1
|
Al-Suhaimi E, AlQuwaie R, AlSaqabi R, Winarni D, Dewi FRP, AlRubaish AA, Shehzad A, Elaissari A. Hormonal orchestra: mastering mitochondria's role in health and disease. Endocrine 2024; 86:903-929. [PMID: 39172335 DOI: 10.1007/s12020-024-03967-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria is a subcellular organelle involved in the pathogenesis of cellular stress, immune responses, differentiation, metabolic disorders, aging, and death by regulating process of fission, fusion, mitophagy, and transport. However, an increased interest in mitochondria as powerhouse for ATP production, the mechanisms of mitochondria-mediated cellular dysfunction in response to hormonal interaction remains unknown. Mitochondrial matrix contains chaperones and proteases that regulate intrinsic apoptosis pathway through pro-apoptotic Bcl-2 family's proteins Bax/Bak, and Cyt C release, and induces caspase-dependent and independent cells death. Energy and growth regulators such as thyroid hormones have profound effect on mitochondrial inner membrane protein and lipid compositions, ATP production by regulating oxidative phosphorylation system. Mitochondria contain cholesterol side-chain cleavage enzyme, P450scc, ferredoxin, and ferredoxin reductase providing an essential site for steroid hormones biosynthesis. In line with this, neurohormones such as oxytocin, vasopressin, and melatonin are correlated with mitochondrial integrity, displaying therapeutic implications for inflammatory and immune responses. Melatonin's also displayed protective role against oxidative stress and mitochondrial synthesis of ROS, suggesting a defense mechanism against aging-related diseases. An imbalance in mitochondrial bioenergetics can cause neurodegenerative disorders, cardiovascular diseases, and cancers. Hormone-induced PGC-1α stimulates mitochondrial biogenesis via activation of NRF1 and NRF2, which in turn triggers mtTFA in brown adipose and cardiac myocytes. Mitochondria can be transferred through cells merging, exosome-mediated transfer, and tunneling through nanotubes. By delineating the underlying molecular mechanism of hormonal mitochondrial interaction, this study reviews the dynamics mechanisms of mitochondria and its effects on cellular level, health, diseases, and therapeutic strategies targeting mitochondrial diseases.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Vice presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity "Mawhiba", Riyadh, Saudi Arabia.
| | - Rahaf AlQuwaie
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Reem AlSaqabi
- Master Program of Biotechnology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Abdullah A AlRubaish
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adeeb Shehzad
- Biodiversity Unit, Research Center, Dhofar University, Salalah, Oman
| | | |
Collapse
|
2
|
Diniz TG, de Assis CS, de Sousa BRV, Batista KS, Silva AS, de Queiroga Evangelista IW, Viturino MGM, do Nascimento YM, da Silva EF, Tavares JF, Monteiro MGCA, Dos Santos Fechine CPN, E Silva AL, Persuhn DC. Analysis of metabolites associated with ADIPOQ genotypes in individuals with type 2 diabetes mellitus. Sci Rep 2024; 14:28093. [PMID: 39543306 PMCID: PMC11564893 DOI: 10.1038/s41598-024-79686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Diabetes mellitus (DM) is a significant public health problem and it is known that the identification of molecular markers involved in glycemic control can impact disease control. Although the rs266729 polymorphism located in the promoter of the adiponectin gene (ADP) has been shown to be a candidate for involvement in glycemic control, the genotypic groups have never been characterized in terms of metabolomic aspects. Objective: Analyze the metabolites present in the rs266729 genotype groups. 127 diabetic individuals were compared according to the rs266729 genotype groups CC and GC + GG (RFLP-PCR). Blood plasma metabolites were classified by nuclear magnetic resonance (NMR), and the metabolic pathways of each group using the MetaboAnalyst tool. Insulin therapy (p = 0.049) was more frequent in the GC + GG rs266729 group. Lactate, alanine, glutamine, aspartate, lipid, lysine, isoleucine, citrulline, cholesterol, and fucose impacted the CC group and aspartate, beta-glucose, glutamate, pyruvate, proline, and 2-oxoglutarate impacted the CG + GG group. The glucose-alanine pathway, malate-aspartate transport, and urea cycle impacted the CC group (D-glucose, glutamic acid, L-alanine, oxoglutaric acid, and pyruvic acid). The glutamine/glutamate ratio is likely to be related to the causes of rs266729 influencing the risk of diabetes.
Collapse
Affiliation(s)
- Tainá Gomes Diniz
- Post-Graduate Program in Nutrition Science, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - Kamila Sabino Batista
- Semi Arid National Institute - INSA/MCTI, Campina Grande, Paraíba, CEP: 58434-700, Brazil
| | - Alexandre Sérgio Silva
- Department of Physical Education, Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil
| | | | - Marina Gonçalves Monteiro Viturino
- Ophthalmology, Otolaryngology and Oral and Maxillofacial Surgery Unit, Lauro Wanderley University Hospital, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Yuri Mangueira do Nascimento
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Anauara Lima E Silva
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Darlene Camati Persuhn
- Department of Molecular Biology/CCEN, Federal University of Paraiba (UFPB), Joao Pessoa, PB, Brazil.
| |
Collapse
|
3
|
Mitsis A, Khattab E, Myrianthefs M, Tzikas S, Kadoglou NPE, Fragakis N, Ziakas A, Kassimis G. Chemerin in the Spotlight: Revealing Its Multifaceted Role in Acute Myocardial Infarction. Biomedicines 2024; 12:2133. [PMID: 39335646 PMCID: PMC11428948 DOI: 10.3390/biomedicines12092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chemerin, an adipokine known for its role in adipogenesis and inflammation, has emerged as a significant biomarker in cardiovascular diseases, including acute myocardial infarction (AMI). Recent studies have highlighted chemerin's involvement in the pathophysiological processes of coronary artery disease (CAD), where it modulates inflammatory responses, endothelial function, and vascular remodelling. Elevated levels of chemerin have been associated with adverse cardiovascular outcomes, including increased myocardial injury, left ventricular dysfunction, and heightened inflammatory states post-AMI. This manuscript aims to provide a comprehensive review of the current understanding of chemerin's role in AMI, detailing its molecular mechanisms, clinical implications, and potential as a biomarker for diagnosis and prognosis. Additionally, we explore the therapeutic prospects of targeting chemerin pathways to mitigate myocardial damage and improve clinical outcomes in AMI patients. By synthesizing the latest research findings, this review seeks to elucidate the multifaceted role of chemerin in AMI and its promise as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| |
Collapse
|
4
|
Wang W, Lv FY, Tu M, Guo XL. Perirenal fat thickness contributes to the estimated 10-year risk of cardiovascular disease and atherosclerotic cardiovascular disease in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1434333. [PMID: 39040678 PMCID: PMC11260611 DOI: 10.3389/fendo.2024.1434333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Perirenal adipose tissue (PAT) has emerged as a potential therapeutic target for cardiovascular disease (CVD). However, the relationship between increased perirenal fat thickness (PrFT) and CVD risks in individuals with type 2 diabetes mellitus (T2DM) remains uncertain. This study aimed to evaluate the association between PrFT and the estimated 10-year risk of CVD and atherosclerotic cardiovascular disease (ASCVD) in T2DM. Method The final analysis included 704 participants. PrFT was quantified using non-enhanced computed tomography scans, while the estimated 10-year CVD and ASCVD risk assessments were based on the Framingham and China-PAR equation risk scores, respectively. Multiple regression analysis was employed to analyze the correlation between PrFT and these risk scores. Results Higher quartiles of PrFT displayed elevated Framingham and China-PAR equation risk scores (P<0.001). After adjusting for cardiometabolic risk factors and visceral fat area, PrFT remained significantly correlated with Framingham equation risk scores in men (β=0.098, P=0.036) and women (β=0.099, P=0.032). Similar correlations were observed between PrFT and China-PAR equation risk scores in men (β=0.106, P=0.009) and women (β=0.108, P=0.007). Moreover, PrFT emerged as an independent variable associated with a high estimated 10-year risk of CVD and ASCVD, with odds ratios (ORs) of 1.14 (95% CI: 1.04-1.25, P=0.016) in men and 1.20 (95% CI: 1.11-1.31, P<0.001) in women for high estimated CVD risk, and ORs of 1.22 (95% CI: 1.08-1.41, P=0.009) in men and 1.34 (95% CI: 1.12-1.60, P<0.001) in women for high estimated 10-year ASCVD risk. Furthermore, restricted cubic spline analyses confirmed a nonlinear relationship between PrFT and high estimated CVD and ASCVD risk in both genders (P for nonlinearity and overall < 0.05). Conclusions PrFT contributed as an independent variable to the estimated 10-year risk of CVD and ASCVD in T2DM.
Collapse
Affiliation(s)
| | | | | | - Xiu Li Guo
- National Metabolic Management Center, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian, China
| |
Collapse
|
5
|
Enríquez-Schmidt J, Mautner Molina C, Kalazich Rosales M, Muñoz M, Ruiz-Uribe M, Fuentes Leal F, Monrroy Uarac M, Cárcamo Ibaceta C, Fazakerley DJ, Larance M, Ehrenfeld P, Martínez-Huenchullán S. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery. Nutr Metab Cardiovasc Dis 2024; 34:1681-1691. [PMID: 38553359 DOI: 10.1016/j.numecd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND & AIMS Bariatric surgery is highly effective against obesity. Pre-surgical exercise programs are recommended to prepare the candidate physically and metabolically for surgery-related rapid weight loss. However, the ideal exercise prescription in this population is unknown. This study aimed to compare the metabolic effects of moderate-intensity constant (MICT) vs. a high-intensity interval training (HIIT) program in candidates to undergo bariatric surgery. METHODS AND RESULTS Twenty-five candidates (22 women) to undergo sleeve gastrectomy aged from 18 to 60 years old were recruited. At baseline, we measured body composition, physical activity levels, grip strength, and aerobic capacity. Further, we assessed metabolic function through glycemia and insulinemia (both fasting and after oral glucose tolerance test (OGTT)), homeostatic model assessment for insulin resistance (HOMA-IR), lipid profile, glycated haemoglobin (HbA1c), transaminases, fibroblast growth factor 21 (FGF21), growth differentiation factor 15 (GDF15), apelin, and adiponectin. Afterward, participants were randomized into MICT (n = 14) or HIIT (n = 11). Both training programs consisted of 10 sessions (2-3 times/week, 30 min per session) distributed during 4 weeks before the surgery. After this, all outcomes were measured again at the end of the training programs and 1 month after the surgery (follow-up). A mixed effect with Tukey's post-hoc analysis was performed to compare values at baseline vs. post-training vs. postsurgical follow-up. Both training programs increased aerobic capacity after training (p < 0.05), but only after MICT these changes were kept at follow-up (p < 0.05). However, only MICT decreased fat mass and increased total muscle mass and physical activity levels (p < 0.05). Metabolically, MICT decreased insulinemia after OGTT (p < 0.05), whereas HIIT increased adiponectin after training and GDF15 at follow-up (both p < 0.05). CONCLUSIONS Both MICT and HIIT conferred benefits in candidates to undergo bariatric surgery, however, several of those effects were program-specific, suggesting that exercise intensity should be considered when preparing these patients. Future studies should explore the potential benefits of prescribing MICT or HIIT in a customized fashion depending on a pretraining screening, along with possible summatory effects by combining these two exercise programs (MICT + HIIT). CLINICAL TRIAL REGISTRATION International Traditional Medicine Clinical Trial Registry, N° ISRCTN42273422.
Collapse
Affiliation(s)
- Javier Enríquez-Schmidt
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Camila Mautner Molina
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile
| | | | | | - Matias Ruiz-Uribe
- Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | | | - Manuel Monrroy Uarac
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Exercise Physiology Laboratory, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Cárcamo Ibaceta
- Clínica Alemana de Valdivia, Valdivia 5090000, Chile; Surgery Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB5, United Kingdom
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, The University of Sydney, Sydney 2006, Australia
| | - Pamela Ehrenfeld
- Cellular Pathology Laboratory, Anatomy, Histology, and Pathology Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Sergio Martínez-Huenchullán
- Physical Therapy Unit, Locomotor Apparatus and Rehabilitation Institute, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; School of Physical Therapy, Universidad San Sebastián, Valdivia 5090000, Chile; Cardiorespiratory and Metabolic Function Laboratory - Neyün, Faculty of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Nephrology Division, School of Medicine, Universidad Austral de Chile, Valdivia 5090000, Chile; Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile.
| |
Collapse
|
6
|
Wu O, Lu X, Leng J, Zhang X, Liu W, Yang F, Zhang H, Li J, Khederzadeh S, Liu X, Yuan C. Reevaluating Adiponectin's impact on obesity hypertension: a Chinese case-control study. BMC Cardiovasc Disord 2024; 24:208. [PMID: 38615012 PMCID: PMC11015577 DOI: 10.1186/s12872-024-03865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Obesity and hypertension are major risk factors for cardiovascular diseases that affect millions of people worldwide. Both conditions are associated with chronic low-grade inflammation, which is mediated by adipokines such as adiponectin. Adiponectin is the most abundant adipokine that has a beneficial impact on metabolic and vascular biology, while high serum concentrations are associated with some syndromes. This "adiponectin paradox" still needs to be clarified in obesity-associated hypertension. The aim of this study was to investigate how adiponectin affects blood pressure, inflammation, and metabolic function in obesity hypertension using a Chinese adult case-control study. METHODS A case-control study that had finished recruiting 153 subjects divided as four characteristic groups. Adiponectin serum levels were tested by ELISA in these subjects among these four characteristic Chinese adult physical examination groups. Waist circumference (WC), body mass index (BMI), systolic blood pressure (SB), diastolic blood pressure (DB), and other clinical laboratory data were collected. Analyzation of correlations between the research index and differences between groups was done by SPSS. RESULTS Serum adiponectin levels in the| normal healthy group (NH group) were significantly higher than those in the newly diagnosed untreated just-obesity group (JO group), and negatively correlated with the visceral adiposity index. With multiple linear egression analysis, it was found that, for serum adiponectin, gender, serum albumin (ALB), alanine aminotransferase (ALT) and high-density lipoprotein cholesterol (HDLC) were the significant independent correlates, and for SB, age and HDLC were the significant independent correlates, and for DB, alkaline phosphatase (ALP) was the significant independent correlate. The other variables did not reach significance in the model. CONCLUSIONS Our study reveals that adiponectin's role in obesity-hypertension is multifaceted and is influenced by the systemic metabolic homeostasis signaling axis. In obesity-related hypertension, compensatory effects, adiponectin resistance, and reduced adiponectin clearance from impaired kidneys and liver all contribute to the "adiponectin paradox".
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, People's Republic of China
| | - Jianhang Leng
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co., Ltd Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, People's Republic of China
| | - Fenfang Yang
- Department of Central Laboratory/Medical Examination Center of Hangzhou, The Frist People's Hospital of Hangzhou, Hangzhou, Zhejiang, People's Republic of China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jiajia Li
- Department of Central Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, People's Republic of China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Liu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Hafiane A. Adiponectin-mediated regulation of the adiponectin cascade in cardiovascular disease: Updates. Biochem Biophys Res Commun 2024; 694:149406. [PMID: 38134479 DOI: 10.1016/j.bbrc.2023.149406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The endocrine function of white adipose tissue is characterized by the synthesis of one its main hormones: adiponectin. Although the biological role of adiponectin has not been fully defined, clinical and experimental observations have shown that low plasma concentrations of adiponectin participate in the prevalence of insulin resistance and cardiovascular diseases, mainly in obese patients. Adiponectin also exerts its effects on the heart and blood vessels, thereby influencing their physiology. Studying the effects of adiponectin presents some complexities, primarily due to potential cross-interactions and interference with other pathways, such as the AdipoR1/R2 pathways. Under optimal conditions, the activation of the adiponectin cascade may involve signals such as AMPK and PPARα. Interestingly, these pathways may trigger similar responses, such as fatty acid oxidation. Understanding the downstream effectors of these pathways is crucial to comprehend the extent to which adiponectin signaling impacts metabolism. In this review, the aim is to explore the current mechanisms that regulate the adiponectin pathways. Additionally, updates on the major downstream factors involved in adiponectin signaling are provided, specifically in relation to metabolic syndrome and atherosclerosis.
Collapse
Affiliation(s)
- Anouar Hafiane
- Research Institute, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
8
|
El-Seedi HR, Salama S, El-Wahed AAA, Guo Z, Di Minno A, Daglia M, Li C, Guan X, Buccato DG, Khalifa SAM, Wang K. Exploring the Therapeutic Potential of Royal Jelly in Metabolic Disorders and Gastrointestinal Diseases. Nutrients 2024; 16:393. [PMID: 38337678 PMCID: PMC10856930 DOI: 10.3390/nu16030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/07/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, P.O. Box 591, SE-751 24 Uppsala, Sweden
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
| | - Suzy Salama
- Indigenous Knowledge and Heritage Center, Ghibaish College of Science and Technology, Ghibaish 51111, Sudan;
| | - Aida A. Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Chuan Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China;
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Daniele Giuseppe Buccato
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (A.D.M.); (M.D.); (D.G.B.)
| | - Shaden A. M. Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
9
|
Sierawska O, Sawczuk M. Interaction between Selected Adipokines and Musculoskeletal and Cardiovascular Systems: A Review of Current Knowledge. Int J Mol Sci 2023; 24:17287. [PMID: 38139115 PMCID: PMC10743430 DOI: 10.3390/ijms242417287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are substances secreted by adipose tissue that are receiving increasing attention. The approach to adipose tissue has changed in recent years, and it is no longer looked at as just a storage organ but its secretion and how it influences systems in the human body are also looked at. The role of adipokine seems crucial in developing future therapies for pathologies of selected systems. In this study, we look at selected adipokines, leptin, adiponectin, chemerin, resistin, omentin-1, nesfatin, irisin-1, visfatin, apelin, vaspin, heparin-binding EGF-like growth factor (HB-EGF), and TGF-β2, and how they affect systems in the human body related to physical activity such as the musculoskeletal and cardiovascular systems.
Collapse
Affiliation(s)
- Olga Sierawska
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
- Doctoral School, University of Szczecin, 70-384 Szczecin, Poland
| | - Marek Sawczuk
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland;
| |
Collapse
|
10
|
Dincă VG, Diaconu A, Coculescu BI, Dincă AL, Ciuc DM, Bîrlă RD, Marica CD, Tudorache SI, Manole G, Coculescu EC. Adiponectin - stratification biomarker in diastolic cardiac dysfunction. J Enzyme Inhib Med Chem 2023; 38:2171030. [PMID: 36691932 PMCID: PMC9879170 DOI: 10.1080/14756366.2023.2171030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
This study does not propose to elucidate how adiponectin secretion is regulated, but how its adiponectin concentration is an indicator of heart disease. About adiponectin, it is not known whether it is functionally an enzyme, or very likely a cytokine/chemokine/hormone, secreted by fat cells/adipocytes in the abdomen. Abdominal fat secretes 67 hormones, and all of which cause disease. For example, adiponectin generates diabetes and ischaemic heart disease via dyslipidemia. Based on clinical symptoms, electrocardiographic and echocardiographic parameters, a group of 208 patients with diastolic cardiac dysfunction with or without preserved systolic function, developed on a background of painful chronic ischaemic heart disease, stable angina on exertion, was constituted. The serum levels of adiponectin, total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides were measured. Using the identified values, it was appreciated whether adiponectin correlates with the type of any of the two conditions, so that it can be recognised as a diagnostic and risk stratification marker.
Collapse
Affiliation(s)
- Valeriu-Gabi Dincă
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Adriana Diaconu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Fundeni Clinical Institute, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania,CONTACT Bogdan-Ioan Coculescu Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari Bvd., no. 8, sector 5, Bucharest, Romania
| | - Alexandra-Ligia Dincă
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Diana Mihaela Ciuc
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | - Rodica Daniela Bîrlă
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,Sf. Maria Clinical Hospital, Bucharest, Romania
| | - Cristian Daniel Marica
- Faculty of Medicine, Titu Maiorescu University Bucharest, Bucharest, Romania,CF2 Clinical Hospital Bucharest, Romania
| | | | - Gheorghe Manole
- Faculty of General Nursing, Bioterra University, Bucharest, Romania,Romanian Academy of Medical Sciences
| | - Elena Claudia Coculescu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Garella R, Bernacchioni C, Chellini F, Tani A, Palmieri F, Parigi M, Guasti D, Cassioli E, Castellini G, Ricca V, Bani D, Sassoli C, Donati C, Squecco R. Adiponectin Modulates Smooth Muscle Cell Morpho-Functional Properties in Murine Gastric Fundus via Sphingosine Kinase 2 Activation. Life (Basel) 2023; 13:1812. [PMID: 37763216 PMCID: PMC10532860 DOI: 10.3390/life13091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Adipokines are peptide hormones produced by the adipose tissue involved in several biological functions. Among adipokines, adiponectin (ADPN) has antidiabetic and anti-inflammatory properties. It can also modulate food intake at central and peripheral levels, acting on hypothalamus and facilitating gastric relaxation. ADPN exerts its action interacting with two distinct membrane receptors and triggering some well-defined signaling cascades. The ceramidase activity of ADPN receptor has been reported in many tissues: it converts ceramide into sphingosine. In turn, sphingosine kinase (SK) phosphorylates it into sphingosine-1 phosphate (S1P), a crucial mediator of many cellular processes including contractility. Using a multidisciplinary approach that combined biochemical, electrophysiological and morphological investigations, we explored for the first time the possible role of S1P metabolism in mediating ADPN effects on the murine gastric fundus muscle layer. By using a specific pharmacological inhibitor of SK2, we showed that ADPN affects smooth muscle cell membrane properties and contractile machinery via SK2 activation in gastric fundus, adding a piece of knowledge to the action mechanisms of this hormone. These findings help to identify ADPN and its receptors as new therapeutic targets or as possible prognostic markers for diseases with altered energy balance and for pathologies with fat mass content alterations.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Caterina Bernacchioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Emanuele Cassioli
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, 50134 Florence, Italy; (E.C.); (G.C.); (V.R.)
| | - Daniele Bani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy; (F.C.); (A.T.); (M.P.); (D.G.); (D.B.); (C.S.)
| | - Chiara Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy;
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy; (F.P.); (R.S.)
| |
Collapse
|
12
|
Wang X, Yan X, Huang F, Wu L. Adiponectin inhibits TGF-β1-induced skin fibroblast proliferation and phenotype transformation via the p38 MAPK signaling pathway. Open Life Sci 2023; 18:20220679. [PMID: 37589003 PMCID: PMC10426755 DOI: 10.1515/biol-2022-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/25/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023] Open
Abstract
The aim of this study was to investigate the effects of adiponectin (APN) on the proliferation and phenotypic transformation of human skin fibroblasts (HSFs) induced by TGF-β1. Primary fibroblast cultures were collected from prepuce surgery, and the cell viability and proliferative activity of HSFs were detected by Cell Counting Kit-8 and EdU assays. In addition, cell migration was detected by Transwell assay. The protein levels of related genes in HSF were detected by Western blotting. The results showed that the proliferation and migration abilities of HSF in the TGF-β1 group were significantly improved, and the relative protein expression levels of PCNA, α-SMA, and Collagen I in the TGF-β1 group were greatly increased. Furthermore, TGF-β1 stimulated the phosphorylation of p38 in HSF, while APN pretreatment significantly inhibited the TGF-β1-induced phosphorylation of p38. Additionally, blocking the p38 MAPK signaling pathway relieved the injury in the HSF induced by TGF-β1 and enhanced the therapeutic effect of APN in the TGF-β1-treated HSF. In conclusion, APN inhibits TGF-β1-induced HSF proliferation and myofibroblast phenotypic transformation by activating the p38 MAPK signaling pathway. APN is expected to become a potential target for preventing and treating skin fibrosis and pathological scars.
Collapse
Affiliation(s)
- Xueling Wang
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Xiaoting Yan
- Taizhou Central Hospital, Taizhou, 318000, China
| | - Fang Huang
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| | - Lijuan Wu
- School of Medicine, Taizhou University, No. 1139, Shifu Avenue, Taizhou, Zhejiang 318000, China
| |
Collapse
|
13
|
Denisenko Y, Novgorodtseva T, Antonyuk M, Yurenko A, Gvozdenko T, Kasyanov S, Ermolenko E, Sultanov R. 1- O-alkyl-glycerols from Squid Berryteuthis magister Reduce Inflammation and Modify Fatty Acid and Plasmalogen Metabolism in Asthma Associated with Obesity. Mar Drugs 2023; 21:351. [PMID: 37367676 DOI: 10.3390/md21060351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Asthma associated with obesity is considered the most severe phenotype and can be challenging to manage with standard medications. Marine-derived 1-O-alkyl-glycerols (AGs), as precursors for plasmalogen synthesis, have high biological activity, making them a promising substance for pharmacology. This study aimed to investigate the effect of AGs from squid Berryteuthis magister on lung function, fatty acid and plasmalogen levels, and cytokine and adipokine production in obese patients with asthma. The investigational trial included 19 patients with mild asthma associated with obesity who received 0.4 g of AGs daily for three months in addition to their standard treatment. The effects of AGs were evaluated at one and three months of treatment. The results of the study demonstrated that intake of AGs increased the FEV1 and FEV1/VC ratios, and significantly decreased the ACQ score in 17 of the 19 patients after three months of treatment. The intake of AGs increased concentration of plasmalogen and n-3 PUFA in plasma, and modified leptin/adiponectin production by adipose tissue. The supplementation of AGs decreased the plasma levels of inflammatory cytokines (TNF-α, IL-4, and IL-17a), and oxylipins (TXB2 and LTB4), suggesting an anti-inflammatory property of AGs. In conclusion, 1-O-alkyl-glycerols could be a promising dietary supplement for improving pulmonary function and reducing inflammation in obese asthma patients, and a natural source for plasmalogen synthesis. The study highlighted that the beneficial effects of AG consumption can be observed after one month of treatment, with gradual improvement after three months of supplementation.
Collapse
Affiliation(s)
- Yulia Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Marina Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Alla Yurenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Tatyana Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Institute of Medical Climatology and Rehabilitative Treatment, 690105 Vladivostok, Russia
| | - Sergey Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| | - Ruslan Sultanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology (Far Eastern Branch), Russian Academy of Sciences, 17 Palchevskogo Str., 690041 Vladivostok, Russia
| |
Collapse
|
14
|
Adam CA, Marcu DTM, Mitu O, Roca M, Aursulesei Onofrei V, Zabara ML, Tribuș LC, Cumpăt C, Crișan Dabija R, Mitu F. Old and Novel Predictors for Cardiovascular Risk in Diabetic Foot Syndrome—A Narrative Review. APPLIED SCIENCES 2023; 13:5990. [DOI: 10.3390/app13105990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Diabetic foot syndrome (DFS) is a complication associated with diabetes that has a strong negative impact, both medically and socio-economically. Recent epidemiological data show that one in six patients with diabetes will develop an ulcer in their lifetime. Vascular complications associated with diabetic foot have multiple prognostic implications in addition to limiting functional status and leading to decreased quality of life for these patients. We searched the electronic databases of PubMed, MEDLINE and EMBASE for studies that evaluated the role of DFS as a cardiovascular risk factor through the pathophysiological mechanisms involved, in particular the inflammatory ones and the associated metabolic changes. In the era of evidence-based medicine, the management of these cases in multidisciplinary teams of “cardio-diabetologists” prevents the occurrence of long-term disabling complications and has prognostic value for cardiovascular morbidity and mortality among diabetic patients. Identifying artificial-intelligence-based cardiovascular risk prediction models or conducting extensive clinical trials on gene therapy or potential therapeutic targets promoted by in vitro studies represent future research directions with a modulating role on the risk of morbidity and mortality in patients with DFS.
Collapse
Affiliation(s)
- Cristina Andreea Adam
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Dragos Traian Marius Marcu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, 700661 Iasi, Romania
| | - Viviana Aursulesei Onofrei
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Carina Tribuș
- Department of Internal Medicine, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine, Ilfov County Emergency Hospital, 022104 Bucharest, Romania
| | - Carmen Cumpăt
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Management, “Alexandru Ioan Cuza” University, 700506 Iasi, Romania
| | - Radu Crișan Dabija
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and III and Department of Surgical Specialties, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Clinical Hospital of Pneumophthisiology Iași, 700115 Iasi, Romania
- Academy of Medical Sciences, 030167 Bucharest, Romania
- Academy of Romanian Scientists, 700050 Iasi, Romania
| |
Collapse
|
15
|
Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc Pathol 2023; 64:107514. [PMID: 36634790 DOI: 10.1016/j.carpath.2022.107514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease that seriously threatens the health of human beings, especially middle-aged and elderly people over 50 years old. It has the characteristics of high prevalence, high disability rate and high mortality rate. Previous studies have shown that adiponectin has therapeutic effects on a variety of CVDs. As a key adipokine, adiponectin, is an abundant peptide-regulated hormone that is mainly released by adipocytes and cardiomyocytes, as well as endothelial and skeletal cells. Adiponectin can protect against CVD by improving lipid metabolism, protecting vascular endothelial cells and inhibiting foam cell formation and vascular smooth muscle cell proliferation. Further investigation of the molecular and cellular mechanisms underlying the adiponectin system may provide new ideas for the treatment of CVD. Herein, this review aims to describe the structure and function of adiponectin and adiponectin receptors, introduce the function of adiponectin in the protection of cardiovascular disease and analyze the potential use and clinical significance of this hormone in the protection and treatment of cardiovascular disease, which shows that adiponectin can be expected to become a new therapeutic target and biomarker for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chuncao Wu
- Insititution of Chinese Materia Medica Preparation, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
16
|
Brzecka A, Martynowicz H, Daroszewski C, Majchrzak M, Ejma M, Misiuk-Hojło M, Somasundaram SG, Kirkland CE, Kosacka M. The Modulation of Adipokines, Adipomyokines, and Sleep Disorders on Carcinogenesis. J Clin Med 2023; 12:jcm12072655. [PMID: 37048738 PMCID: PMC10094938 DOI: 10.3390/jcm12072655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity and sarcopenia, i.e., decreased skeletal muscle mass and function, are global health challenges. Moreover, people with obesity and sedentary lifestyles often have sleep disorders. Despite the potential associations, metabolic disturbances linking obesity, sarcopenia, and sleep disorders with cancer are neither well-defined nor understood fully. Abnormal levels of adipokines and adipomyokines originating from both adipose tissue and skeletal muscles are observed in some patients with obesity, sarcopenia and sleep disorders, as well as in cancer patients. This warrants investigation with respect to carcinogenesis. Adipokines and adipomyokines may exert either pro-carcinogenic or anti-carcinogenic effects. These factors, acting independently or together, may significantly modulate the incidence and progression of cancer. This review indicates that one of the possible pathways influencing the development of cancer may be the mutual relationship between obesity and/or sarcopenia, sleep quantity and quality, and adipokines/adipomyokines excretion. Taking into account the high proportion of persons with obesity and sedentary lifestyles, as well as the associations of these conditions with sleep disturbances, more attention should be paid to the individual and combined effects on cancer pathophysiology.
Collapse
Affiliation(s)
- Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Cyryl Daroszewski
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| | - Maciej Majchrzak
- Department of Thoracic Surgery, Wroclaw Medical University, Ludwika Pasteura 1, Grabiszyńska105, 53-439 Wroclaw, Poland
| | - Maria Ejma
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Marta Misiuk-Hojło
- Department of Ophthalmology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Siva G. Somasundaram
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Cecil E. Kirkland
- Department of Biological Sciences, Salem University, 223 West Main Street, Salem, WV 26426, USA
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, Grabiszyńska 105, 53-439 Wroclaw, Poland
| |
Collapse
|
17
|
Onofrei VA, Zamfir CL, Anisie E, Ceasovschih A, Constantin M, Mitu F, Adam CA, Grigorescu ED, Petroaie AD, Timofte D. Determinants of Arterial Stiffness in Patients with Morbid Obesity. The Role of Echocardiography and Carotid Ultrasound Imaging. Medicina (B Aires) 2023; 59:medicina59030428. [PMID: 36984428 PMCID: PMC10053097 DOI: 10.3390/medicina59030428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background and objective: Morbid obesity is accompanied by an increased cardiovascular (CV) risk, which justifies a multidisciplinary, integrative approach. Arterial stiffness has a well-defined additional role in refining individual CV risk. Given that echocardiography and carotid ultrasound are usual methods for CV risk characterization, we aimed to identify the imaging parameters with a predictive value for early-onset arterial stiffness. Material and methods: We conducted a study in which 50 patients (divided into two equal groups with morbid obesity and without obesity), age and gender matched, untreated for cardiovascular risk factors, were addressed to bariatric surgery or non-inflammatory benign pathology surgery. Before the surgical procedures, we evaluated demographics, anthropometric data and biochemical parameters including adipokines (chemerin, adiponectin). Arterial stiffness was evaluated using the Medexpert ArteriographTM TL2 device. Transthoracic echocardiography and carotid ultrasound were also performed. We also analyzed adipocyte size and vascular wall thickness in intraoperative biopsies. Results: Left ventricle (LV) mass index (p = 0.2851), LV ejection fraction (LVEF) (p = 0.0073), epicardial adipose tissue thickness (p = 0.0001) as echocardiographic parameters and carotid intima–media thickness (p = 0.0033), relative wall thickness (p = 0.0295), wall to lumen thickness ratio (p = 0.0930) and carotid cross-sectional area (p = 0.0042) as ultrasound parameters were significant measures in our groups and were assessed in relation to adipocyte size, blood vessel wall thickness and adipokines serum levels. Statistical analysis revealed directly proportional relationships between LV mass index (p = 0.008), carotid systolic thickness of the media (p = 0.009), diastolic thickness of the media (p = 0.007), cross-sectional area (p = 0.001) and blood vessel wall thickness. Carotid relative wall thickness positively correlates with adipocyte size (p = 0.023). In patients with morbid obesity, chemerin and adiponectin/chemerin ratio positively correlates with carotid intima–media thickness (p = 0.050), systolic thickness of the media (p = 0.015) and diastolic thickness of the media (p = 0.001). The multiple linear regression models revealed the role of epicardial adipose tissue thickness and carotid cross-sectional area in predicting adipocyte size which in turn is an independent factor for arterial stiffness parameters such as pulse wave velocity, subendocardial viability ratio and aortic augmentation index. Conclusions: Our results suggest that epicardial adipose tissue thickness, carotid intima–media thickness, relative wall thickness and carotid cross-sectional area might be useful imaging parameters for early prediction of arterial stiffness in patients with morbid obesity.
Collapse
Affiliation(s)
- Viviana Aursulesei Onofrei
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
- Correspondence: (V.A.O.); (C.A.A.)
| | - Carmen Lacramioara Zamfir
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Ecaterina Anisie
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Alexandr Ceasovschih
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Mihai Constantin
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No 1, 030167 Bucharest, Romania
- Academy of Romanian Scientists, Professor Dr. Doc. Dimitrie Mangeron Boulevard No. 433, 700050 Iasi, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Correspondence: (V.A.O.); (C.A.A.)
| | - Elena-Daniela Grigorescu
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Antoneta Dacia Petroaie
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Daniel Timofte
- Department of Medical Specialties I and II, Morpho-Functional Sciences I and Preventive Medicine and Interdisciplinary, “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- “St. Spiridon” Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No 1, 030167 Bucharest, Romania
| |
Collapse
|
18
|
Leptin, Adiponectin, and Melatonin Modulate Colostrum Lymphocytes in Mothers with Obesity. Int J Mol Sci 2023; 24:ijms24032662. [PMID: 36768983 PMCID: PMC9917098 DOI: 10.3390/ijms24032662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Pregnancy complicated by obesity is associated with adverse triggered gestational and neonatal outcomes, with reductions in the subtypes of CD4+ T-lymphocytes representing the modulators of inflammation. It needs to be better established how maternal nutritional statuses impact the neuroendocrine-immune system's action and affect the immunological mechanisms of the maternal-infant relationship via breastfeeding. This study examined the effects of maternal obesity on human colostrum lymphocytes and the intracellular mechanisms of lymphocyte modulation in the presence of leptin, adiponectin, and melatonin via cell proliferation; the release of intracellular calcium; and apoptosis induction. This cross-sectional study analyzed colostrum samples from 52 puerperal splits and divided them into overweight and eutrophic groups. Colostrum lymphocytes underwent immunophenotyping and cell proliferation by flow cytometry and intracellular calcium release and apoptosis assays by immunofluorescence in the presence or absence of hormones. Significant differences were considered when p < 0.05 by the chi-square or t-test. Maternal obesity reduced the population of T-lymphocytes and TCD4+ in human colostrum and proliferative activities (p < 0.05). These hormones restore lymphocyte proliferation to a level similar to the eutrophic group (p < 0.05). Leptin, adiponectin, melatonin hormones, and biological actions consolidated in the scientific literature also represent maternal and infant protection mechanisms via colostrum and the modulation of human colostrum lymphocytes.
Collapse
|
19
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
20
|
Garella R, Cassioli E, Chellini F, Tani A, Rossi E, Idrizaj E, Guasti D, Comeglio P, Palmieri F, Parigi M, Vignozzi L, Baccari MC, Ricca V, Sassoli C, Castellini G, Squecco R. Defining the Molecular Mechanisms of the Relaxant Action of Adiponectin on Murine Gastric Fundus Smooth Muscle: Potential Translational Perspectives on Eating Disorder Management. Int J Mol Sci 2023; 24:ijms24021082. [PMID: 36674598 PMCID: PMC9867455 DOI: 10.3390/ijms24021082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
Adiponectin (ADPN), a hormone produced by adipose tissue, facilitates gastric relaxation and can be a satiety signal in the network connecting peripheral organs and the central nervous system for feeding behavior control. Here, we performed preclinical research by morpho-functional analyses on murine gastric fundus smooth muscle to add insights into the molecular mechanisms underpinning ADPN action. Moreover, we conducted a clinical study to evaluate the potential use of ADPN as a biomarker for eating disorders (ED) based on the demonstrated gastric alterations and hormone level fluctuations that are often associated with ED. The clinical study recruited patients with ED and healthy controls who underwent blood draws for ADPN dosage and psychopathology evaluation tests. The findings of this basic research support the ADPN relaxant action, as indicated by the smooth muscle cell membrane pro-relaxant effects, with mild modifications of contractile apparatus and slight inhibitory effects on gap junctions. All of these actions engaged the ADPN/nitric oxide/guanylate cyclase pathway. The clinical data failed to unravel a correlation between ADPN levels and the considered ED, thus negating the potential use of ADPN as a valid biomarker for ED management for the moment. Nevertheless, this adipokine can modulate physiological eating behavior, and its effects deserve further investigation.
Collapse
Affiliation(s)
- Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Emanuele Cassioli
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Flaminia Chellini
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Alessia Tani
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Eleonora Rossi
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Paolo Comeglio
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Francesco Palmieri
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Martina Parigi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Linda Vignozzi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
| | - Valdo Ricca
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Chiara Sassoli
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, Imaging Platform, University of Florence, 50134 Florence, Italy
| | - Giovanni Castellini
- Department of Health Sciences, Psychiatry Unit, University of Florence, 50134 Firenze, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, 50134 Florence, Italy
- Correspondence: ; Tel.: +39-055-2751632
| |
Collapse
|
21
|
Satoh K, Nagasawa K, Takebe N, Kinno H, Shozushima M, Onodera K, Oda T, Hasegawa Y, Satoh J, Ishigaki Y. Adiponectin Paradox More Evident in Non-Obese Than in Obese Patients with Diabetic Microvascular Complications. Diabetes Metab Syndr Obes 2023; 16:201-212. [PMID: 36760589 PMCID: PMC9882416 DOI: 10.2147/dmso.s387744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
AIMS/INTRODUCTION Adiponectin is generally regarded as a beneficial molecule, protecting against insulin resistance and atherosclerosis, and its serum levels are low in individuals with obesity as well as in those with type 2 diabetes (T2DM). However, several clinical studies have shown associations between high adiponectin values and major health concerns. These conflicting findings are termed the "adiponectin paradox". Similarly, these paradoxical adiponectin elevations were observed in patients with diabetic microvascular complications. This cross-sectional study aimed to identify differences in factors, including adiponectin, related to diabetic vascular complications between non-obese and obese patients. MATERIALS AND METHODS Study patients with T2DM were non-obese (n=197) or obese (n=197), matched by a propensity score model adjusted with age and gender. Independent factors for each of the microvascular complications were determined using multivariate logistic regression analyses. RESULTS The prevalence of nephropathy was high in obese T2DM patients. In addition to long diabetes duration, elevated adiponectin was a common characteristic of patients with microvascular complications. Logistic regression analyses for microvascular complications revealed adiponectin to be highly related to retinopathy (odds ratio [OR], 1.138; 95%confidence intervals [CI], 1.004-1.289, p<0.001), nephropathy (OR, 1.192; CI, 1.077-1.319, p<0.001) and neuropathy (OR, 1.217; CI, 1.071-1.384, p<0.001), in non-obese patients. In contrast, the association between adiponectin values and complications was modest in obese patients. CONCLUSION Adiponectin regulation in response to vascular damage differed between non-obese and obese patients, suggesting that adiponectin regulation is compromised by fat accumulation. Assuming that paradoxical elevation of adiponectin in vascular damage is a compensatory response, we speculate that responsive upregulation might be insufficient in obese patients. These newly-recognized differences in adiponectin values might lead to novel insights into adiponectin regulation and our understanding of the adiponectin paradox.
Collapse
Affiliation(s)
- Ken Satoh
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Kan Nagasawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Noriko Takebe
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Masaharu Shozushima
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Ken Onodera
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| | - Jo Satoh
- Department of Diabetes, Tohoku Medical and Pharmaceutical University, Wakabayashi Hospital, Sendai, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
- Correspondence: Yasushi Ishigaki, Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, 2-1-1 Idai-Dori, Yahaba, Iwate, 028-3695, Japan, Tel +81 19 613 7111, Fax +81 19 907 8270, Email
| |
Collapse
|
22
|
Zahradka P, Taylor CG, Tworek L, Perrault R, M’Seffar S, Murali M, Loader T, Wigle JT. Thrombin-Mediated Formation of Globular Adiponectin Promotes an Increase in Adipose Tissue Mass. Biomolecules 2022; 13:biom13010030. [PMID: 36671414 PMCID: PMC9855379 DOI: 10.3390/biom13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
A decrease in the circulating levels of adiponectin in obesity increases the risk of metabolic complications, but the role of globular adiponectin, a truncated form produced by proteolytic cleavage, has not been defined. The objective of this investigation was to determine how globular adiponectin is generated and to determine whether this process impacts obesity. The cleavage of recombinant full-length adiponectin into globular adiponectin by plasma in vitro was used to identify Gly-93 as the N-terminal residue after proteolytic processing. The amino acid sequence of the cleavage site suggested thrombin was the protease responsible for cleavage, and inhibitors confirmed its likely involvement. The proteolytic site was modified, and this thrombin-resistant mutant protein was infused for 4 weeks into obese adiponectin-knockout mice that had been on a high-fat diet for 8 weeks. The mutation of the cleavage site ensured that globular adiponectin was not generated, and thus did not confound the actions of the full-length adiponectin. Mice infused with the mutant adiponectin accumulated less fat and had smaller adipocytes compared to mice treated with globular adiponectin, and concurrently had elevated fasting glucose. The data demonstrate that generation of globular adiponectin through the action of thrombin increases both adipose tissue mass and adipocyte size, but it has no effect on fasting glucose levels in the context of obesity.
Collapse
Affiliation(s)
- Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Correspondence: ; Tel.: +1-204-235-3507
| | - Carla G. Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Leslee Tworek
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Raissa Perrault
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Sofia M’Seffar
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Megha Murali
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Tara Loader
- Canadian Centre for Agri-food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
23
|
Wang B, Gan L, Deng Y, Zhu S, Li G, Nasser MI, Liu N, Zhu P. Cardiovascular Disease and Exercise: From Molecular Mechanisms to Clinical Applications. J Clin Med 2022; 11:jcm11247511. [PMID: 36556132 PMCID: PMC9785879 DOI: 10.3390/jcm11247511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Inactivity is a significant risk factor for cardiovascular disease. Exercise may greatly enhance the metabolism and function of the cardiovascular system, lower several risk factors, and prevent the development and treatment of cardiovascular disease while delivering easy, physical, and emotional enjoyment. Exercise regulates the cardiovascular system by reducing oxidative stress and chronic inflammation, regulating cardiovascular insulin sensitivity and the body's metabolism, promoting stem cell mobilization, strengthening autophagy and myocardial mitochondrial function, and enhancing cardiovascular damage resistance, among other effects. Appropriate exercise intervention has become an essential adjuvant therapy in clinical practice for treating and rehabilitating various cardiovascular diseases. However, the prescription of exercise for preventing and treating cardiovascular diseases, particularly the precise selection of individual exercise techniques and their volume, remains controversial. Using multiomics to explain further the molecular process underlying the positive effects of exercise on cardiovascular health will not only improve our understanding of the effects of exercise on health but also establish a scientific basis and supply new ideas for preventing and treating cardiovascular diseases by activating the endogenous protective mechanisms of the body and suggesting more specific exercise prescriptions for cardiovascular rehabilitation.
Collapse
Affiliation(s)
- Bo Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Lin Gan
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Yuzhi Deng
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
| | - Moussa Ide Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510100, China; (B.W.); (L.G.); (Y.D.); (S.Z.); (G.L.)
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou 510640, China
- Correspondence: (M.I.N.); (N.L.); (P.Z.)
| |
Collapse
|
24
|
Michalak A, Kasztelan-Szczerbińska B, Cichoż-Lach H. Impact of Obesity on the Course of Management of Inflammatory Bowel Disease—A Review. Nutrients 2022; 14:nu14193983. [PMID: 36235636 PMCID: PMC9573343 DOI: 10.3390/nu14193983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is already well-known that visceral adipose tissue is inseparably related to the pathogenesis, activity, and general outcome of inflammatory bowel disease (IBD). We are getting closer and closer to the molecular background of this loop, finding certain relationships between activated mesenteric tissue and inflammation within the lumen of the gastrointestinal tract. Recently, relatively new data have been uncovered, indicating a direct impact of body fat on the pattern of pharmacological treatment in the course of IBD. On the other hand, ileal and colonic types of Crohn’s disease and ulcerative colitis appear to be more diversified than it was thought in the past. However, the question arises whether at this stage we are able to translate this knowledge into the practical management of IBD patients or we are still exploring the scientific background of this pathology, having no specific tools to be used directly in patients. Our review explores IBD in the context of obesity and associated disorders, focusing on adipokines, creeping fat, and possible relationships between these disorders and the treatment of IBD patients.
Collapse
|
25
|
Khan M, Khan M, Ahmad M, Alam R, Khan S, Jaiswal G. Association of circulatory adiponectin with the parameters of Madras Diabetes Research Foundation-Indian Diabetes Risk Score. JOURNAL OF DIABETOLOGY 2022. [DOI: 10.4103/jod.jod_86_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|