1
|
Xu S, Zhang Y, Li J, Zhang X, Wang W. External stimuli-responsive drug delivery to the posterior segment of the eye. Drug Deliv 2025; 32:2476140. [PMID: 40126105 PMCID: PMC11934192 DOI: 10.1080/10717544.2025.2476140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
Posterior segment eye diseases represent the leading causes of vision impairment and blindness globally. Current therapies still have notable drawbacks, including the need for frequent invasive injections and the associated risks of severe ocular complications. Recently, the utility of external stimuli, such as light, ultrasound, magnetic field, and electric field, has been noted as a promising strategy to enhance drug delivery to the posterior segment of the eye. In this review, we briefly summarize the main physiological barriers against ocular drug delivery, focusing primarily on the recent advancements that utilize external stimuli to improve treatment outcomes for posterior segment eye diseases. The advantages of these external stimuli-responsive drug delivery strategies are discussed, with illustrative examples highlighting improved tissue penetration, enhanced control over drug release, and targeted drug delivery to ocular lesions through minimally invasive routes. Finally, we discuss the challenges and future perspectives in the translational research of external stimuli-responsive drug delivery platforms, aiming to bridge existing gaps toward clinical use.
Collapse
Affiliation(s)
- Shuting Xu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Yaming Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Jia Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Xinyu Zhang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Hou XY, Zhang XL, Ying AK, Yue YX, Yang T, Guo DS, Li ZQ. Ophthalmic formulation of methotrexate: a strategy of using the self-assembled LacAC4A nanoparticles for non-invasive drug delivery to the ocular posterior segment. Drug Deliv 2025; 32:2509962. [PMID: 40437914 PMCID: PMC12123953 DOI: 10.1080/10717544.2025.2509962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 05/17/2025] [Indexed: 06/02/2025] Open
Abstract
Drug delivery to ocular posterior segment remains difficult due to the challenges imposed by dynamic and static ocular barriers, lesion point targeting, and off-target effect. In this study, a novel approach is demonstrated for non-invasive drug delivery to the ocular posterior segments using lactose-modified azocalix[4] arene (LacAC4A) as a supramolecular ocular drug delivery platform. LacAC4A contains azo groups and is covalently modified by lactose groups, which confers active targeting to the retina, and induces a hypoxic response. The immunomodulator methotrexate (MTX), which is commonly used in ophthalmology to treat immune system diseases such as uveitis, was also selected as a guest to prepare MTX@LacAC4A. The prepared LacAC4A and MTX@LacAC4A systems were characterized, then the internalization mechanisms and hypoxia response abilities were determined through flow cytometry and fluorescence imaging, respectively. Besides, the delivery route and efficiency were verified, and the safety profile of MTX@LacAC4A was evaluated in multiple dimensions. Importantly, it was found that the prepared MTX@LacAC4A exhibits good biocompatibility, can effectively reach the posterior segment, and demonstrates potential ophthalmic applications. These findings lay the grounds for the future development of non-invasive ocular posterior segment disease treatments based on the advanced use of LacAC4A as a drug delivery platform.
Collapse
Affiliation(s)
- Xiao-Yun Hou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiao-Ling Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - An-Kang Ying
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Yu-Xin Yue
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Tao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Dong-Sheng Guo
- Tianjin Eye Hospital, College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
3
|
Verma S, Nainwal N, Juyal D. An overview of novel formulations for ocular viral infections: focused on nanomedicines. Drug Dev Ind Pharm 2025:1-23. [PMID: 40476473 DOI: 10.1080/03639045.2025.2515998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 05/09/2025] [Accepted: 06/01/2025] [Indexed: 06/11/2025]
Abstract
Ocular viral infections are a common cause of blindness globally. Many ocular viral infections are mistakenly identified as bacterial infections. In these situations, treatment is initiated belatedly and fails to address the root cause of the infection, which frequently results in serious ocular complications like corneal infiltrates, conjunctival scarring, and decreased visual acuity. The efficacy of conventional treatments for viral infections suffers from poor bioavailability, which requires the development of novel methods of drug delivery, accurate diagnosis, and efficient treatment choices. As nanotechnology in medicine advances at a rapid pace, multifunctional nanosystems are being prioritized more and more to address the problems brought on by viral infections of the eyes offering targeted delivery, increased bioavailability and decreased systemic toxicity. This study delivers a thorough overview of the use of nanomedicines in the treatment of ocular viral infections, with a particular emphasis on how they may enhance the safety and efficacy of antiviral drugs. We address a range of nanocarrier systems, such as liposomes, nanoparticles, nanosuspension, proniosomes, in-situ gels, dendrimers, and nanogels, emphasizing their distinct characteristics that facilitate the effective transportation of antiviral drugs to ocular tissues. This article also highlighted the regulatory barriers of ocular nanoformulation. The transition of in-vitro studies to in-vivo and clinical models has been discussed. This review also highlights the Preclinical studies of ocular viral treatment, ocular nanotoxicology and advancement of ocular antiviral treatments in the form of patents, ongoing clinical trials and marketed formulations.
Collapse
Affiliation(s)
- Shalu Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Nidhi Nainwal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Divya Juyal
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| |
Collapse
|
4
|
Garrett M, Curry S, Feris S, Lu Y, Gu Q, Clark A, Martin SF, Kastellorizios M. Delivery of a novel neuroprotective compound to the retina in rat and rabbit animal models. J Control Release 2025; 382:113659. [PMID: 40139393 DOI: 10.1016/j.jconrel.2025.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Posterior segment-related diseases are among the leading causes of irreversible blindness and loss of vision globally. These diseases are extremely difficult to treat due to the drug delivery barriers posed by the eye, among other challenges. One delivery method that bypasses many of these obstacles, albeit not without risk, is ocular injections, and long-acting formulations such as implants can improve patient compliance by allowing for longer intervals between injections. Here, we report our development of a preclinical in situ-forming implant dosage form that provides sustained release of a novel compound, DKR-1677, with a target in the retina. An in situ-forming implant based on polylactic co glycolic acid (PLGA) was chosen in this preclinical stage because it is readily translatable to a preformed implant product. The formulations were tested in vitro, in rat and rabbit animal models for drug release and pharmacokinetics. A two-step in vitro dissolution method with implant formation in a biorelevant gel followed by incubation in release media showed a 30-day three-phase release profile with an initial burst release of 36.04 ± 4.23 %, a plateau, and a controlled release up to 93.75 ± 4.68 % at day 30, typical of PLGA-based implant formulations. Immediate and controlled-release formulations were tested in rat and rabbit animal models and confirmed that DKR-1677 is taken up by the retina after intravitreal administration. Furthermore, the in situ-forming implant was found to prolong drug presence in the retina to 30 days following a single administration, confirming that a PLGA-based implant is a viable approach for this drug candidate.
Collapse
Affiliation(s)
- Meredith Garrett
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stacy Curry
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sherri Feris
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Yan Lu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Qi Gu
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Abe Clark
- North Texas Eye Research Institute, The University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Stephen F Martin
- Department of Chemistry, College of Natural Sciences, The University of Texas at Austin, 105 E 24(th) St., Austin, TX 78712-1224, USA
| | - Michail Kastellorizios
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA.
| |
Collapse
|
5
|
Xu J, Long L, Zhou X, Zhang X, Liao L, Ji D, Duan X. Sustained intraocular pressure-lowering effect and biocompatibility of a single subconjunctival administration of hydrogel-encapsulated nano-brinzolamide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:43. [PMID: 40392392 PMCID: PMC12092503 DOI: 10.1007/s10856-025-06896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Brinzolamide is a widely used treatment for glaucoma, but its effectiveness relies on at least twice-daily dosing, which can be challenging for patient adherence. To overcome this limitation, we developed an injectable hydrogel-based delivery system designed to maintain therapeutic drug levels with a single administration. This approach aims to simplify treatment and improve clinical outcomes. Brinzolamide-loaded polyethylene glycol poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles were encapsulated within a hydrogel synthesized through the crosslinking of oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMC). In vitro studies were conducted to assess the nanoparticles' characterization, release profile, and biocompatibility. In a steroid-induced high intraocular pressure (IOP) mouse model, the efficacy of a single subconjunctival injection in lowering IOP was evaluated. Additionally, both cellular and animal biocompatibility were assessed. The brinzolamide-loaded hydrogel system (Hydrogel@Brz) contained nanoparticles with an average diameter of 40.76 nm, exhibiting a stable size distribution and a spherical morphology. The hydrogel demonstrated excellent injectability, self-healing properties, and a porous structure conducive to nanoparticle encapsulation. In vitro release studies revealed a sustained drug release of 86% over 14 days. No cytotoxicity was observed in human primary trabecular meshwork cells (HTMCs), human Tenon's capsule fibroblasts (HTFs), or the retinal ganglion cell line R28. In vivo, a single injection led to a prolonged IOP reduction lasting up to 21 days. No signs of drug toxicity were detected in ocular tissue sections, transverse optic nerve sections under transmission electron microscopy, or pathology slides of various organs. The brinzolamide-loaded hydrogel has demonstrated promising potential for sustained drug delivery and effective intraocular pressure reduction while maintaining good biocompatibility. However, further studies in larger animal models and long-term evaluations are needed to confirm its clinical applicability.
Collapse
Affiliation(s)
- Jiahao Xu
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha City, 410015, Hunan, China
- Aier Academy of Ophthalmology, Central South University, Changsha, China
- The Xiangya Hospital, Central South University, Changsha City, Hunan, China
| | - Linyu Long
- Aier Eye Hospital Group Co. Ltd., Changsha, China
| | - Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha City, 410015, Hunan, China
| | - Xinyue Zhang
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha City, 410015, Hunan, China
| | - Li Liao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha City, 410015, Hunan, China
| | - Dan Ji
- Department of Ophthalmology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Aier Eye Hospital, Changsha City, 410015, Hunan, China.
- Aier Academy of Ophthalmology, Central South University, Changsha, China.
| |
Collapse
|
6
|
Velasco S, Gallego I, Olivares-González L, Puras G, Castro MC, Salom D, Pedraz JL, Rodrigo R. Noninvasive ocular delivery of adalimumab-loaded nanostructured lipid carriers for targeted retinitis pigmentosa therapy. Biomed Pharmacother 2025; 185:117962. [PMID: 40073744 DOI: 10.1016/j.biopha.2025.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Retinitis pigmentosa is a genetically heterogeneous retinal degeneration process. There is hardly any treatment available. It is associated with extensive chronic inflammation and the release of proinflammatory cytokines such as TNFα. The blockade of TNFα through systemic or intraocular routes slows retinal degeneration. They are invasive routes with possible side effects. Herein, we propose a noninvasive approach to address the inflammatory component of retinitis pigmentosa. This approach is based on the development of eye drops of nanostructured lipid carriers (NLCs) loaded with the monoclonal antibody against TNFα, adalimumab (ADA). We physicochemically characterized NLC-ADA. We evaluated retinal and corneal toxicity; corneal permeation; diffusion to the retina; and effects on retinal dysfunction, degeneration and inflammation. These results prove that NLC-ADA eye drops exhibit excellent corneal permeation, no toxicity and high retinal distribution in mice. These compounds improve retinal function, reduce retinal degeneration and ameliorate the inflammatory process. In particular, NLC-ADA eye drops reduce M1 microglial activation, macrophage infiltration and the levels of some components of the NLRP3 inflammasome in rd10 mice, a model of retinitis pigmentosa. This strategy offers a noninvasive route that circumvents the bloodretinal barrier in a safe and efficient manner. Hence, this approach could offer a promising therapeutic option for treating retinitis pigmentosa regardless of genetic defects. This approach could be useful for other inflammation-related retinal diseases.
Collapse
Affiliation(s)
- Sheyla Velasco
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Lorena Olivares-González
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - Gustavo Puras
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain.
| | - Ma Carmen Castro
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain.
| | - David Salom
- Service of Ophthalmology, Manises Hospital, Generalitat Valenciana, 50, Manises, Valencia 46940, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Bioaraba, NanoBioCel Research Group, Jose Atxotegi Kalea, s/n, Txagorritxu, Vitoria-Gasteiz 01009, Spain; Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, A Joined Venture of TECNALIA, Centro de investigación Lascaray Ikergunea, Avenida Miguel de Unamuno, Vitoria-Gasteiz 01006, Spain.
| | - Regina Rodrigo
- Group of Pathophysiology and Therapies for Vision Disorders, Príncipe Felipe Research Center (CIPF), Eduardo Primo Yúfera 3, Valencia 46012, Spain; Joint Research Unit on Rare Diseases CIPF-Health Research Institute Hospital La Fe (IIS-La Fe), Valencia 46026, Spain; Biomedical Research Networking Center in Rare Diseases (CIBER-ER), Institute of Health Carlos III, Monforte de Lemos, 3-5. Pabellón 11, Madrid 28029, Spain; Catholic University of Valencia (UCV), Faculty of Health Sciences, Quevedo, 2, Valencia 46001, Spain.
| |
Collapse
|
7
|
Sacco MA, Aquila VR, Gualtieri S, Verrina MC, Tarda L, Tarallo AP, Carbone A, Ranno F, Ricci P, Aquila I. Analysis of the Correlation Between Cardiac Markers in Post-Mortem Vitreous Humor and the Perimortem Agony Interval. Int J Mol Sci 2025; 26:2996. [PMID: 40243692 PMCID: PMC11988968 DOI: 10.3390/ijms26072996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Forensic biochemistry has often relied on the vitreous humor as a matrix for toxicological investigations due to its stability and isolation from post-mortem redistribution processes. Recently, the scope of research has expanded to explore the vitreous humor as a medium reflecting systemic and pathological changes, particularly in its protein composition. This study delves into the detection and quantification of cardiac damage markers such as CK-MB and myoglobin in vitreous humor samples from 45 autopsy cases. For the first time, it demonstrates a statistically significant correlation between these markers and the perimortem agony interval (PAI), defined as the survival time before death. This discovery paves the way for innovative forensic applications, including the estimation of the PAI, a critical parameter for judicial and compensatory assessments. The findings underscore the potential of the vitreous humor as a diagnostic medium, opening new avenues for understanding the systemic dynamics of cardiac markers and the role of the blood-retinal barrier in post-mortem scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia” University, 88100 Catanzaro, Italy; (M.A.S.); (V.R.A.); (S.G.); (M.C.V.); (L.T.); (A.P.T.); (A.C.); (F.R.); (P.R.)
| |
Collapse
|
8
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Patricia Becerra S. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. COMMUNICATIONS MEDICINE 2025; 5:81. [PMID: 40118996 PMCID: PMC11928584 DOI: 10.1038/s43856-025-00789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Photoreceptor death leads to inherited blinding retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, developing effective treatments is urgent. This study evaluates the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), which are known to restrict common cell death pathways associated with retinal diseases. METHODS We tested chemically synthesized peptides (17-mer and H105A) with affinity for the PEDF receptor, PEDF-R, delivered as eye drops to two RP mouse models: rd10 (phosphodiesterase 6b mutation) and RhoP23H/+ (rhodopsin P23H mutation). Additionally, we engineered AAV-H105A vectors for intravitreal delivery in RhoP23H/+ mice. To assess peptide effects in human tissue, we used retinal organoids exposed to cigarette smoke extract, a model of oxidative stress. Photoreceptor survival, morphology and function were evaluated. RESULTS Here we show that peptides 17-mer and H105A delivered via eye drops successfully reach the retina, promote photoreceptor survival, and improve retinal function in both RP mouse models. Intravitreal delivery of a AAV-H105A vector delays photoreceptor degeneration in RhoP23H/+ mice up to six months. In human retinal organoids, peptide H105A specifically prevents photoreceptor death induced by oxidative stress, a contributing factor to RP progression. CONCLUSIONS PEDF peptide-based eye drops offer a promising, minimally invasive therapy to prevent photoreceptor degeneration in retinal disorders, with a favorable safety profile.
Collapse
Grants
- Z01 EY000306 Intramural NIH HHS
- Intramural Research Program of the National Eye Institute, National Institutes of Health, United States of America (Project #EY000306, SPB); the Prevention of Blindness Society (SPB); Fondazione Telethon (Project #GGP19113, VM), the National Center for “Gene Therapy and Drugs based on RNA Technology” cod. Progetto CN00000041 and “Health Extended Alliance for Innovative Therapies, Advanced Lab-research, and Integrated Approaches of Precision Medicine - HEAL ITALIA” tematica 6 “Innovative diagnostics and therapies in precision medicine” cod. Progetto PE0000019 PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 “Istruzione Ricerca” COMPONENTE 2, “Dalla ricerca all’impresa” INVESTIMENTO 1.4, “Potenziamento strutture di ricerca e creazione di "campioni nazionali di R&S” su alcune Key enabling technologies”, finanziato dall’Unione europea – NextGenerationEU (VM and AB); The CellSight Development Fund (NV); and a Challenge Grant to the Department of Ophthalmology at the University of Colorado from Research to Prevent Blindness (NV).
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Diress M, Wagle SR, Lim P, Foster T, Kovacevic B, Ionescu CM, Mooranian A, Al-Salami H. Advanced drug delivery strategies for diabetic retinopathy: current therapeutic advancement, and delivery methods overcoming barriers, and experimental modalities. Expert Opin Drug Deliv 2024; 21:1859-1877. [PMID: 39557623 DOI: 10.1080/17425247.2024.2431577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Diabetic retinopathy, a significant trigger for blindness among working age individuals with diabetes, poses a substantial global health challenge. Understanding its underlying mechanisms is pivotal for developing effective treatments. Current treatment options, such as anti-VEGF agents, corticosteroids, laser photocoagulation, and vitreous surgery, have their limitations, prompting the exploration of innovative approaches like nanocapsules based drug-delivery systems. Nanoparticles provide promising solutions to improve drug delivery in ocular medicine, overcoming the complexities of ocular anatomy and existing treatment constraints. AREAS COVERED This review explored advanced therapeutic strategies for diabetic retinopathy, focusing on current medications with their limitations, drug delivery methods, device innovations, and overcoming associated barriers. Through comprehensive review, it aimed to contribute to the discovery of more efficient management strategies for diabetic retinopathy in the future. EXPERT OPINION In the next five to ten years, we expect a revolutionary shift in how diabetic retinopathy is treated. As we deepen our understanding of oxidative stress and metabolic dysfunction, antioxidants with specialised delivery matrices are poised to take center stage in prevention and treatment strategies. Our vision is to create a more integrated approach to diabetic retinopathy management that not only improves patient outcomes but also reduces the risks associated to traditional therapies.
Collapse
Affiliation(s)
- Mengistie Diress
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Human Physiology, School of Medicine, College of Medicine and Health Sciences University of Gondar, Gondar, Ethiopia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, AU, Australia
- Medical School, The University of Western Australia, Crawley, AU, Australia
| |
Collapse
|
10
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
11
|
Kashikar R, Senapati S, Dudhipala N, Basu SK, Mandal N, Majumdar S. Ophthalmic Nanoemulsion Fingolimod Formulation for Topical Application. J Ocul Pharmacol Ther 2024; 40:504-512. [PMID: 38976488 DOI: 10.1089/jop.2024.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Purpose: Fingolimod (FTY720; FT), a structural analog of sphingosine, has potential ocular applications. The goal of this study was to develop an FT-loaded nanoemulsion (NE; FT-NE) formulation for the efficient and prolonged delivery of FT to the posterior segment of the eye through the topical route. Methods: FT-NE formulations were prepared using homogenization followed by the probe sonication method. The lead FT-NE formulations (0.15% and 0.3% w/v loading), comprising soybean oil as oil and Tween® 80 and Poloxamer 188 as surfactants, were further evaluated for in vitro release, surface morphology, filtration sterilization, and stability at refrigerated temperature. Ocular bioavailability following topical application of FT-NE (0.3%) was examined in Sprague-Dawley rats. Results: The formulation, at both dose levels, showed desirable physicochemical characteristics, a nearly spherical shape with homogenous nanometric size distribution, and was stable for 180 days (last time point checked) at refrigerated temperature postfiltration through a polyethersulfone (0.22 µm) membrane. In vitro release studies showed prolonged release over 24 h, compared with the control FT solution (FT-S). In vivo studies revealed that effective concentrations of FT were achieved in the vitreous humor and retina following topical application of FT-NE. Conclusions: The results from these studies demonstrate that the FT-NE formulation can serve as a viable platform for the ocular delivery of FT through the topical route.
Collapse
Affiliation(s)
- Rama Kashikar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Samir Senapati
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Narendar Dudhipala
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
| | - Sandip K Basu
- Department of Ophthalmology, The University of Tennessee Health Science Center, Hamilton Eye Institute, Memphis, Tennessee, USA
| | - Nawajes Mandal
- Department of Ophthalmology, The University of Tennessee Health Science Center, Hamilton Eye Institute, Memphis, Tennessee, USA
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Soumyajit Majumdar
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, USA
- Research Institute of Pharmaceutical Sciences, University of Mississippi, Mississippi, USA
| |
Collapse
|
12
|
Goswami V, Das SM, Deep S. Quercetin-Loaded Nanocarriers as Effective Inhibitors for Copper Metal Ion-Induced γD-Crystallin Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16093-16102. [PMID: 39046313 DOI: 10.1021/acs.langmuir.4c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Cataract is one of the leading causes of blindness worldwide. Till date, the only solution for cataracts is surgery, which is a resource-intensive solution. A much simpler solution is to find a potential drug that could inhibit aggregation. It is well established that nonamyloid aggregates of eye lens protein result in cataract. γD-Crystallin, a thermodynamically stable protein, is one of the most abundant proteins in the core of the eye lens and is found to aggregate under stress conditions, leading to the cataract. It has also been found that in cataractous lens, the concentration of metals like copper is elevated significantly as compared to healthy eye lens, suggesting their role in inducing aggregation. In our present study, aggregation of γD-Crystallin was carried out in the presence of Cu (II). Using techniques like turbidity assay, CD spectroscopy, ANS binding assay, and microscopic studies like TEM, it could be confirmed that protein aggregates in the presence of Cu (II) and the nature of aggregates is amorphous. Various polyphenols were tested to suppress aggregation of the protein. Quercetin was observed to be the most efficient. To overcome the problems associated with the delivery of polyphenols, such as solubility and bioavailability, quercetin was encapsulated in two types of nanocarriers. Their characterization was done using TEM, DLS, and other techniques. The potency of quercetin-loaded CS-TPP/CS-PLGA NPs as inhibitors of γD-Crystallin aggregation was confirmed by various experiments.
Collapse
Affiliation(s)
- Vishakha Goswami
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sony Moni Das
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
13
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Becerra SP. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602890. [PMID: 39109177 PMCID: PMC11302621 DOI: 10.1101/2024.07.10.602890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photoreceptor death causes blinding inheritable retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, finding effective treatments is urgent. This study focuses on developing a targeted approach by evaluating the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), known to restrict common cell death pathways associated with retinal diseases. Peptides with affinity for the PEDF receptor, PEDF-R, (17-mer and H105A) delivered via eye drops reached the retina, efficiently promoted photoreceptor survival, and improved retinal function in RP mouse models based on both the rd10 mutation and the rhodopsin P23H mutation. Additionally, intravitreal delivery of AAV-H105A vectors delayed photoreceptor degeneration in the latter RP mouse model. Furthermore, peptide H105A specifically prevented photoreceptor death induced by oxidative stress, a contributing factor to RP progression, in human retinal organoids. This promising approach for peptide eye drop delivery holds significant potential as a therapeutic for preventing photoreceptor death in retinal disorders, offering a high safety profile, low invasiveness and multiple delivery options.
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| |
Collapse
|
14
|
Signorini S, Delledonne A, Pescina S, Bianchera A, Sissa C, Vivero-Lopez M, Alvarez-Lorenzo C, Santi P, Padula C, Nicoli S. A sterilizable platform based on crosslinked xanthan gum for controlled-release of polymeric micelles: Ocular application for the delivery of neuroprotective compounds to the posterior eye segment. Int J Pharm 2024; 657:124141. [PMID: 38677392 DOI: 10.1016/j.ijpharm.2024.124141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
TPGS (D-α-tocopheryl polyethylene glycol 1000 succinate) polymeric micelles show interesting properties for ocular administration thanks to their solubilization capability, nanometric size and tissue penetration ability. However, micelles formulations are generally characterized by low viscosity, poor adhesion and very short retention time at the administration site. Therefore, the idea behind this work is the preparation and characterization of a crosslinked film based on xanthan gum that contains TPGS micelles and is capable of controlling their release. The system was loaded with melatonin and cyclosporin A, neuroprotective compounds to be delivered to the posterior eye segment. Citric acid and heating at different times and temperatures were exploited as crosslinking approach, giving the possibility to tune swelling, micelles release and drug release. The biocompatibility of the platform was confirmed by HET-CAM assay. Ex vivo studies on isolated porcine ocular tissues, conducted using Franz cells and two-photon microscopy, demonstrated the potential of the xanthan gum-based platform and enlightened micelles penetration mechanism. Finally, the sterilization step was approached, and a process to simultaneously crosslink and sterilize the platform was developed.
Collapse
Affiliation(s)
- Sara Signorini
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Andrea Delledonne
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Annalisa Bianchera
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Cristina Sissa
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Patrizia Santi
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Cristina Padula
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy.
| |
Collapse
|
15
|
Al-Bassam L, Shearman GC, Brocchini S, Alany RG, Williams GR. The Potential of Selenium-Based Therapies for Ocular Oxidative Stress. Pharmaceutics 2024; 16:631. [PMID: 38794293 PMCID: PMC11125443 DOI: 10.3390/pharmaceutics16050631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress plays a critical role in the development of chronic ocular conditions including cataracts, age-related macular degeneration, and diabetic retinopathy. There is a need to explore the potential of topical antioxidants to slow the progression of those conditions by mediating oxidative stress and maintaining ocular health. Selenium has attracted considerable attention because it is a component of selenoproteins and antioxidant enzymes. The application of selenium to a patient can increase selenoprotein expression, counteracting the effect of reactive oxygen species by increasing the presence of antioxidant enzymes, and thus slowing the progression of chronic ocular disorders. Oxidative stress effects at the biomolecular level for prevalent ocular conditions are described in this review along with some of the known defensive mechanisms, with a focus on selenoproteins. The importance of selenium in the eye is described, along with a discussion of selenium studies and uses. Selenium's antioxidant and anti-inflammatory qualities may prevent or delay eye diseases. Recent breakthroughs in drug delivery methods and nanotechnology for selenium-based ocular medication delivery are enumerated. Different types of selenium may be employed in formulations aimed at managing ocular oxidative stress conditions.
Collapse
Affiliation(s)
- Lulwah Al-Bassam
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Gemma C. Shearman
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| | - Raid G. Alany
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Penrhyn Rd, Kingston upon Thames KT1 2EE, UK; (G.C.S.); (R.G.A.)
- School of Pharmacy, The University of Auckland, Auckland 1142, New Zealand
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (L.A.-B.); (S.B.)
| |
Collapse
|
16
|
Sarmento C, Duarte ARC, Rita Jesus A. Can (Natural) deep eutectic systems increase the efficacy of ocular therapeutics? Eur J Pharm Biopharm 2024; 198:114276. [PMID: 38582179 DOI: 10.1016/j.ejpb.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The eye is one of the most complex organs in the human body, with a unique anatomy and physiology, being divided into anterior and posterior segments. Ocular diseases can occur in both segments, but different diseases affect different segments. Glaucoma and cataracts affect the anterior segment, while macular degeneration and diabetic retinopathy occur in the posterior segment. The easiest approach to treat ocular diseases, especially in the anterior segment, is through the administration of topical eye drops, but this route presents many constraints, namely precorneal dynamic and static ocular barriers. On the other hand, the delivery of drugs to the posterior segment of the eye is far more challenging and is mainly performed by the intravitreal route. However, it can lead to severe complications such as retinal detachment, endophthalmitis, increased intraocular pressure and haemorrhage. The design of new drug delivery systems for the anterior segment is very challenging, but targeting the posterior one is even more difficult and little progress has been made. In this review we will discuss various strategies including the incorporation of additives in the formulations, such as viscosity, permeability, and solubility enhancers, namely based on Deep eutectic systems (DES). Natural deep eutectic systems (NADES) have emerged to solve several problems encountered in pharmaceutical industry, regarding the pharmacokinetic and pharmacodynamic properties of drugs. NADES can contribute to the design of advanced technologies for ocular therapeutics, including hydrogels and nanomaterials. Here in, we revise some applications of (NA)DES in the development of new drug delivery systems that can be translated into the ophthalmology field.
Collapse
Affiliation(s)
- Célia Sarmento
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita C Duarte
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal
| | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, NOVA - School of Science and Technology, 2829-516 Caparica, Portugal.
| |
Collapse
|
17
|
Karimi M, Abrishami M, Farzadnia M, Kamali H, Malaekeh-Nikouei B. In-situ forming biodegradable implants for sustained Fluocinolone acetonide release to the posterior eye: In-vitro and in-vivo investigations in rabbits. Int J Pharm 2024; 654:123973. [PMID: 38458402 DOI: 10.1016/j.ijpharm.2024.123973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Delivering medication to the posterior segment of the eye presents a significant challenge. Intravitreal injection has emerged as the preferred method for drug delivery to this area. However, current injectable non-biodegradable implants for fluocinolone acetonide (FA) require surgical removal after prolonged drug release, potentially affecting patient compliance. This study aimed to develop an in-situ forming biodegradable implant (ISFBI) optimal formulation containing PLGA504H and PLGA756S (50:50 w/w%) with the additive NMP solvent. The goal was to achieve slow and controlled release of FA over a two-month period with lower burst release, following a single intravitreal injection. Through morphology, rheology, stability and in-vitro release evaluations, the optimal formulation demonstrated low viscosity (0.12-1.25 Pa. s) and sustained release of FA at a rate of 0.36 µg/day from the third day up to two months. Furthermore, histopathology and in-vivo studies were conducted after intravitreal injection of the optimal formulation in rabbits' eye. Pharmacokinetic analysis demonstrated mean residence time (MRT) of 20.02 ± 0.6 days, half-life (t1/2) of 18.80 ± 0.4 days, and clearance (Cl) of 0.29 ± 0.03 ml/h for FA in the vitreous humor, indicating sustained and slow absorption of FA by the targeted retinal tissue from vitrea over the two-month period and eliminating through the anterior section of the eye, as revealed by its presence in the aqueous humor. Additionally, FA exhibited no detection in the blood and no evidence of systemic side effects or damage on the retinal layer and other organs. Based on these findings, it can be concluded that in-situ forming injectable biodegradable PLGA implants can show promise as a long-acting and controlled-release system for intraocular drug delivery.
Collapse
Affiliation(s)
- Malihe Karimi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Abrishami
- Department of Ophthalmology, Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Farzadnia
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|