID: 36678736 PMCID: PMC9865147 DOI: 10.3390/pharmaceutics15010108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have a tridimensional structure. They have the ability to absorb a significant amount of water or other natural or simulated fluids that cause their swelling albeit without losing their structure. Their properties can be exploited for encapsulation and modified targeted drug release. Among the numerous natural polymers suitable for obtaining hydrogels, gellan gum is one gaining much interest. It is a gelling agent with many unique features, and furthermore, it is non-toxic, biocompatible, and biodegradable. Its ability to react with oppositely charged molecules results in the forming of structured physical materials (films, beads, hydrogels, nanoparticles). The properties of obtained hydrogels can be modified by chemical crosslinking, which improves the three-dimensional structure of the gellan hydrogel. In the current review, an overview of gellan gum hydrogels and their properties will be presented as well as the mechanisms of ionotropic gelation or chemical crosslinking. Methods of producing gellan hydrogels and their possible applications related to improved release, bioavailability, and therapeutic activity were described.
Collapse
|
45
|
Narala S, Nyavanandi D, Mandati P, Youssef AAA, Alzahrani A, Kolimi P, Zhang F, Repka M. Preparation and in vitro evaluation of hot-melt extruded pectin-based pellets containing ketoprofen for colon targeting. Int J Pharm X 2022; 5:100156. [PMID: 36636366 PMCID: PMC9830203 DOI: 10.1016/j.ijpx.2022.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
This work developed high drug-load pellets for colon targeting in minimal steps by coupling hot-melt extrusion (HME) with a die-surface cutting pelletizer, offering a potential continuous pellet manufacturing process. Ketoprofen (KTP) was selected as a model drug for this study due to its thermal stability and severe upper gastrointestinal side effects. Low and high methoxyl grade pectins were the enzyme-triggered release matrix, and hydroxypropyl methylcellulose (HME 4 M/HME 100LV) was used as a premature release-retarding agent. The powder X-ray diffraction technique and the differential scanning calorimetry results revealed that KTP exists in the solid-solution state within the polymeric matrix after the HME step. The scanning electron micrographs of the fabricated pellets showed a smooth surface without any cracks. The lead formulation showed the lowest premature drug release (∼13%) with an extended KTP release profile over a 24 h period in the presence and absence of the release-triggering enzyme. The lead formulation was stable for 3 months at accelerated stability conditions (40 °C/75 ± 5% RH) concerning drug content, in vitro release, and thermal characteristics. In summary, coupling HME and pelletization processes could be a promising technology for developing colon-targeted drug delivery systems.
Collapse
Affiliation(s)
- Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA,Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA,Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA,Corresponding author at: Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
46
|
Das A, Deka D, Banerjee A, Radhakrishnan AK, Zhang H, Sun XF, Pathak S. A Concise Review on the Role of Natural and Synthetically Derived Peptides in Colorectal Cancer. Curr Top Med Chem 2022; 22:2571-2588. [PMID: 35578849 DOI: 10.2174/1568026622666220516105049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/20/2023]
Abstract
Colorectal cancer being the second leading cause of cancer-associated deaths has become a significant health concern around the globe. Though there are various cancer treatment approaches, many of them show adverse effects and some compromise the health of cancer patients. Hence, significant efforts are being made for the evolution of a novel biological therapeutic approach with better efficacy and minimal side effects. Current research suggests that the application of peptides in colorectal cancer therapeutics holds the possibility of the emergence of an anticancer reagent. The primary beneficial factors of peptides are their comparatively rapid and easy process of synthesis and the enormous potential for chemical alterations that can be evaluated for designing novel peptides and enhancing the delivery capacity of peptides. Peptides might be utilized as agents with cytotoxic activities or as a carrier of a specific drug or as cytotoxic agents that can efficiently target the tumor cells. Further, peptides can also be used as a tool for diagnostic purposes. The recent analysis aims at developing peptides that have the potential to efficiently target the tumor moieties without harming the nearby normal cells. Additionally, decreasing the adverse effects, and unfolding the other therapeutic properties of potential peptides, are also the subject matter of in-depth analysis. This review provides a concise summary of the function of both natural and synthetically derived peptides in colorectal cancer therapeutics that are recently being evaluated and their potent applications in the clinical field.
Collapse
Affiliation(s)
- Alakesh Das
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| | - Hong Zhang
- School of Medicine, Department of Medical Sciences, Örebro University, Örebro, Sweden
| | - Xiao-Feng Sun
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Chennai, India
| |
Collapse
|
47
|
Colon-Targeted eNAMPT-Specific Peptide Systems for Treatment of DSS-Induced Acute and Chronic Colitis in Mouse. Antioxidants (Basel) 2022; 11:antiox11122376. [PMID: 36552583 PMCID: PMC9774280 DOI: 10.3390/antiox11122376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Nicotinamide phosphoribosyl transferase (NAMPT) is required to maintain the NAD+ pool, among which extracellular (e) NAMPT is associated with inflammation, mainly mediated by macrophages. However, the role of (e) NAMPT in inflammatory macrophages in ulcerative colitis is insufficiently understood. Here our analyses of single-cell RNA-seq data revealed that the levels of NAMPT and CYBB/NOX2 in macrophages were elevated in patients with colitis and in mouse models of acute and chronic colitis. These findings indicate the clinical significance of NAMPT and CYBB in colitis. Further, we found that eNAMPT directly binds the extracellular domains of CYBB and TLR4 in activated NLRP3 inflammasomes. Moreover, we developed a recombinant 12-residue TK peptide designated colon-targeted (CT)-conjugated multifunctional NAMPT (rCT-NAMPT), comprising CT as the colon-targeting moiety, which harbors the minimal essential residues required for CYBB/TLR4 binding. rCT-NAMPT effectively suppressed the severity of disease in DSS-induced acute and chronic colitis models through targeting the colon and inhibiting the interaction of NAMPT with CYBB or TLR4. Together, our data show that rCT-NAMPT may serve as an effective novel candidate therapeutic for colitis by modulating the NLRP3 inflammasome-mediated immune signaling system.
Collapse
|
48
|
Hanmantrao M, Chaterjee S, Kumar R, Vishwas S, Harish V, Porwal O, Alrouji M, Alomeir O, Alhajlah S, Gulati M, Gupta G, Dua K, Singh SK. Development of Guar Gum-Pectin-Based Colon Targeted Solid Self-Nanoemulsifying Drug Delivery System of Xanthohumol. Pharmaceutics 2022; 14:2384. [PMID: 36365203 PMCID: PMC9693267 DOI: 10.3390/pharmaceutics14112384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 09/19/2023] Open
Abstract
Present study deciphers development of oral polysaccharide-based colon targeted solid self-nanoemulsifying drug delivery system (S-SNEDDS) of xanthohumol (XH). Several studies have shown that XH has anti-inflammatory and antioxidant properties, suggesting that it could be a good candidate for the treatment of colorectal diseases (CRD). Despite its potential, XH has a low aqueous solubility. As a result, its bioavailability is constrained by the dissolution rate. The liquid (L)-SNEDDS was constituted using Labrafac PG as oil, Tween 80 as surfactant and Transcutol P as co-surfactant. The L-SNEDDS was then adsorbed onto the surface of guar gum and pectin and developed into S-SNEDDS powder. Ternary phase diagram was used to optimize the process of developing L-SNEDDS. The formulation showed mean droplet size of 118.96 ± 5.94 nm and zeta potential of -19.08 ± 0.95 mV and drug loading of 94.20 ± 4.71%. Dissolution studies carried out in medium containing rat caecal contents (RCC) represented the targeted release of S-SNEDDS powder. It was observed that S-SNEDDS showed less than 10% release XH in initial 5 h and rapid release occurred between the 5th and 10th hour. Results of cytotoxicity studies revealed good cytotoxicity of XH loaded S-SNEDDS for Caco2 cells as compared to raw-XH.
Collapse
Affiliation(s)
- Mahesh Hanmantrao
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sourabh Chaterjee
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 4401, Iraq
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Othman Alomeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
49
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
50
|
Shabana S, Hamouda HI, Abdalla M, Sharaf M, Chi Z, Liu C. Multifunctional nanoparticles based on marine polysaccharides for apremilast delivery to inflammatory macrophages: Preparation, targeting ability, and uptake mechanism. Int J Biol Macromol 2022; 222:1709-1722. [PMID: 36179875 DOI: 10.1016/j.ijbiomac.2022.09.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/17/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
Abstract
Hydrophobic drug encapsulation inside targeted nanoparticles can enhance accumulation in inflamed sites, limit toxicity to healthy tissue, and improve pharmacokinetics compared to free drug dosing. This study reports a functionalized marine polysaccharide nanoparticle with a controlled release, targeting abilities, and in-situ imaging properties. Carbon dots functionalized Enteromorpha polysaccharide/Mannose/Methionine functionalized Chitosan (CDs.EP/Man/Meth.Cs) NPs could deliver apremilast to inflammatory macrophages and Caco-2 intestinal cells as an in vitro model for application in oral drug delivery to cure IBD. The nanoparticles were simply a polyelectrolyte complex between cationic functionalized chitosan and anionic polysaccharide of Enteromorpha prolifera. Functionalized polysaccharides and the prepared NPs were well characterized. The functionalized nanoparticles could overcome the limitation of poor drug bioavailability and showed a high loading capacity of (45 %) with a controlled release of about (74.5 %). Confocal laser scanning imaging showed higher cellular uptake of the modified nanoparticles than that of the unmodified nanoparticles in LPS-activated RAW 264.7 macrophages and Caco-2 cells. The effect of functionalization on the cellular uptake targetability was assessed using spectrofluorometric measurements after mannose competition. Anti-inflammatory activity of apremilast-loaded NPs is more elevated than the free drug. These results suggest the feasibility of using functionalized EP/Cs nanoparticles in IBD oral drug delivery.
Collapse
Affiliation(s)
- Samah Shabana
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Egyptian Ministry of Health and Population, 11516, Cairo, Egypt
| | - Hamed I Hamouda
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt; College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China.
| | - Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University, Jinan, Shandong 250022, PR China
| | - Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Nasr City, Cairo 11751, Egypt.
| | - Zhe Chi
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| | - Chenguang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|