1
|
Bueno-Mancebo J, Barrena R, Artola A, Gea T, Altmajer-Vaz D. Surfactin as an ingredient in cosmetic industry: Benefits and trends. Int J Cosmet Sci 2024; 46:702-716. [PMID: 38481065 DOI: 10.1111/ics.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/08/2024] [Accepted: 02/10/2024] [Indexed: 09/25/2024]
Abstract
Surfactin is a natural surfactant almost exclusively produced by Bacillus species with excellent physical-chemical, and biological properties. Among innovative applications, surfactin has been recently used as an ingredient in formulations. The antibacterial and anti-acne activities, as well as the anti-wrinkle, moisturizing, and cleansing features, are some of the reasons this lipopeptide is used in cosmetics. Considering the importance of biosurfactants in the world economy and sustainability, their potential properties for cosmetic and dermatological products, and the importance of patents for technological advancement in a circular bioeconomy system, the present study aims to review all patents involving surfactin as an ingredient in cosmetic formulas. This review was conducted through Espacenet, wherein patents containing the terms "cosmetic" and "surfactin" in their titles, abstracts, or claims were examined. Those patents that detailed a specific surfactin dosage within their formulations were selected for analysis. All patents, irrespective of their publication date, from October 1989 to December 2022, were considered. Additionally, a comprehensive search was performed in the MEDLINE and EMBASE databases, spanning from their inception until the year 2023. This complementary search aimed to enrich the understanding derived from patents, with a specific emphasis on surfactin, encompassing its associated advantages, efficacy, mechanisms of action on the skin, as well as aspects related to sustainability and its merits in cosmetic formulations. From the 105 patents analysed, 75% belong to Japan (54), China (14), and Korea (9). Most of them were submitted by Asian companies such as Showa Denko (15), Kaneka (11) and Kao Corporation (5). The formulations described are mainly emulsions, skincare, cleansing, and haircare, and the surfactin dose does not exceed 5%. Surfactin appears in different types of formulas worldwide and has a high tendency to be used. Surfactin and other biosurfactants are a promising alternative to chemical ingredients in cosmetic formulations, guaranteeing skin health benefits and minimizing the impact on the environment.
Collapse
Affiliation(s)
- Jose Bueno-Mancebo
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| | - Raquel Barrena
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adriana Artola
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Teresa Gea
- Composting Research Group, Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deisi Altmajer-Vaz
- Chemical Engineering Department, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
2
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Kim S, Kim Y, Kim C, Choi WI, Kim BS, Hong J, Lee H, Sung D. A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. DISCOVER NANO 2024; 19:119. [PMID: 39073653 PMCID: PMC11286613 DOI: 10.1186/s11671-024-04058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The present study proposes an innovative transdermal drug delivery system using ferrocene-incorporated fibers to enhance the bioavailability and therapeutic efficacy of ascorbyl tetraisopalmitate. Using electrospinning technology, the authors created ferrocene polymer fibers capable of highly efficient drug encapsulation and controlled release in response to reactive oxygen species commonly found in wound sites. The approach improves upon previous methods significantly by offering higher drug loading capacities and sustained release, directly targeting diseased cells. The results confirm the potential of ferrocene fibers for localized drug delivery, potentially reducing side effects and increasing patient convenience. The method could facilitate the application of bioactive compounds in medical textiles and targeted therapy.
Collapse
Affiliation(s)
- Sangwoo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Il Choi
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Byoung Soo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea.
| | - Daekyung Sung
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
4
|
Bochynek M, Lewińska A, Witwicki M, Dębczak A, Łukaszewicz M. Formation and structural features of micelles formed by surfactin homologues. Front Bioeng Biotechnol 2023; 11:1211319. [PMID: 37485321 PMCID: PMC10360134 DOI: 10.3389/fbioe.2023.1211319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Surfactin, a group of cyclic lipopeptides produced by Bacillus subtilis, possesses surfactant properties and is a promising natural and biologically active compound. In this study, we present a comprehensive characterization of surfactin, including its production, chromatographic separation into pure homologues (C12, C13, C14, C15), and investigation of their physicochemical properties. We determined adsorption isotherms and interpreted them using the Gibbs adsorption equation, revealing that the C15 homologue exhibited the strongest surface tension reduction (27.5 mN/m), while surface activity decreased with decreasing carbon chain length (32.2 mN/m for C12). Critical micelle concentration (CMC) were also determined, showing a decrease in CMC values from 0.35 mM for C12 to 0.08 mM for C15. We employed dynamic light scattering (DLS), transmission electron microscopy (TEM), and density functional theory (DFT) calculations to estimate the size of micellar aggregates, which increased with longer carbon chains, ranging from 4.7 nm for C12 to 5.7 nm for C15. Furthermore, aggregation numbers were determined, revealing the number of molecules in a micelle. Contact angles and emulsification indexes (E24) were measured to assess the functional properties of the homologues, showing that wettability increased with chain length up to C14, which is intriguing as C14 is the most abundant homologue. Our findings highlight the relationship between the structure and properties of surfactin, providing valuable insights for understanding its biological significance and potential applications in various industries. Moreover, the methodology developed in this study can be readily applied to other cyclic lipopeptides, facilitating a better understanding of their structure-properties relationship.
Collapse
Affiliation(s)
- Michał Bochynek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- InventionBio S.A., Bydgoszcz, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
- OnlyBio S.A., Bydgoszcz, Poland
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
| | - Agnieszka Dębczak
- Łukasiewicz Research Network—New Chemical Syntheses Institute, Puławy, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
- InventionBio S.A., Bydgoszcz, Poland
| |
Collapse
|
5
|
Surfactin-stabilized poly(D,L-lactide) nanoparticles for potential skin application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Influence of β-cyclodextrin concentration on the physicochemical properties and skin permeation behavior of vitamin C-loaded Pickering water-in-oil-in-water (W1/O/W2) double emulsions. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Singh RD, Kapila S, Ganesan NG, Rangarajan V. A review on green nanoemulsions for cosmetic applications with special emphasis on microbial surfactants as impending emulsifying agents. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Rishi Devendra Singh
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Shreya Kapila
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Neela Gayathri Ganesan
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| | - Vivek Rangarajan
- Department of Chemical Engineering Birla Institute of Technology and Science‐Pilani, K.K. Birla Goa Campus Zuarinagar Goa India
| |
Collapse
|
8
|
Waglewska E, Bazylińska U. Biodegradable Amphoteric Surfactants in Titration-Ultrasound Formulation of Oil-in-Water Nanoemulsions: Rational Design, Development, and Kinetic Stability. Int J Mol Sci 2021; 22:ijms222111776. [PMID: 34769205 PMCID: PMC8584213 DOI: 10.3390/ijms222111776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023] Open
Abstract
Amphoteric amphiphilic compounds, due to their unique properties, may represent a group of safe and biocompatible surface-active agents for effective colloidal stabilization of nanoformulations. For this reason, the aim of this work was to develop and characterize the oil-in-water nanoemulsions based on two betaine-derived surfactants with high biodegradability, i.e., cocamidopropyl betaine and coco-betaine. In the first step, we investigated ternary phase diagrams of surfactant-oil-water systems containing different weight ratios of surfactant and oil, as the betaine-type surfactant entity (S), linoleic acid, or oleic acid as the oil phase (O), and the aqueous phase (W) using the titration-ultrasound approach. All the received nanoemulsion systems were then characterized upon droplets size (dynamic light scattering), surface charge (electrophoretic light scattering), and morphology (transmission electron as well as atomic force microscopy). Thermal and spinning tests revealed the most stable compositions, which were subjected to further kinetic stability analysis, including turbidimetric evaluation. Finally, the backscattering profiles revealed the most promising candidate with a size <200 nm for potential delivery of active agents in the future cosmetic, pharmaceutical, and biomedical applications.
Collapse
|
9
|
Lewińska A, Kulbacka J, Domżał-Kędzia M, Witwicki M. Antiradical Properties of N-Oxide Surfactants-Two in One. Int J Mol Sci 2021; 22:ijms22158040. [PMID: 34360806 PMCID: PMC8346996 DOI: 10.3390/ijms22158040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Surfactants are molecules that lower surface or interfacial tension, and thus they are broadly used as detergents, wetting agents, emulsifiers, foaming agents, or dispersants. However, for modern applications, substances that can perform more than one function are desired. In this study we evaluated antioxidant properties of two homological series of N-oxide surfactants: monocephalic 3-(alkanoylamino)propyldimethylamine-N-oxides and dicephalic N,N-bis[3,3′-(dimethylamino)propyl]alkylamide di-N-oxides. Their antiradical properties were tested against stable radicals using electron paramagnetic resonance (EPR) and UV-vis spectroscopy. The experimental investigation was supported by theoretical density functional theory (DFT) and ab initio modeling of the X–H bonds dissociation enthalpies, ionization potentials, and Gibbs free energies for radical scavenging reactions. The evaluation was supplemented with a study of biological activity. We found that the mono- and di-N-oxides are capable of scavenging reactive radicals; however, the dicephalic surfactants are more efficient than their linear analogues.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Correspondence: (A.L.); (M.W.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-367 Wroclaw, Poland;
| | - Marta Domżał-Kędzia
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland;
| | - Maciej Witwicki
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
- Correspondence: (A.L.); (M.W.)
| |
Collapse
|
10
|
Optimizing the Process Design of Oil-in-Water Nanoemulsion for Delivering Poorly Soluble Cannabidiol Oil. Processes (Basel) 2021. [DOI: 10.3390/pr9071180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Process approaches and intensification technological processes are integrated parts of available devices, which have a positive effect on the parameters of the obtained products. Nanoemulsions as delivery carriers are becoming more popular and there is a real need to increase the possibilities of formulation designing and engineering. Therefore, preparations of oil-in-water nanoemulsion with encapsulated cannabidiol (CBD) as oil phase were carried out in two ways: sonication method and two-stage high-pressure homogenization. The provided analysis showed spherical morphology and much larger sizes and polydispersity of nanoemulsions obtained by the sonication approach. The size of nanodroplets was from 216 nm up to 1418 nm for sonication, whereas for homogenization 128–880 nm. Additionally, it was observed that a proportionally higher percentage of surfactin resulted in a higher value of the Zeta potential. The formulations were found to be stable for at least 30 days. The in vitro experiments performed on human skin cell lines (HaCaT keratinocytes and normal dermal NHDF fibroblasts), and in vivo topical tests on probants established the biocompatibility of nanoemulsions with CBD. The last stage exhibits reduced discoloration and a higher degree of hydration by the selected systems with CBD and, thus indicating this nanoformulation as useful in cosmetics applications.
Collapse
|
11
|
Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, Prosperi D, Colombo M. The emerging role of nanotechnology in skincare. Adv Colloid Interface Sci 2021; 293:102437. [PMID: 34023566 DOI: 10.1016/j.cis.2021.102437] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
The role of cosmetic products is rapidly evolving in our society, with their use increasingly seen as an essential contribution to personal wellness. This suggests the necessity of a detailed elucidation of the use of nanoparticles (NPs) in cosmetics. The aim of the present work is to offer a critical and comprehensive review discussing the impact of exploiting nanomaterials in advanced cosmetic formulations, emphasizing the beneficial effects of their extensive use in next-generation products despite a persisting prejudice around the application of nanotechnology in cosmetics. The discussion here includes an interpretation of the data underlying generic information reported on the product labels of formulations already available in the marketplace, information that often lacks details identifying specific components of the product, especially when nanomaterials are employed. The emphasis of this review is mainly focused on skincare because it is believed to be the cosmetics market sector in which the impact of nanotechnology is being seen most significantly. To date, nanotechnology has been demonstrated to improve the performance of cosmetics in a number of different ways: 1) increasing both the entrapment efficiency and dermal penetration of the active ingredient, 2) controlling drug release, 3) enhancing physical stability, 4) improving moisturizing power, and 5) providing better UV protection. Specific attention is paid to the effect of nanoparticles contained in semisolid formulations on skin penetration issues. In light of the emerging concerns about nanoparticle toxicity, an entire section has been devoted to listing detailed examples of nanocosmetic products for which safety has been investigated.
Collapse
|
12
|
Nitschke M, Marangon CA. Microbial surfactants in nanotechnology: recent trends and applications. Crit Rev Biotechnol 2021; 42:294-310. [PMID: 34167395 DOI: 10.1080/07388551.2021.1933890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interest in nano-sized materials to develop novel products has increased exponentially in the last decade, together with the search for green methods for their synthesis. An alternative to contribute to a more sustainable approach is the use of microbial-derived molecules to assist nanomaterial synthesis. In this sense, biosurfactants (BSs) have emerged as eco-friendly substitutes in nano-sized materials preparation. The inherent amphiphilic and self-assembly character of BSs associated with their low eco-toxicity, biodegradability, biocompatibility, structural diversity, biological activity, and production from renewable resources are potential advantages over chemically-derived surfactants. In nanotechnology, these versatile molecules play multiple roles. In nanoparticle (NP) synthesis, they act as capping and reducing agents and they also provide self-assembly structures to encapsulation, functionalization, or templates and act as emulsifiers in nanoemulsions. Moreover, BSs can also play as active compounds owing to their intrinsic biological properties. This review presents the recent trends in the development of BS-based nanostructures and their biomedical and environmental applications. Fundamental aspects regarding their antimicrobial and anticancer activities are also discussed.
Collapse
Affiliation(s)
- Marcia Nitschke
- Departamento Físico-Química, Instituto de Química de São Carlos (IQSC) - USP, São Carlos, Brazil
| | | |
Collapse
|
13
|
Lewińska A, Domżał-Kędzia M, Kierul K, Bochynek M, Pannert D, Nowaczyk P, Łukaszewicz M. Targeted Hybrid Nanocarriers as a System Enhancing the Skin Structure. Molecules 2021; 26:1063. [PMID: 33670519 PMCID: PMC7923190 DOI: 10.3390/molecules26041063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/16/2022] Open
Abstract
The skin is constantly exposed to external and internal factors that disturb its function. In this work, two nanosystems-levan nanoparticles and a surfactin-stabilized nanoemulsion were preserved (tested for microbial growth) and characterized (size, polydispersity, Zeta potential, and stability). The nanosystems were introduced in the model formulations-cream, tonic, and gel, and confirmed by TEM. The analysis showed that nanoemulsion has a spherical morphology and size 220-300 nm, while levan nanoparticles had irregular shapes independently of the use of matrix and with particle size (130-260 nm). Additionally, we examined the antiradical effect of levan nanoparticles and nanoemulsion in the prototype of formulations by scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl; EPR spectroscopy). The model cream with both nanosystems and the whole range of products with nanosystems were evaluated in vivo for hydration, elasticity, smoothness, wrinkles and vascular lesions, discoloration, respectively. The cream improved skin condition in all tested parameters in at least 50% of volunteers. The use of more comprehensive care, additionally consisting of a tonic and gel, reduced the previously existing skin discoloration to 10.42 ± 0.58%. The presented prototype formulations are promising in improving skin conditions.
Collapse
Affiliation(s)
- Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marta Domżał-Kędzia
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| | - Kinga Kierul
- InventionBio Sp. z o.o., Wojska Polskiego 65 st., 85-825 Bydgoszcz, Poland; (K.K.); (D.P.)
| | - Michał Bochynek
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| | - Dominika Pannert
- InventionBio Sp. z o.o., Wojska Polskiego 65 st., 85-825 Bydgoszcz, Poland; (K.K.); (D.P.)
| | - Piotr Nowaczyk
- Faculty of Health Science, University of Opole, ul. Katowicka 68, 45-060 Opole, Poland;
- Dr. Nowaczyk Research and Innovation Center Sp. z o.o. Sp. K., ul. Żmigrodzka 81-83 lok. 205, 51-130 Wroclaw, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland; (M.D.-K.); (M.B.)
| |
Collapse
|
14
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|