1
|
Nagori K, Pradhan M, Nakhate KT. Ethyl gallate ameliorates diabetes-induced Alzheimer's disease-like phenotype in rats via activation of α7 nicotinic receptors and mitigation of oxidative stress. Biochem Biophys Res Commun 2024; 737:150925. [PMID: 39492127 DOI: 10.1016/j.bbrc.2024.150925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Cognitive decline, an important comorbidity of type 2 diabetes (T2D), is attributed to oxidative stress and impaired cholinergic signaling in the brain. The α7 nicotinic acetylcholine receptor (α7nAChR) is densely distributed in the hippocampus and cortex, and exerts neuroprotective and procognitive actions. Ethyl gallate (EG), a natural phenolic antioxidant compound, showed high in-silico binding affinity towards α7nAChR and brain penetrability. Therefore, the present study aimed to evaluate the involvement of α7nAChR in the potential of EG to ameliorate T2D-induced Alzheimer's disease-like condition. T2D was induced by intraperitoneal (i.p.) injection of streptozotocin (35 mg/kg) in rats on high-fat diet. Diabetic animals were treated with EG (10 and 20 mg/kg, i.p.) for four weeks, and their learning and memory performance was evaluated by the Morris water maze (MWM). Further, the brains were subjected to biochemical analysis of antioxidants like glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and oxidative stress marker malonaldehyde (MDA). While diabetic rats showed a significant decline in cognitive performance in the MWM, a substantial improvement was noticed following EG treatment. Further, the diabetes-associated reductions in GSH, SOD, and CAT levels, along with increased MDA contents in the brain, were effectively restored by EG. Interestingly, pre-treatment with α7nAChR antagonist methyllycaconitine (1 mg/kg, i.p.) attenuated the effects of EG on behavioral and biochemical parameters. The results suggest that EG may augment cholinergic signaling in the brain via α7nAChR to mitigate oxidative stress, consequently alleviating T2D-associated dementia. Therefore, EG could be a potential candidate for addressing cognitive impairment comorbid with T2D.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur, 493661, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, 424001, Maharashtra, India.
| |
Collapse
|
2
|
Ranglani S, Hasan S, Komorowska J, Medina NM, Mahfooz K, Ashton A, Garcia-Ratés S, Greenfield S. A Novel Peptide Driving Neurodegeneration Appears Exclusively Linked to the α7 Nicotinic Acetylcholine Receptor. Mol Neurobiol 2024; 61:8206-8218. [PMID: 38483654 DOI: 10.1007/s12035-024-04079-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
T14, a 14mer peptide, is significantly increased in the pre-symptomatic Alzheimer's disease brain, and growing evidence implies its pivotal role in neurodegeneration. Here, we explore the subsequent intracellular events following binding of T14 to its target α7 nicotinic acetylcholine receptor (nAChR). Specifically, we test how various experimental manipulations of PC12 cells impact T14-induced functional outcomes. Three preparations were compared: (i) undifferentiated vs. NGF-differentiated cells; (ii) cells transfected with an overexpression of the target α7 nAChR vs. wild type cells; (iii) cells transfected with a mutant α7 nAChR containing a mutation in the G protein-binding cluster, vs. cells transfected with an overexpression of the target α7 nAChR, in three functional assays - calcium influx, cell viability, and acetylcholinesterase release. NGF-differentiated PC12 cells were less sensitive than undifferentiated cells to the concentration-dependent T14 treatment, in all the functional assays performed. The overexpression of α7 nAChR in PC12 cells promoted enhanced calcium influx when compared with the wild type PC12 cells. The α7345-348 A mutation effectively abolished the T14-triggered responses across all the readouts observed. The close relationship between T14 and the α7 nAChR was further evidenced in the more physiological preparation of ex vivo rat brain, where T30 increased α7 nAChR mRNA, and finally in human brain post-mortem, where levels of T14 and α7 nAChR exhibited a strong correlation, reflecting the progression of neurodegeneration. Taken together these data would make it hard to account for T14 binding to any other receptor, and thus interception at this binding site would make a very attractive and remarkably specific therapeutic strategy.
Collapse
Affiliation(s)
- Sanskar Ranglani
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sibah Hasan
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK.
| | - Joanna Komorowska
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | | | - Kashif Mahfooz
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Anna Ashton
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Sara Garcia-Ratés
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| | - Susan Greenfield
- Culham Science Centre, Neuro-Bio Ltd, Building F5, Abingdon, OX14 3DB, UK
| |
Collapse
|
3
|
Biswal SR, Kumar A, Muthuswamy S, Kumar S. Genetic components of microdeletion syndromes and their role in determining schizophrenia traits. Mol Biol Rep 2024; 51:804. [PMID: 39001960 DOI: 10.1007/s11033-024-09731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by various symptoms such as hallucinations, delusions, and disordered thinking. The etiology of this disease is unknown; however, it has been linked to many microdeletion syndromes that are likely to contribute to the pathology of schizophrenia. In this review we have comprehensively analyzed the role of various microdeletion syndromes, like 3q29, 15q13.3, and 22q11.2, which are known to be involved with schizophrenia. A variety of factors lead to schizophrenia phenotypes, but copy number variants that disrupt gene regulation and impair brain function and cognition are one of the causes that have been identified. Multiple case studies have shown that loss of one or more genes in the microdeletion regions lead to brain activity defects. In this article, we present a coherent paradigm that connects copy number variations (CNVs) to numerous neurological and behavioral abnormalities associated with schizophrenia. It would be helpful in understanding the different aspects of the microdeletions and how they contribute in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Smruti Rekha Biswal
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology (NIT), Rourkela, Odisha, 769008, India.
| |
Collapse
|
4
|
Garcia Ratés S, García‐Ayllón M, Falgàs N, Brangman SA, Esiri MM, Coen CW, Greenfield SA. Evidence for a novel neuronal mechanism driving Alzheimer's disease, upstream of amyloid. Alzheimers Dement 2024; 20:5027-5034. [PMID: 38780014 PMCID: PMC11247685 DOI: 10.1002/alz.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and β-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of β-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.
Collapse
Affiliation(s)
| | - María‐Salud García‐Ayllón
- Unidad de InvestigaciónHospital General Universitario de Elche, FISABIOElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d'AlacantSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Neus Falgàs
- Alzheimer's disease and other cognitive disorders UnitHospital Clínic de Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sharon A. Brangman
- Department of GeriatricsUpstate Center of Excellence for Alzheimer's DiseaseSUNY Upstate Medical University 750 East Adams StreetSyracuseNew YorkUSA
| | - Margaret M Esiri
- Neuropathology DepartmentJohn Radcliffe Hospital, West WingOxford UniversityOxfordUK
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
5
|
Liu J, Liu M, Shi S, Jiang F, Zhang Y, Guo J, Gong X. Evaluation of the effect of intraoperative tropisetron on postoperative rebound pain after brachial plexus block: a randomized controlled trial. Pain Rep 2024; 9:e1163. [PMID: 38756786 PMCID: PMC11098252 DOI: 10.1097/pr9.0000000000001163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Postoperative rebound pain after peripheral nerve block increases patient suffering and delays recovery after surgery. Objectives We tested whether the 5HT-3 receptor antagonist and α7nAChR agonist tropisetron could prevent postoperative rebound pain. Methods A total of 115 patients were randomized to receive 5-mg/5-mL tropisetron or the same volume of normal saline. Pain intensity was measured with the numerical rating scale of pain (NRS). Rebound pain was defined as a change from mild pain (NRS ≤ 3) measured in the postanesthesia care unit to severe pain (NRS ≥ 7) within 24 hours after peripheral nerve blockade. Logistic regression was used to identify relevant factors associated with postoperative rebound pain. Results Tropisetron did not affect the NRS score or the incidence of rebound pain after peripheral nerve block. Logistic regression revealed that preoperative pain, bone surgery, and length of incision were risk factors for postoperative rebound pain, and patient-controlled analgesia was protective against postoperative rebound pain. Conclusion Tropisetron does not affect the incidence of rebound pain after peripheral nerve block. Patients at high risk of postoperative rebound pain should be identified for appropriate management. Registration site: www.chictr.org.cn (ChiCTR2300069994).
Collapse
Affiliation(s)
- Junli Liu
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Mingming Liu
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Shengnan Shi
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Fei Jiang
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ye Zhang
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jing Guo
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xingrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Institution of Neuroscience and Brain Disease, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
6
|
Tzartos J, Karagiorgou K, Pechlivanidou M, Tzartos S, Dudeck L, Meyer-Lotz G, Guest PC, Steiner J. Absence of neuronal nicotinic acetylcholine receptor antibodies in sera and CSF from schizophrenia patients. Schizophr Res 2024; 267:39-41. [PMID: 38518476 DOI: 10.1016/j.schres.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Affiliation(s)
- John Tzartos
- Second Department of Neurology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece
| | | | | | - Socrates Tzartos
- Tzartos NeuroDiagnostics, 115 23 Athens, Greece; Department of Neurobiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; Department of Pharmacy, University of Patras, 265 00 Patras, Greece
| | - Leon Dudeck
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Gabriela Meyer-Lotz
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Laboratory of Translational Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Health and Medical Prevention (CHaMP), Magdeburg, Germany; German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
7
|
Shan H, Wang N, Gao X, Wang Z, Yu J, Zhangsun D, Zhu X, Luo S. Fluorescent α-Conotoxin [Q1G, ΔR14]LvIB Identifies the Distribution of α7 Nicotinic Acetylcholine Receptor in the Rat Brain. Mar Drugs 2024; 22:200. [PMID: 38786593 PMCID: PMC11122421 DOI: 10.3390/md22050200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
α7 nicotinic acetylcholine receptors (nAChRs) are mainly distributed in the central nervous system (CNS), including the hippocampus, striatum, and cortex of the brain. The α7 nAChR has high Ca2+ permeability and can be quickly activated and desensitized, and is closely related to Alzheimer's disease (AD), epilepsy, schizophrenia, lung cancer, Parkinson's disease (PD), inflammation, and other diseases. α-conotoxins from marine cone snail venom are typically short, disulfide-rich neuropeptides targeting nAChRs and can distinguish various subtypes, providing vital pharmacological tools for the functional research of nAChRs. [Q1G, ΔR14]LvΙB is a rat α7 nAChRs selective antagonist, modified from α-conotoxin LvΙB. In this study, we utilized three types of fluorescein after N-Hydroxy succinimide (NHS) activation treatment: 6-TAMRA-SE, Cy3 NHS, and BODIPY-FL NHS, labeling the N-Terminal of [Q1G, ΔR14]LvΙB under weak alkaline conditions, obtaining three fluorescent analogs: LvIB-R, LvIB-C, and LvIB-B, respectively. The potency of [Q1G, ΔR14]LvΙB fluorescent analogs was evaluated at rat α7 nAChRs expressed in Xenopus laevis oocytes. Using a two-electrode voltage clamp (TEVC), the half-maximal inhibitory concentration (IC50) values of LvIB-R, LvIB-C, and LvIB-B were 643.3 nM, 298.0 nM, and 186.9 nM, respectively. The stability of cerebrospinal fluid analysis showed that after incubation for 12 h, the retention rates of the three fluorescent analogs were 52.2%, 22.1%, and 0%, respectively. [Q1G, ΔR14]LvΙB fluorescent analogs were applied to explore the distribution of α7 nAChRs in the hippocampus and striatum of rat brain tissue and it was found that Cy3- and BODIPY FL-labeled [Q1G, ΔR14]LvΙB exhibited better imaging characteristics than 6-TAMARA-. It was also found that α7 nAChRs are widely distributed in the cerebral cortex and cerebellar lobules. Taking into account potency, imaging, and stability, [Q1G, ΔR14]LvΙB -BODIPY FL is an ideal pharmacological tool to investigate the tissue distribution and function of α7 nAChRs. Our findings not only provide a foundation for the development of conotoxins as visual pharmacological probes, but also demonstrate the distribution of α7 nAChRs in the rat brain.
Collapse
Affiliation(s)
- Hongyu Shan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Nan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Xinyu Gao
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Zihan Wang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Jinpeng Yu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China; (H.S.); (N.W.); (X.G.); (Z.W.); (J.Y.); (D.Z.)
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Munafó JP, Biscussi B, Obiol D, Costabel M, Bouzat C, Murray AP, Antollini S. New Multitarget Molecules Derived from Caffeine as Potentiators of the Cholinergic System. ACS Chem Neurosci 2024; 15:994-1009. [PMID: 38407056 DOI: 10.1021/acschemneuro.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Cholinergic deficit is a characteristic factor of several pathologies, such as myasthenia gravis, some types of congenital myasthenic syndromes, and Alzheimer's Disease. Two molecular targets for its treatment are acetylcholinesterase (AChE) and nicotinic acetylcholine receptor (nAChR). In previous studies, we found that caffeine behaves as a partial nAChR agonist and confirmed that it inhibits AChE. Here, we present new bifunctional caffeine derivatives consisting of a theophylline ring connected to amino groups by different linkers. All of them were more potent AChE inhibitors than caffeine. Furthermore, although some of them also activated muscle nAChR as partial agonists, not all of them stabilized nAChR in its desensitized conformation. To understand the molecular mechanism underlying these results, we performed docking studies on AChE and nAChR. The nAChR agonist behavior of the compounds depends on their accessory group, whereas their ability to stabilize the receptor in a desensitized state depends on the interactions of the linker at the binding site. Our results show that the new compounds can inhibit AChE and activate nAChR with greater potency than caffeine and provide further information on the modulation mechanisms of pharmacological targets for the design of novel therapeutic interventions in cholinergic deficit.
Collapse
Affiliation(s)
- Juan Pablo Munafó
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| | - Brunella Biscussi
- Instituto de Química del Sur, Departamento de Química, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Diego Obiol
- Grupo de Biofísica, Instituto de Física del Sur, Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Marcelo Costabel
- Grupo de Biofísica, Instituto de Física del Sur, Departamento de Física, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| | - Ana Paula Murray
- Instituto de Química del Sur, Departamento de Química, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Avda. Alem 1253, Bahía Blanca 8000, Argentina
| | - Silvia Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Camino La Carrindanga km 7, Bahía Blanca 8000, Argentina
| |
Collapse
|
9
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
10
|
Kumar S, Akhila PV, Suchiang K. Hesperidin ameliorates Amyloid-β toxicity and enhances oxidative stress resistance and lifespan of Caenorhabditis elegans through acr-16 mediated activation of the autophagy pathway. Free Radic Biol Med 2023; 209:366-380. [PMID: 37913913 DOI: 10.1016/j.freeradbiomed.2023.10.408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease in aged populations. Aberrant amyloid-beta accumulation is a common pathological feature in AD patients. Dysfunction of autophagy and impairment of α7nAChR functioning are associated with enhanced amyloid-beta (Aβ) accumulation in AD patients. Hesperidin, a flavone glycoside found primarily in citrus species, is known to have anti-inflammatory, antioxidant, and neuroprotective effects. However, the underlying molecular mechanisms of hesperidin as an antiaging and anti-Aβ phytochemical were unclear. In this study, we found that hesperidin upregulates the acr-16 expression level in C. elegans as evidenced by increased GFP-tagged ACR-16 and GFP-tagged pmyo-3:ACR-16 expression in muscle and ventral nerve cord. Further, hesperidin upregulates the autophagy genes in wild-type N2, evident by increased GFP-tagged LGG-1 foci. However, hesperidin failed to upregulate the autophagy genes level in acr-16 mutant worms that suggests autophagy activation is mediated through acr-16. In addition, hesperidin showed antiaging and anti-oxidative effects, as evidenced by positive changes in different markers necessary for health span and lifespan. Additionally, hesperidin could upregulate acr-16 and autophagy genes (lgg-1 & bec-1) and ameliorates Aβ-induced toxicity as observed with reduce ROS accumulation, paralysis rate, and enhanced lifespan even in worms AD model CL4176 and CL2006 strain. Our finding suggests that hesperidin significantly enhances oxidative stress resistance, prolongs the lifespan, and protects against Aβ-induced toxicity in C. elegans. Thus, acr-16 mediated autophagy and antioxidation is associated with anti-aging and anti-Aβ effect of hesperidin.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India.
| | - P V Akhila
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, 605014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
11
|
Angelova VT, Georgiev B, Pencheva T, Pajeva I, Rangelov M, Todorova N, Zheleva-Dimitrova D, Kalcheva-Yovkova E, Valkova IV, Vassilev N, Mihaylova R, Stefanova D, Petrov B, Voynikov Y, Tzankova V. Design, Synthesis, In Silico Studies and In Vitro Evaluation of New Indole- and/or Donepezil-like Hybrids as Multitarget-Directed Agents for Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1194. [PMID: 37765003 PMCID: PMC10534827 DOI: 10.3390/ph16091194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone (3a-r) or sulfonyl hydrazone (5a-l) fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds (3c and 3d) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system. Compound 3n, possessing two indole scaffolds, showed the highest activity against butyrylcholinesterase (BChE) and a high selectivity index (SI = 47.34), as well as a pronounced protective effect in H2O2-induced oxidative stress in SH-SY5Y cells. Moreover, compounds 3c, 3d, and 3n showed low neurotoxicity against malignant neuroblastoma cell lines of human (SH-SY5Y) and murine (Neuro-2a) origin, as well as normal murine fibroblast cells (CCL-1) that indicate the in vitro biocompatibility of the experimental compounds. Furthermore, compounds 3c, 3d, and 3n were capable of penetrating the blood-brain barrier (BBB) in the experimental PAMPA-BBB study. The molecular docking showed that compound 3c could act as a ligand to both MT1 and MT2 receptors, as well as to AchE and BchE enzymes. Taken together, those results outline compounds 3c, 3d, and 3n as promising prototypes in the search of innovative compounds for the treatment of AD-associated neurodegeneration with oxidative stress. This study demonstrates that hydrazone derivatives with melatonin and donepezil are appropriate for further development of new AChE/BChE inhibitory agents.
Collapse
Affiliation(s)
- Violina T. Angelova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | - Tania Pencheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Ilza Pajeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (T.P.); (I.P.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (B.G.); (N.T.)
| | | | - Elena Kalcheva-Yovkova
- Faculty of Computer Systems and Techologies, Technical University–Sofia, 1000 Sofia, Bulgaria;
| | - Iva V. Valkova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Nikolay Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.R.); (N.V.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Boris Petrov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| | - Yulian Voynikov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (I.V.V.); (Y.V.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (R.M.); (D.S.); (B.P.); (V.T.)
| |
Collapse
|
12
|
Sánchez JD, Alcántara AR, González JF, Sánchez-Montero JM. Advances in the discovery of heterocyclic-based drugs against Alzheimer's disease. Expert Opin Drug Discov 2023; 18:1413-1428. [PMID: 37800875 DOI: 10.1080/17460441.2023.2264766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
INTRODUCTION Alzheimer's disease is a multifactorial neurodegenerative disorder characterized by beta-amyloid accumulation and tau protein hyperphosphorylation. The disease involves interconnected mechanisms, which can be clustered into two target-packs based on the affected proteins. Pack-1 focuses on beta-amyloid accumulation, oxidative stress, and metal homeostasis dysfunction, and Pack-2 involves tau protein, calcium homeostasis, and neuroinflammation. Against this background heterocyclic system, there is a powerful source of pharmacophores to develop effective small drugs to treat multifactorial diseases like Alzheimer's. AREAS COVERED This review highlights the most promising heterocyclic systems as potential hit candidates with multi-target capacity for the development of new drugs targeting Alzheimer's disease. The selection of these heterocyclic systems was based on two crucial factors: their synthetic versatility and their well-documented biological properties of therapeutic potential in neurodegenerative diseases. EXPERT OPINION The synthesis of small drugs against Alzheimer's disease requires a multifactorial approach that targets the key pathological proteins. In this context, the utilization of heterocyclic systems, with well-established synthetic processes and facile functionalization, becomes a crucial element in the design phases. Furthermore, the selection of hit heterocyclic should be guided by a full understanding of their biological activities. Thus, the identification of promising heterocyclic scaffolds with known biological effects increases the potential to develop effective molecules against Alzheimer's disease.
Collapse
Affiliation(s)
- Juan D Sánchez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan F González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Activation of α7nAChR by PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating α7nAChR/Nrf2/HO-1 signaling pathway. Exp Gerontol 2023; 175:112139. [PMID: 36898594 DOI: 10.1016/j.exger.2023.112139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Aging is an important risk factor for neurodegenerative diseases. The activation of α7 nicotinic acetylcholine receptor (α7nAChR) is involved in inflammation and cognition, but the specific role it plays in aging remains unknown. This study aimed to investigate the anti-aging effect of the activation of α7nAChR on aging rats and BV2 cells induced by D-galactose, as well as its potential mechanism. D-galactose induced an increase in the SA-β-Gal positive cells, expression of p16 and p21 in vivo and in vitro. α7nAChR selective agonist PNU282987 decreased levels of pro-inflammatory factors, MDA, and Aβ, enhanced SOD activity and levels of anti-inflammatory factor (IL10) in vivo. PNU282987 enhanced the expression of Arg1, decreased the expression of iNOS, IL1β and TNFα in vitro. PNU282987 upregulated the levels of α7nAChR, Nrf2 and HO-1 in vivo and in vitro. The results of Morris water maze and novel object recognition tests showed that PNU282987 improved cognitive impairment in aging rats. Furthermore, α7nAChR selective inhibitor methyllycaconitine (MLA) results were opposite with PNU282987. PNU282987 improves cognitive impairment through inhibiting oxidative stress and neuroinflammation in D-galactose induced aging via regulating the α7nAChR/Nrf2/HO-1 signaling pathway. Therefore, targeting the α7nAChR may be a viable therapeutic approach for anti-inflammaging and neurodegenerative diseases.
Collapse
|