1
|
Văruț RM, Popescu AIS, Gaman S, Niculescu CE, Niculescu AȘ, Dop D, Stepan MD, Ionovici N, Singer CE, Popescu C. Cyclodextrin-Based Drug Delivery Systems for Depression: Improving Antidepressant Bioavailability and Targeted Central Nervous System Delivery. Pharmaceutics 2025; 17:355. [PMID: 40143019 PMCID: PMC11945394 DOI: 10.3390/pharmaceutics17030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Cyclodextrin (CD)-based drug delivery systems have emerged as a promising strategy to overcome limitations commonly encountered in antidepressant therapy, including low bioavailability, poor solubility, and suboptimal penetration of the blood-brain barrier. This review synthesizes current evidence demonstrating that complexing various classes of antidepressants-such as tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and atypical antidepressants-with β-CD or its derivatives significantly enhances drug solubility and stability. In addition, encapsulation with CDs can diminish systemic toxicity and improve pharmacokinetics, thereby helping to optimize dosage regimens and reduce adverse effects. Analysis of published in vitro and in vivo studies indicates that CD formulations not only boost therapeutic efficacy but also enable sustained or targeted release, which is critical for drugs requiring precise plasma and tissue concentrations. When compared to other carriers (e.g., liposomes, polymeric nanoparticles, dendrimers), CD-based systems often stand out for their ease of formulation, biocompatibility, and cost-effectiveness, although limited drug-loading capacity can be a drawback. We recommend expanding in vivo trials to substantiate the clinical benefits of CD-antidepressant complexes, particularly for treatment-resistant cases or specific subpopulations (e.g., elderly and pediatric patients). Additional investigations should also explore hybrid systems-combining CDs with advanced nano- or macroparticles-to amplify their advantages and address any limitations. Ultimately, integrating CDs into antidepressant regimens holds substantial potential to refine therapy outcomes, reduce adverse events, and pave the way for more personalized, effective interventions for depression.
Collapse
Affiliation(s)
- Renata Maria Văruț
- Research Methodology Department, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Alin Iulian Silviu Popescu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Simina Gaman
- Department I, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Elena Niculescu
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Adrian Ștefan Niculescu
- Department of Orthopedics, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Dalia Dop
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Mioara Desdemona Stepan
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Nina Ionovici
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Cristina Elena Singer
- Department of Mother and Baby, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.E.N.); (D.D.); (M.D.S.); (N.I.); (C.E.S.)
| | - Cristina Popescu
- Department of Anatomy, University of Medicine and Pharmacy, Discipline of Anatomy, 200349 Craiova, Romania;
| |
Collapse
|
2
|
Zoupanou N, Papakyriakopoulou P, Georgiou N, Cheilari A, Javornik U, Podbevsek P, Tzeli D, Valsami G, Mavromoustakos T. Spectroscopic Characterization Using 1H and 13C Nuclear Magnetic Resonance and Computational Analysis of the Complex of Donepezil with 2,6-Methyl-β-Cyclodextrin and Hydroxy Propyl Methyl Cellulose. Molecules 2025; 30:1169. [PMID: 40076392 PMCID: PMC11902010 DOI: 10.3390/molecules30051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Donepezil (DH), a selective acetylcholinesterase inhibitor, is widely used to manage symptoms of mild to moderate Alzheimer's disease by enhancing cholinergic neurotransmission and preventing acetylcholine breakdown. Despite the effectiveness of oral formulations, extensive hepatic metabolism and low systemic bioavailability have driven the search for alternative delivery systems. This study focuses on nasal delivery as a non-parenteral substitute, utilizing hydroxypropyl methylcellulose (HPMC) for its mucoadhesive properties and methyl-β-cyclodextrin (Me-β-CD) for its ability to enhance permeability and form inclusion complexes with drugs. Prior studies demonstrated the potential of HPMC-based nasal films for nose-to-brain delivery of donepezil and highlighted Me-β-CD's role in improving drug solubility. Building on this, transparent gel formulations containing DH, HPMC, and 2,6 Me-β-CD were developed to investigate molecular interactions within two- and three-component systems. This study utilized a combination of nuclear magnetic resonance (NMR) spectroscopy and density functional theory (DFT) to provide detailed insights into the interactions between DH, 2,6-Me-β-CD, and HPMC. The findings provide critical insights into drug-excipient interactions, aiding the optimization of stability, solubility, and controlled release. This advances the rational design of nanotechnology-based drug delivery systems for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Nikoletta Zoupanou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (P.P.); (G.V.)
| | - Nikitas Georgiou
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece;
| | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia; (U.J.); (P.P.)
| | - Peter Podbevsek
- Slovenian NMR Centre, National Institute of Chemistry of Ljubljana, Hajdrihova 19, 1000 Ljubljana, Slovenia; (U.J.); (P.P.)
| | - Demeter Tzeli
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| | - Georgia Valsami
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (P.P.); (G.V.)
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, Zografou, 15771 Athens, Greece; (N.Z.); (N.G.); (D.T.)
| |
Collapse
|
3
|
Kumari S, Peela S, Nagaraju GP, Srilatha M. Polysaccharides as therapeutic vehicles in pancreatic cancer. Drug Discov Today 2025; 30:104320. [PMID: 40024518 DOI: 10.1016/j.drudis.2025.104320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Pancreatic cancer (PC) is highly aggressive, with rising incidence and mortality rates. It has significant therapy obstacles due to the limited clinical options, late-stage identification, dense tumor microenvironment (TME), and resistance to therapy. Recent advances might improve treatment consequences in therapy strategies that target important TME components. Moreover, new polymeric drug delivery techniques based on polysaccharides such as polymeric micelles, liposomes, and nanoparticles enhance the solubility of drugs, drug stability, and tumor-specific targeting, which increase the chances of circumventing resistance and improving the efficacy of treatment. Preclinical research has suggested that by modulating the TME and enhancing the efficacy of chemotherapy, polysaccharide-based therapy, such as RP02-1 and DPLL-functionalized amylose, may help treat PC.
Collapse
Affiliation(s)
- Seema Kumari
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam 532410 AP, India
| | - Ganji Purnachandra Nagaraju
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, Andhra Pradesh 517502, India.
| |
Collapse
|
4
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
5
|
Gandhi R, Chopade N, Deshmukh PK, Ingle RG, Harde M, Lakade S, More MP, Tade RS, Bhadane MS. Unveiling cyclodextrin conjugation as multidentate excipients: An exploratory journey across industries. Carbohydr Res 2025; 549:109357. [PMID: 39708386 DOI: 10.1016/j.carres.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability. The computational approach has established robust correlations with experimental outcomes, enhancing our understanding of CD-mediated complexation phenomena. This comprehensive review delves into the CD based Inclusion complex (CDIC) formation and a myriad of components, including drug molecules, amino acids, vitamins, and volatile oils. These complexes find applications across diverse industries, ranging from pharmaceuticals to nutraceuticals, food, fragrance, and beyond. In the pharmaceutical realm, β- CDICs offer innovative solutions for enhancing drug solubility, stability, and bioavailability, thus overcoming formulation challenges associated with poorly water-soluble drugs. Furthermore, the versatility of CDs extends beyond pharmaceuticals, with applications in the encapsulation of phytoactive compounds in nutraceuticals and the enhancing flavor, aroma in food and fragrance industries. This review underscores the pivotal role of CDs conjugation in modern drug delivery systems, emphasizing the importance of interdisciplinary approaches that integrate computational modeling with experimental validation. As the pharmaceutical landscape continues to evolve, CDs-based formulations stand poised to drive innovation and address the ever-growing demand for efficacious and patient-friendly drug delivery solutions.
Collapse
Affiliation(s)
- Roshani Gandhi
- Department of Pharmacognosy, Laddhad College of Pharmacy, Dist-Buldhana, M.S. 443 001, India
| | - Nishant Chopade
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Prashant K Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University) Sawangi, Wardha, M.S. 442004, India
| | - Minal Harde
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, 411044, India
| | - Sameer Lakade
- Department of Pharmaceutics, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune, 411019, India
| | | | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist - Dhule, M.S. 425405, India
| | - Mahesh S Bhadane
- Department of Physics, Rayat Shikshan Sanstha's Dada Patil Mahavidyalaya, Karjat, Dist - Ahemadnagar, M.S. 414 402, India
| |
Collapse
|
6
|
Alabrahim OAA, Fytory M, Abou-Shanab AM, Lababidi J, Fritzsche W, El-Badri N, Azzazy HMES. A biocompatible β-cyclodextrin inclusion complex containing natural extracts: a promising antibiofilm agent. NANOSCALE ADVANCES 2025; 7:1405-1420. [PMID: 39845135 PMCID: PMC11748956 DOI: 10.1039/d4na00916a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Biofilms formed by several bacterial strains still pose a significant challenge to healthcare due to their resistance to conventional treatment approaches, including antibiotics. This study explores the potential of loading natural extracts with antimicrobial activities into β-cyclodextrin (βCD) nanoparticles, which are FDA-approved and have superior biocompatibility owing to their cyclic sugar structures, for biofilm eradication. An inclusion complex of βCD carrying Boswellia sacra essential oils (BOS) was prepared and characterized with regard to its physicochemical properties, antimicrobial efficacy, and antibiofilm activities. Encapsulation of BOS into βCD significantly enhanced the antimicrobial activity of BOS by 4-fold against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and by 8-fold against Gram-negative (Escherichia coli and Pseudomonas putida) bacteria, with minimum inhibitory concentrations ranging from 2.5 to 5 mg mL-1. Furthermore, the BOS-βCD complex demonstrated a dual-action against bacterial biofilms where it prevented biofilm formation and disrupted established biofilms. This resulted in a significant reduction in biofilm biomass, with prevention and disruption rates reaching up to 93.78% and 82.17%, respectively. Additionally, the formula revealed an excellent biocompatibility profile with no induction of oxidative stress in human skin fibroblast cells. Our findings suggest that βCD nanoparticles loaded with BOS essential oils hold promise as an effective formula for preventing the formation of bacterial biofilms and combating preformed ones for use in relevant medical applications.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559
| | - Mostafa Fytory
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University 62511 Beni-Suef Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology Giza 12578 Egypt
| | - Jude Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena 07745 Germany
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology Giza 12578 Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt +202 2615 2559
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Jena 07745 Germany
| |
Collapse
|
7
|
Nicolaescu OE, Belu I, Mocanu AG, Manda VC, Rău G, Pîrvu AS, Ionescu C, Ciulu-Costinescu F, Popescu M, Ciocîlteu MV. Cyclodextrins: Enhancing Drug Delivery, Solubility and Bioavailability for Modern Therapeutics. Pharmaceutics 2025; 17:288. [PMID: 40142952 PMCID: PMC11945013 DOI: 10.3390/pharmaceutics17030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Cyclodextrins (CDs) have revolutionized the pharmaceutical industry with their ability to enhance the stability, solubility, and bioavailability of a wide range of active substances. These cyclic oligosaccharides, with a unique hydrophilic exterior and hydrophobic cavity, form inclusion complexes with poorly soluble drugs, improving their pharmacokinetic profiles and therapeutic efficacy. This review explores the multifaceted roles of cyclodextrins in pharmaceutical formulations, ranging from oral, ophthalmic, parenteral, and topical applications to their emerging use in targeted therapies, gene delivery, and treatment of neurodegenerative, cardiovascular, and infectious diseases. Cyclodextrins not only improve drug solubility and controlled release but also reduce toxicity and side effects, leading to safer and more effective treatments. Recent advancements, such as cyclodextrin-based nanoparticles, offer promising pathways for cancer therapy, chronic disease management, and personalized medicine. As research continues, cyclodextrins remain at the forefront of innovation in drug delivery systems, ensuring better patient outcomes and expanding the possibilities of modern therapeutics.
Collapse
Affiliation(s)
- Oana Elena Nicolaescu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Ionela Belu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Andreea Gabriela Mocanu
- Department of Pharmaceutical Technique, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (O.E.N.); (I.B.)
| | - Valentin Costel Manda
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| | - Gabriela Rău
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București Street, 200512 Craiova, Dolj County, Romania;
| | - Felicia Ciulu-Costinescu
- Department of Pharmacy, University Titu Maiorescu, 16 Gheorghe Șincai Street, 031593 București, Romania;
| | - Mariana Popescu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania;
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Dolj County, Romania; (V.C.M.); (M.V.C.)
| |
Collapse
|
8
|
Cho DY, Lee JG, Kim MJ, Cho HJ, Cho JH, Kim KS. Approaches for Inclusion Complexes of Ezetimibe with Cyclodextrins: Strategies for Solubility Enhancement and Interaction Analysis via Molecular Docking. Int J Mol Sci 2025; 26:1686. [PMID: 40004150 PMCID: PMC11855275 DOI: 10.3390/ijms26041686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/03/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to improve the solubility of ezetimibe (EZT), which has low aqueous solubility, by preparing complexes using β-cyclodextrin (β-CD) derivatives. Phase solubility studies and Job's plot confirmed a high apparent stability constant for EZT with β-CD and even higher constants with its derivatives, establishing a 1:1 stoichiometric ratio. The composites were prepared using spray drying over a range of molar ratios, and their physicochemical properties were evaluated using techniques such as scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FT-IR). Saturation solubility and in vitro dissolution tests revealed that solubility increased with higher CD molar ratios. EZT/RM-β-CD inclusion complexes (ICs) and EZT/DM-β-CD ICs exhibited a similar solubility, which was greater than that of EZT/HP-β-CD ICs and EZT/SBE-β-CD ICs (where RM, DM, HP, and SEB represent H, CH3, -CH2-CHOH-CH3 and -(CH2)4-SO3Na synthetic derivatives, respectively). Most complexes, except for EZT/SBE-β-CD at 1:2 or higher ratios, showed superior solubility compared with EZT powder and commercial products. Molecular docking simulations confirmed EZT inclusion within the CD, revealing hydrogen bonds and binding energies that aligned with solubility trends. These findings suggest that EZT complexes with β-CD derivatives significantly improve solubility, highlighting their potential for developing more effective oral solid formulations for hyperlipidemia treatment.
Collapse
Affiliation(s)
- Dae-Yeong Cho
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Jeong-Gyun Lee
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Moon-Jung Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| | - Hyuk-Jun Cho
- Department of Innovative Drug Discovery and Development, College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 42601, Republic of Korea;
| | - Jung-Hyun Cho
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Kyeong-Soo Kim
- Department of Pharmaceutical Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea; (D.-Y.C.); (J.-G.L.); (M.-J.K.)
| |
Collapse
|
9
|
Alfei S, Zuccari G. Last Fifteen Years of Nanotechnology Application with Our Contribute. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:265. [PMID: 39997828 PMCID: PMC11858446 DOI: 10.3390/nano15040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Currently, nanotechnology is the most promising science, engineering, and technology conducted at the nanoscale (nm), which is used in several sectors. Collectively, nanotechnology is causing a new industrial revolution, and nano-based products are becoming increasingly important for the global market and economy. The interest in nanomaterials has been strongly augmented during the last two decades, and this fact can be easily evaluated by considering the number of studies present in the literature. In November 2024, they accounted for 764,279 experimental studies developed in the years 2009-2024. During such a period, our group contributed to the field of applicative nanotechnology with several experimental and review articles, which we hope could have relevantly enhanced the knowledge of the scientific community. In this new publication, an exhaustive overview regarding the main types of developed nanomaterials, the characterization techniques, and their applications has been discussed. Particular attention has been paid to nanomaterials employed for the enhancement of bioavailability and delivery of bioactive molecules and to those used for ameliorating traditional food packaging. Then, we briefly reviewed our experimental studies on the development of nanoparticles (NPs), dendrimers, micelles, and liposomes for biomedical applications by collecting inherent details in a reader-friendly table. A brief excursus about our reviews on the topic has also been provided, followed by the stinging question of nanotoxicology. Indeed, although the application of nanotechnology translates into a great improvement in the properties of non-nanosized pristine materials, there may still be a not totally predictable risk for humans, animals, and the environment associated with an extensive application of NPs. Nanotoxicology is a science in rapid expansion, but several sneaky risks are not yet fully disclosed. So, the final part of this study discusses the pending issue related to the possible toxic effects of NPs and their impact on customers' acceptance in a scenario of limited knowledge.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Via Cembrano 4, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
10
|
Hernando G, Bouzat C. Drug combination assays using Caenorhabditis elegans as a model system. J Pharmacol Toxicol Methods 2025; 131:107583. [PMID: 39855609 DOI: 10.1016/j.vascn.2025.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
The C. elegans drug combination assay evaluates the effects of drug combinations in the nematode Caenorhabditis elegans, serving as a valuable tool to assess the efficacy of pharmaceutical agents and natural compounds. Using C. elegans as a model organism, this method allows for the efficient screening of the combined effects of different drugs and evaluation of synergistic effects in drug combinations, which reduces the risk of developing drug resistance. Combination therapy, involving commercial drugs, new agents, or natural products, broadens treatment effectiveness by targeting multiple pathways, effectively managing complex diseases with minimized side effects. The method focuses on discovering effective drug combinations, such as anthelmintic drugs, streamlining early-stage drug discovery to save time and resources. Additionally, its versatility allows for application across most areas of pharmacology and toxicology, extending its usefulness beyond anthelmintic treatments. In the experiments, synchronized worms are exposed to different drug concentrations to evaluate behavioral changes, mostly alterations in worm locomotion. Concentration-response curves for changes in behavior are generated and EC50 or IC50 values determined for the individual drugs. To determine whether the effects of a drug combination are synergistic, additive, or antagonistic, at least three different concentration ratios must be tested. These combinations are then analyzed using specialized drug combination analysis software. This methodology ensures consistent and precise outcomes and evaluates drug impacts on worm behavior parameters crucial for effective pharmacological activity. In conclusion, the C. elegans drug combination assay provides critical insights for developing successful market formulations applicable across a wide range of pharmacological treatments. Its ability to efficiently screen for synergistic, additive, or antagonistic effects makes it a valuable tool for identifying effective therapeutic strategies, potentially reducing drug resistance and improving treatment outcomes in various medical and toxicological fields.
Collapse
Affiliation(s)
- Guillermina Hernando
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, 8000 Bahía Blanca, Argentina.
| | - Cecilia Bouzat
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, 8000 Bahía Blanca, Argentina
| |
Collapse
|
11
|
Roy A, Manna K, Dey S, Chakraborty K, Dhara S, Pal S. Functionalized amino acid-based injectable hydrogels for sustained drug delivery. SOFT MATTER 2025. [PMID: 39835468 DOI: 10.1039/d4sm01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Drug delivery vehicles optimize therapeutic outcomes by enhancing drug efficacy, minimizing side effects, and providing controlled release. Injectable hydrogels supersede conventional ones in the field of drug delivery owing to their less invasive administration and improved targeting. However, they face challenges such as low biodegradability and biocompatibility, potentially compromising their effectiveness. To address these limitations, a modified amino acid-based pH-responsive injectable shear-thinning hydrogel cl-β-CD-g-p(Gly-MA) has been developed as an efficient drug carrier. In the two-step synthetic approaches, first, the well-known amino acid glycine (Gly) is modified to form glycine methacrylate (Gly-MA). Afterward, Gly-MA is chemically crosslinked with β-cyclodextrin (β-CD), an oligosaccharide, using an ethylene glycol dimethacrylate (EGDMA) crosslinker. The presence of these biomaterials as building blocks enhances the biocompatibility, hemocompatibility, and biodegradability of the hydrogel. They also reduce the risk of immunogenicity. The unique property of easy injectability enables minimally invasive administration. This feature also helps prolong drug retention at the target site, further optimizing drug delivery efficiency. Moreover, the pH-responsive feature of the developed cl-β-CD-g-p(Gly-MA) hydrogel ensures controlled drug release in response to the physiological conditions of the target site, enhancing therapeutic efficacy. The study focuses on investigating the in vitro loading and release of diclofenac sodium (DS), a non-steroidal anti-inflammatory drug (NSAID) commonly used to treat arthritic pain and inflammation.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004, India.
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004, India.
| | - Shaon Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004, India.
| | - Kanta Chakraborty
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur-721302, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad-826004, India.
| |
Collapse
|
12
|
Jaskólski M, Paczkowska-Walendowska M, Miklaszewski A, Cielecka-Piontek J. Ashwagandha: Optimizing the Extraction and Electrospun Nanofiber Production. Pharmaceutics 2025; 17:61. [PMID: 39861709 PMCID: PMC11768389 DOI: 10.3390/pharmaceutics17010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study explores the development of electrospun nanofibers incorporating bioactive compounds from Withania somnifera (Ashwagandha) root extract, focusing on optimizing extraction conditions and nanofiber composition to maximize biological activity and application potential. Methods: Using the Design of Experiment (DoE) approach, optimal extraction parameters were identified as 80% methanol, 70 °C, and 60 min, yielding high levels of phenolic compounds and antioxidant activity. Methanol concentration emerged as the critical factor influencing phytochemical properties. Electrospinning technology was employed to produce nanofibers using polyvinylpyrrolidone (PVP) and hydroxypropyl-β-cyclodextrin (HPβCD) as carriers, ensuring encapsulation, stabilization, and an enhanced bioavailability of the active compounds. Results: Nanofibers demonstrated a high surface-to-volume ratio, rapid dissolution, and significant mucoadhesive properties, making them suitable for oral mucosal applications. The optimal nanofiber composition was determined to be 2.5 mL extract, 25% PVP, and an extract-to-HPβCD ratio of 1:0.6. Statistical modeling confirmed that the electrospinning process did not compromise the antioxidant or anti-inflammatory properties of the extract, with extract content being the primary determinant of biological activity. Conclusions: These findings highlight the potential of integrating advanced extraction techniques with nanotechnology to develop innovative delivery systems for traditional herbal remedies. The developed nanofibers offer promising applications in pharmaceuticals, cosmetics, and functional foods, paving the way for a scalable and efficient utilization of Ashwagandha bioactives.
Collapse
Affiliation(s)
- Maciej Jaskólski
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.J.); (J.C.-P.)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.J.); (J.C.-P.)
| | - Andrzej Miklaszewski
- Faculty of Mechanical Engineering and Management, Institute of Materials Science and Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (M.J.); (J.C.-P.)
| |
Collapse
|
13
|
Mura P, Maestrelli F, Gonçalves LMD, Cirri M, Mennini N, Almeida AJ. Cyclodextrin complexation as a fruitful strategy for improving the performance of nebivolol delivery from solid lipid nanoparticles. Int J Pharm 2025; 668:124972. [PMID: 39566697 DOI: 10.1016/j.ijpharm.2024.124972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Oral bioavailability of nebivolol (NEB), a highly-selective β1-adrenergic receptor antagonist specially used in hypertension treatment, is limited by its low aqueous solubility. In this work we investigated the possibility of developing a new effective oral formulation of NEB by exploiting a combined strategy based on NEB complexation with hydroxypropyl-βCyclodextrin (HPβCD) and complex incorporation into solid lipid nanoparticles (SLNs). Solubility studies enabled to choose Imwitor 491 and 988 as solid lipids for SLN preparation. The effect of their separated or combined use, at different amounts, and of different surfactants on nanoparticles dimensions, homogeneity and surface charge was examined. The best formulations were selected for drug loading, as such or as complex with HPβCD, and evaluated for physicochemical properties, morphology, entrapment efficiency and drug release. A comparison of the two kinds of formulations revealed that the presence of HPβCD improved SLNs quality in terms of reduced dimensions, higher homogeneity and greater physicochemical stability, avoiding the sharp Zeta Potential reduction observed when loading the plain drug; moreover, it allowed a marked increase in entrapment efficiency and better control of drug release. Furthermore, the use of HPβCD gave the opportunity of doubling drug loading without noticeable variations in SLNs physicochemical properties and maintaining excellent entrapment efficiency.
Collapse
Affiliation(s)
- P Mura
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - F Maestrelli
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| | - L M D Gonçalves
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - M Cirri
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - N Mennini
- Department of Chemistry, School of Sciences of Human Health, University of Florence, via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy
| | - A J Almeida
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
14
|
Kan G, Chen L, Zhang W, Bian Q, Wang X, Zhong J. Recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. Adv Colloid Interface Sci 2025; 335:103333. [PMID: 39522421 DOI: 10.1016/j.cis.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The application of curcumin in food science is challenged by its poor water solubility, easy degradation under processing and within the gastrointestinal tract, and poor bioavailability. Micro/nanocarrier is an emerging and efficient platform to overcome these drawbacks. This review focuses on the recent advances in the development and application of curcumin-loaded micro/nanocarriers in food research. The recent development advances of curcumin-loaded micro/nanocarriers could be classified into ten basic systems: emulsions, micelles, dendrimers, hydrogel polymeric particles, polymer nanofibers, polymer inclusion complexes, liposomes, solid lipid particles, structured lipid carriers, and extracellular vesicles. The application advances of curcumin-loaded micro/nanocarriers for food research could be classified into four types: coloring agents, functional active agents, preservation agents, and quality sensors. This review demonstrated that micro/nanocarriers were excellent carriers for the fat-soluble curcumin and the obtained curcumin-loaded micro/nanocarriers had promising application prospects in the field of food science.
Collapse
Affiliation(s)
- Guangyi Kan
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lijia Chen
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Wenjie Zhang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qiqi Bian
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian Zhong
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing of Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China; Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
15
|
Ganapathy B, Redasani V, Debnath S, Gupta N, Kadam A, Wang F, Narwankar P. Bioavailability improvement by atomic layer coating: Fenofibrate a case study. J Pharm Sci 2025; 114:617-625. [PMID: 39489377 DOI: 10.1016/j.xphs.2024.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Biopharmaceutical Classification Systems (BCS) class II drugs show poor solubility and high permeability in the body. Fenofibrate (FF) is a classic example of a BCS class II drug, used to treat high cholesterol and triglyceride (fat-like substances) levels in the blood. Atomic layer coating (ALC) is a surface engineering technology adapted from the semiconductor industry, where metal oxides are coated one atomic layer at a time over the active pharmaceutical ingredients (API) particles. ALC coating was proven to improve the processability, alter the hydrophilicity, improve the stability, and fine-tune the release of drugs. Herein, we report the intervention of ALC coating in enhancing the bioavailability of a poorly water-soluble drug (fenofibrate) in the animal model. The physical properties of uncoated fenofibrate were compared with those of zinc oxide-coated and silicon oxide-coated fenofibrate. Following the application of the coatings, the structural integrity (both chemical stability and solid-state stability) of the active pharmaceutical ingredient (API) remained uncompromised, as corroborated by 1H NMR and powder X-ray diffraction analyses. Notably, zinc oxide-coated fenofibrate exhibited favorable flow characteristics, whereas no discernible enhancement in flow behavior was observed for silicon oxide-coated fenofibrate. The results from contact angle measurements suggest that the silicon oxide-coated fenofibrate exhibits superior wetting behavior, as indicated by a contact angle nearing 0°. The application of ALC demonstrates an enhanced dissolution rate when compared to the uncoated active pharmaceutical ingredient (API) while leaving its equilibrium solubility unaffected. Coating the API with silicon oxide improves particle hydrophilicity and wetting properties, whereas zinc oxide coating aids in particle de-agglomeration, thereby enhancing their interaction with an aqueous medium. In vivo bioavailability studies conducted on rodents and larger animal (dog) models indicate a substantial increase in bioavailability (approximately 2 times) for the silicon oxide-coated API in comparison to the uncoated API, as determined by the area under the curve (AUC). Furthermore, the Cmax values for the silicon oxide-coated API also demonstrate a significant increase (approximately 3 times) over the uncoated API. Notably, an oral subacute toxicity study of ALC silicon-coated fenofibrate revealed no toxic effects attributable to the coating. This study underscores the potential of ALC in augmenting the bioavailability of BCS(II) drugs.
Collapse
Affiliation(s)
- Balaji Ganapathy
- Applied Materials India Pvt. Ltd., IIT-Bombay, Powai, Maharashtra, India.
| | | | - Sujit Debnath
- Applied Materials India Pvt. Ltd., IIT-Bombay, Powai, Maharashtra, India
| | - Neha Gupta
- Applied Materials India Pvt. Ltd., IIT-Bombay, Powai, Maharashtra, India
| | - Ankur Kadam
- Applied Materials India Pvt. Ltd., IIT-Bombay, Powai, Maharashtra, India
| | - Fei Wang
- Applied Materials Inc. Santa Clara, California, USA
| | | |
Collapse
|
16
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Vij M, Dand N, Kumar L, Choudhary N, Kumar P, Wadhwa P, Wani SUD, Shakeel F, Ali M. Novel microwave-based green approach for the synthesis of dual-loaded cyclodextrin nanosponges: Characterization, pharmacodynamics, and pharmacokinetics evaluation. GREEN PROCESSING AND SYNTHESIS 2024; 13. [DOI: 10.1515/gps-2024-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
Recently, microwave-based cyclodextrin nanosponges (CDNS) of domperidone (DOM) for their solubility and dissolution improvement have been studied. However, microwave-based CDNS for the dual-loading of cinnarizine (CIN) and DOM have not been documented. Therefore, this research concentrates explicitly on the concurrent loading of two drugs employing these nanocarriers, namely CIN and DOM, both categorized under Class II of the Biopharmaceutical Classification System. A green approach involving microwave synthesis was employed to fabricate these nanocarriers. Fourier transform infrared (FTIR) spectroscopy confirmed the formation of CDNS, while scanning electron microscopy scans illustrated their porous nature. X-ray diffraction studies established the crystalline structure of the nanocarriers. Differential scanning calorimetry and FTIR analyses corroborated the drugs’ loading and subsequent amorphization. In vitro drug release studies demonstrated an enhanced solubility of the drugs, suggesting a potential improvement in their bioavailability. The in vivo pharmacokinetic investigation emphatically substantiated this hypothesis, revealing a 4.54- and 2.90-fold increase in the bioavailability of CIN and DOM, respectively. This enhancement was further supported by the results of the pharmacodynamic study utilizing the gastrointestinal distress/pica model, which indicated a significantly reduced consumption of kaolin. Conclusively, this study affirms the adaptability of microwave-based CDNS for the concurrent loading of multiple drugs, leading to improved solubility and bioavailability.
Collapse
Affiliation(s)
- Mohit Vij
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara , Punjab, 144411 , India
- Government Pharmacy College , Seraj , Himachal Pradesh, 175035 , India
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth’s College of Pharmacy , Navi Mumbai , 400614 , India
| | - Lalit Kumar
- GNA School of Pharmacy, GNA University , Phagwara , Punjab, 144401 , India
| | - Neeraj Choudhary
- GNA School of Pharmacy, GNA University , Phagwara , Punjab, 144401 , India
| | - Parveen Kumar
- Government Pharmacy College , Sullah, Kangra , Himachal Pradesh, 176084 , India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara , Punjab, 144411 , India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, University of Kashmir , Srinagar , 190006 , India
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University , Riyadh , 11451 , Saudi Arabia
| | - Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University , B.G. Nagar, Nagamagala, Bellur , Karnataka, 571418 , India
| |
Collapse
|
18
|
Li C, Wang Y, Zhang W, Yang X, Wang Y, Hou G, Wang D, Han B, Zhang Y. The antitumor mechanisms of glabridin and drug delivery strategies for enhancing its bioavailability. Front Oncol 2024; 14:1506588. [PMID: 39723390 PMCID: PMC11668808 DOI: 10.3389/fonc.2024.1506588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Glabridin, a flavonoid derived from the plant Glycyrrhiza glabra, has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles. These de.livery systems have shown promise in preclinical studies but face challenges in clinical translation, such as issues with biocompatibility, delivery efficiency, and long-term stability. A comprehensive analysis of the antitumor mechanism of glabridin and its novel drug delivery system is still lacking. Therefore, the authors performed a comprehensive review of recent literature on the antitumor effects of glabridin and its novel drug delivery systems, covering the antitumor mechanism, action targets, and novel drug delivery systems, offering new theoretical insights and development directions for its further advancement and clinical application.
Collapse
Affiliation(s)
- Chong Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjing Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaoman Yang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yufang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guanqun Hou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dongli Wang
- Department of Spleen and Stomach, Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Man DE, Nițu ET, Temereancă C, Sbârcea L, Ledeți A, Ivan D, Ridichie A, Andor M, Jîjie AR, Barvinschi P, Rusu G, Văruţ RM, Ledeți I. Host-Guest Complexation of Olmesartan Medoxomil by Heptakis(2,6-di-O-methyl)-β-cyclodextrin: Compatibility Study with Excipients. Pharmaceutics 2024; 16:1557. [PMID: 39771536 PMCID: PMC11677897 DOI: 10.3390/pharmaceutics16121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Olmesartan medoxomil (OLM) is the prodrug of olmesartan, an angiotensin II type 1 receptor blocker that has antihypertensive and antioxidant activities and renal protective properties. It exhibits low water solubility, which leads to poor bioavailability and limits its clinical potential. To improve the solubility of OLM, a host-guest inclusion complex (IC) between heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMβCD) and the drug substance was obtained. Along with active substances, excipients play a crucial role in the quality, safety, and efficacy of pharmaceutical formulations. Therefore, the compatibility of OLM/DMβCD IC with several pharmaceutical excipients was evaluated. Methods: IC was characterized in both solid and liquid states, employing thermoanalytical techniques, universal-attenuated total reflectance Fourier-transform infrared spectroscopy, powder X-ray diffractometry, UV spectroscopy, and saturation solubility studies. Compatibility studies were carried out using thermal and spectroscopic methods to assess potential physical and chemical interactions. Results: The 1:1 OLM:DMβCD stoichiometry ratio and the value of the apparent stability constant were determined by means of the phase solubility method that revealed an AL-type diagram. The binary system showed different physicochemical characteristics from those of the parent entities, supporting IC formation. The geometry of the IC was thoroughly investigated using molecular modeling. Compatibility studies revealed a lack of interaction between the IC and all studied excipients at ambient conditions and the thermally induced incompatibility of IC with magnesium stearate and α-lactose monohydrate. Conclusions: The results of this study emphasize that OLM/DMβCD IC stands out as a valuable candidate for future research in the development of new pharmaceutical formulations, in which precautions should be considered in choosing magnesium stearate and α-lactose monohydrate as excipients if the manufacture stage requires temperatures above 100 °C.
Collapse
Affiliation(s)
- Dana Emilia Man
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Ema-Teodora Nițu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Claudia Temereancă
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Laura Sbârcea
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Adriana Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Denisa Ivan
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Amalia Ridichie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (D.E.M.); (M.A.)
| | - Alex-Robert Jîjie
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
| | - Paul Barvinschi
- Faculty of Physics, West University of Timisoara, 4 Vasile Parvan Blvd, 300223 Timisoara, Romania;
| | - Gerlinde Rusu
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| | - Renata-Maria Văruţ
- Faculty of Pharmacy, University of Medicine and Pharmacy Craiova, 2-4 Petru Rares Str., 200349 Craiova, Romania;
| | - Ionuț Ledeți
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (E.-T.N.); (A.L.); (D.I.); (A.R.); (A.-R.J.); (I.L.)
- Advanced Instrumental Screening Center, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Faculty of Industrial Chemistry and Environmental Engineering, University Politehnica Timisoara, 2 Victoriei Square, 300006 Timisoara, Romania; (C.T.); (G.R.)
| |
Collapse
|
20
|
Cai D, Wang X, Wang Q, Tong P, Niu W, Guo X, Yu J, Chen X, Liu X, Zhou D, Yin F. Controlled release characteristics of alkyl gallates and gallic acid from β-cyclodextrin inclusion complexes of alkyl gallates. Food Chem 2024; 460:140726. [PMID: 39111044 DOI: 10.1016/j.foodchem.2024.140726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
The freeze-drying approach was used to create inclusion complexes utilizing alkyl gallates and β-cyclodextrin, namely dodecyl gallate, octyl gallate, butyl gallate, and ethyl gallate, which are exemplary examples of phenolic esters. The everted-rat-gut-sac model demonstrated that the inclusion complexes released alkyl gallates, which were subsequently hydrolyzed to generate free gallic acid, as evidenced by HPLC-UV analysis. Both gallic acid and short-chain alkyl gallates were capable of permeating the small intestinal membrane. The transport rate of gallic acid (or alkyl gallates) exhibited an initial rise followed by a drop when the carbon-chain lengths varied. The inclusion complex groups exhibited a superior sustained-release effect compared to the comparable alkyl gallates groups, thus possibly leading to higher bioavailability and stronger bioactivity. Moreover, altering the length of the carbon chain will allow for the effortless achievement of regulated release of phenolic compounds and short-chain phenolic esters from such β-cyclodextrin inclusion complexes.
Collapse
Affiliation(s)
- Dong Cai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xinmiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Qian Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Peiyong Tong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Weiyuan Niu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xu Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Jinghan Yu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Xuan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, People's Republic of China
| | - Xiaoyang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Dayong Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Fawen Yin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Liaoning Province Key Laboratory for Marine Food Science and Technology, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, People's Republic of China.
| |
Collapse
|
21
|
Sharma P, Bal T, Singh SK, Sharma N. Biodegradable polymeric nanocomposite containing phloretin for enhanced oral bioavailability and improved myocardial ischaemic recovery. J Microencapsul 2024; 41:754-769. [PMID: 39431662 DOI: 10.1080/02652048.2024.2418608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
AIM The study aimed to enhance phloretin's oral absorption and systemic availability through nanoencapsulation within biodegradable polymers, improving its anti-oxidant and cardioprotective potential. METHODS Phloretin-loaded polymeric nanocomposites were prepared using ionic gelation and optimised for yield, encapsulation, loading, particle size, PdI and zeta potential. The formulation was characterised by FTIR, XRD, FESEM and MS. In-vitro drug release, stability, pharmacokinetics, biodistribution, anti-oxidant capacity, haemolysis and both in-vitro and in-vivo assessments were conducted in an ischaemia-induced rat model. RESULTS The average particle size, zeta potential, encapsulation and drug loading of the optimised nanoparticles were 105.8 ± 1.92 nm, -41.5 ± 1.10 mV, 92.36 ± 0.01% and 18.47 ± 0.38%, respectively. Nano-phloretin enhanced oral bioavailability, anti-oxidant capacity. In-vivo, it reduced myocardial infarct size by ∼46% versus ∼13% for free phloretin, showing significant cardiomyocyte protection and ROS suppression. CONCLUSION The study demonstrates polymer-based nanoparticles as effective oral drug delivery systems capable of enhancing both systemic bioavailability and therapeutic efficacy of the encapsulated drug.
Collapse
Affiliation(s)
- Prasanti Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Trishna Bal
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Neelima Sharma
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| |
Collapse
|
22
|
Tong J, Vo QNQ, He X, Liu H, Zhou H, Park CH. Physically crosslinked chitosan/αβ-glycerophosphate hydrogels enhanced by surface-modified cyclodextrin: An efficient strategy for controlled drug release. Int J Biol Macromol 2024; 283:137163. [PMID: 39510462 DOI: 10.1016/j.ijbiomac.2024.137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
This study reports physically crosslinked chitosan/αβ-glycerophosphate (CS/GP) hydrogels containing surface-modified cyclodextrin for efficient controlled drug release. Highly water-soluble β-cyclodextrin-grafted L-serine (CD-g-Ser) compounds were synthesized, and employed as an effective carrier of berberine hydrochloride (Ber) for CS/GP hydrogels. Various characterizations, including gelation time determination, scanning electron microscopy, and viscosity measurement, indicated that the introduction of CD-g-Ser led to increased crosslinking degree, improved temperature sensitivity, and shortened sol-gel phase transition time of the hydrogel. Meanwhile, the sustained release ability for Ber was achieved due to the hydrophobic association between cyclodextrin and Ber. It was observed that within 4 h, the hydrogel containing CD-g-Ser released 40 % of Ber, while the CS/GP hydrogel without CD-g-Ser released 65 % of Ber. Furthermore, in vitro bacteriostasis experiments confirmed the drug-loaded hydrogel had an excellent antibacterial effect against E. coli and S. aureus (diameter of the inhibition zone up to (16.4 and 34.7) mm, respectively), low hemolysis rate (<2 %), and high cell viability (>90 %). The findings indicate that the physical crosslinked CS hydrogel can be used as a new drug delivery system, and its excellent antibacterial effect makes it a potential wound dressing candidate.
Collapse
Affiliation(s)
- Jianan Tong
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Quang Nhat Quynh Vo
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Xichan He
- School of Materials Science and Engineering, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Hongyu Liu
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Huiyun Zhou
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea; Advanced Mechanical Components Design & Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.
| |
Collapse
|
23
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
24
|
De Gaetano F, Leggio L, Celesti C, Genovese F, Falcone M, Giofrè SV, Iraci N, Iraci N, Ventura CA. Study of Host-Guest Interaction and In Vitro Neuroprotective Potential of Cinnamic Acid/Randomly Methylated β-Cyclodextrin Inclusion Complex. Int J Mol Sci 2024; 25:12778. [PMID: 39684490 DOI: 10.3390/ijms252312778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cinnamic acid (CA) has many beneficial effects on human health. However, its poor water solubility (0.23 g/L, at 25 °C) is responsible for its poor bioavailability. This drawback prevents its clinical use. To overcome the solubility limits of this extraordinary natural compound, in this study, we developed a highly water-soluble inclusion complex of CA with randomly methylated-β-cyclodextrin (RAMEB). The host-guest interaction was explored in liquid and solid states by UV-Vis titration, phase solubility analysis, FT-IR spectroscopy, and 1H-NMR. Additionally, molecular modeling studies were carried out. Both experimental and theoretical studies revealed a 1:1 CA/RAMEB inclusion complex, with a high apparent stability constant equal to 15,169.53 M-1. The inclusion complex increases the water solubility of CA by about 250-fold and dissolves within 5 min. Molecular modeling demonstrated that CA inserts its phenyl ring into the RAMEB cavity with its propyl-2-enoic acid tail leaning from the wide rim. Finally, a biological in vitro study of the inclusion complex, compared to the free components, was performed on the neuroblastoma SH-SY5Y cell line. None of them showed cytotoxic effects at the assayed concentrations. Of note, the pretreatment of SH-SY5Y cells with CA/RAMEB at 10, 30, and 125 µM doses significantly counteracted the effect of the neurotoxin MPP+, whilst CA and RAMEB alone did not show any neuroprotection. Overall, our data demonstrated that inclusion complexes overcome CA solubility problems, supporting their use for clinical applications.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Fabio Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
25
|
Sakthi Velu K, Jegatheeswaran S, Akhtar MS, Khan MR, Mohandoss S, Ahmad N. Formulation and Characterization of β-Cyclodextrins-Nitazoxanide Inclusion Complexes: Enhanced Solubility, In Vitro Drug Release, and Antiviral Activity in Vero Cells. Pharmaceutics 2024; 16:1494. [PMID: 39771475 PMCID: PMC11677481 DOI: 10.3390/pharmaceutics16121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Nitazoxanide (NTX) exhibits promising therapeutic potential; its effectiveness is constrained by its low oral bioavailability due to its poor water solubility and limited permeability. Methods: This study focused on developing a complex of NTX with β-cyclodextrins (β-CDs), specifically β-CD and hydroxypropyl-β-cyclodextrin (Hβ-CD), to enhance the solubility and antiviral activity of NTX. Results: The formation of the β-CD:NTX in an aqueous solution was verified using UV-visible spectroscopy, confirming a 1:1 inclusion complex. Characterization of the solid β-CD:NTX complexes was confirmed via FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and DSC-TGA analyses. Molecular docking studies revealed that the NTX thiazole ring with the nitro group was positioned within the β-CDs cavity, while the benzene ring remained outside. Phase solubility tests showed that β-CD:NTX complexes were formed with high stability constants, demonstrating a linear increase in NTX solubility as the β-CD concentration increased. Dissolution tests revealed rapid and nearly complete NTX release within 90 min for β-CD:NTX and Hβ-CD:NTX complexes. The β-CD:NTX complexes were tested for their antiviral activity against Herpes simplex virus (HSV-1) cultures. Results showed that the Hβ-CD:NTX complex had significantly higher antiviral efficacy than β-CD:NTX and free NTX alone. Moreover, cytotoxicity and cellular uptake studies on Vero cells indicated that the Hβ-CD:NTX complex demonstrated lower cytotoxicity and had the highest IC50 value, followed by β-CD:NTX and free NTX. Conclusions: These findings suggest that Hβ-CD:NTX inclusion complexes may serve as effective carriers for delivering NTX in HSV-1 treatments using Vero cell models.
Collapse
Affiliation(s)
- Kuppu Sakthi Velu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | | | | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
26
|
Ribeiro A, Loureiro R, Cabral-Marques H. Enhancing Cannabinoid Bioavailability in Pain Management: The Role of Cyclodextrins. Molecules 2024; 29:5340. [PMID: 39598730 PMCID: PMC11596380 DOI: 10.3390/molecules29225340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain (CP), including pain related to cancer, affects approximately 2 billion people worldwide, significantly diminishing quality of life and imposing socio-economic burdens. Current treatments often provide limited relief and may cause adverse effects, demanding more effective alternatives. Natural compounds from Cannabis sativa L., particularly cannabinoids like THC and CBD, exhibit analgesic and anti-inflammatory properties, but their therapeutic use is restricted by poor solubility and low bioavailability. Cyclodextrins (CDs) and cyclic oligosaccharides may encapsulate hydrophobic drugs in order to enhance their solubility and stability, offering a promising solution to these challenges. This study explores the formation of CD inclusion complexes with cannabinoids and specific terpenes, such as D-limonene (LIM), beta-caryophyllene (BCP), and gamma-terpinene (γ-TPN), aiming to improve pharmacokinetic profiles and therapeutic efficacy. We discuss analytical techniques for characterizing these complexes and their mechanisms of action, highlighting the potential of CDs to optimize drug formulations. The integration of CDs in cannabinoid therapies may enhance patient compliance and treatment outcomes in CP management. Future research should focus on innovative formulations and delivery systems to maximize the clinical applications of those compounds.
Collapse
Affiliation(s)
| | | | - Helena Cabral-Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (A.R.); (R.L.)
| |
Collapse
|
27
|
Xie B, Liu Y, Li X, Yang P, He W. Solubilization techniques used for poorly water-soluble drugs. Acta Pharm Sin B 2024; 14:4683-4716. [PMID: 39664427 PMCID: PMC11628819 DOI: 10.1016/j.apsb.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 12/13/2024] Open
Abstract
About 40% of approved drugs and nearly 90% of drug candidates are poorly water-soluble drugs. Low solubility reduces the drugability. Effectively improving the solubility and bioavailability of poorly water-soluble drugs is a critical issue that needs to be urgently addressed in drug development and application. This review briefly introduces the conventional solubilization techniques such as solubilizers, hydrotropes, cosolvents, prodrugs, salt modification, micronization, cyclodextrin inclusion, solid dispersions, and details the crystallization strategies, ionic liquids, and polymer-based, lipid-based, and inorganic-based carriers in improving solubility and bioavailability. Some of the most commonly used approved carrier materials for solubilization techniques are presented. Several approved poorly water-soluble drugs using solubilization techniques are summarized. Furthermore, this review summarizes the solubilization mechanism of each solubilization technique, reviews the latest research advances and challenges, and evaluates the potential for clinical translation. This review could guide the selection of a solubilization approach, dosage form, and administration route for poorly water-soluble drugs. Moreover, we discuss several promising solubilization techniques attracting increasing attention worldwide.
Collapse
Affiliation(s)
- Bing Xie
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Yaping Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Pei Yang
- School of Science, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
28
|
Li Y, Inam M, Hasan MW, Chen K, Zhang Z, Zhu Y, Huang J, Wu Z, Chen W, Li M. Optimizing Antitumor Effect of Triple-Negative Breast Cancer via Rosmarinic Acid-β-Cyclodextrin Inclusion Complex. Pharmaceutics 2024; 16:1408. [PMID: 39598532 PMCID: PMC11597731 DOI: 10.3390/pharmaceutics16111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Rosmarinic acid (ROS) has gained notable attention for its anticancer potential; however, its limited aqueous solubility hinders its effective delivery and application in pharmaceutical formulations. Methods: To overcome this limitation, an inclusion complex of ROS with β-cyclodextrin (β-CD) was prepared using the recrystallization method. The resultant ROS-β-CD complex was comprehensively characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Results: The ROS-β-CD complex showed a significant improvement in the solubility and dissolution profile of ROS, underscoring its potential for enhanced bioavailability and therapeutic efficacy in pharmaceutical applications. In vitro assays were performed to assess the effects on cell viability, proliferation, apoptotic pathways, and 3D spheroid tumor models. Conclusions: The results demonstrated that ROS-β-CD exhibited superior anticancer properties compared to free ROS, effectively reducing the viability and proliferation of the MD-MBA-231 cell line and inducing apoptosis. This research signifies a substantial advancement in developing therapeutic strategies for TNBC, leveraging the distinct properties of the ROS-β-CD inclusion complex.
Collapse
Affiliation(s)
- Yuan Li
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Muhammad Inam
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Medical Science and Technology Innovation Center, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Muhammad Waqqas Hasan
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Kaixin Chen
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
| | - Zhongqian Zhang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yongcheng Zhu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Jiayu Huang
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Zhuowen Wu
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| | - Wenjie Chen
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
- Guangdong Province & NMPA & State Key Laboratory, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Sydney Vital Translational Cancer Research Centre, Westbourne St., Sydney, NSW 2065, Australia
| | - Min Li
- Department of Emergency, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; (Y.L.); (M.I.); (M.W.H.); (Z.Z.); (Y.Z.); (J.H.); (Z.W.)
| |
Collapse
|
29
|
Liao J, Gu Q, Liu Z, Wang H, Yang X, Yan R, Zhang X, Song S, Wen L, Wang Y. Edge advances in nanodrug therapies for osteoarthritis treatment. Front Pharmacol 2024; 15:1402825. [PMID: 39539625 PMCID: PMC11559267 DOI: 10.3389/fphar.2024.1402825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
As global population and lifestyles change, osteoarthritis (OA) is becoming a major healthcare challenge world. OA, a chronic condition characterized by inflammatory and degeneration, often present with joint pain and can lead to irreversible disability. While there is currently no cure for OA, it is commonly managed using nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, and glucosamine. Although these treatments can alleviate symptoms, it is difficult to effectively deliver and sustain therapeutic agents within joints. The emergence of nanotechnology, particularly in form of smart nanomedicine, has introduced innovative therapeutic approaches for OA treatment. Nanotherapeutic strategies offer promising advantages, including more precise targeting of affected areas, prolonged therapeutic effects, enhanced bioavailability, and reduced systemic toxicity compared to traditional treatments. While nanoparticles show potential as a viable delivery system for OA therapies based on encouraging lab-based and clinical trials results, there remails a considerable gap between current research and clinical application. This review highlights recent advances in nanotherapy for OA and explore future pathways to refine and optimize OA treatments strategies.
Collapse
Affiliation(s)
- Jinfeng Liao
- Department of Dermatology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Qingjia Gu
- Department of ENT, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Zheng Liu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Xian Yang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongkai Yan
- Department of Radiology, Ohio state university, Columbus, OH, United States
| | - Xiaofeng Zhang
- Greenwich Hospital, Yale New Haven Health, Greenwich, CT, United States
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Lebin Wen
- Department of Thyroid, Sichuan Second Hospital of TCM, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
30
|
Osei FB, Twum K, Manfredi B, Fatohi M, Bessem Ojong Y, Washington V, Beyeh NK. Ionic resorcinarenes as drug solubilization agents in water. RSC Adv 2024; 14:34228-34238. [PMID: 39469002 PMCID: PMC11514725 DOI: 10.1039/d4ra06682k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Resorcinarenes are capable of host-guest complexation with small molecules, however, they are less studied as pharmaceutical drug delivery aids. This article reports on the aqueous-solubility enhancing effect of an octa-sulfonated resorcinarene and a C-hydroxybenzyl ammonium resorcinarene chloride on three hydrophobic drugs: isoniazid, caffeine, and griseofulvin. The findings are backed by dynamic light scattering, isothermal calorimetric titration, and nuclear magnetic resonance experiments in water. Aqueous mixtures of equal volumes of drug compounds and resorcinarene solutions produced a more soluble and clearer unit than solutions of pure drug compounds in water. Light scattering experiments revealed shifts in particle sizes of pure drug compounds to the range of resorcinarene hosts. 1H NMR measurements of resorcinarene-drug mixtures confirmed interactions with shift changes ranging from -0.20 to 0.81 ppm. Binding affinities quantified through ITC experiments ranged between 0.54 and 211 mM, signifying interactions between resorcinarenes and drug compounds necessary for the solubility of the drugs. Cytotoxicity studies suggest that resorcinarenes alone, or complexed with any of the drug compounds, do not exert cytotoxicity in mammalian cells HEK-293 up to 200 μM. We herein propose a set of hydrophilic resorcinarene macrocycles as potential drug solubilizers.
Collapse
Affiliation(s)
- Frank Boateng Osei
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Kwaku Twum
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Barbara Manfredi
- Oakland University, Department of Biological Sciences 146 Library Drive Rochester MI 48309-4479 USA
| | - Mariana Fatohi
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Yvonne Bessem Ojong
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| | - Valance Washington
- Oakland University, Department of Biological Sciences 146 Library Drive Rochester MI 48309-4479 USA
| | - Ngong Kodiah Beyeh
- Oakland University, Department of Chemistry 146 Library Drive Rochester MI 48309-4479 USA
| |
Collapse
|
31
|
Gao Y, Sun J, Li W, Deng W, Wang Y, Li X, Yang Z. Sophoraflavanone G: A review of the phytochemistry and pharmacology. Fitoterapia 2024; 177:106080. [PMID: 38901805 DOI: 10.1016/j.fitote.2024.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Bioactive compounds derived from natural sources have long been investigated for the prevention and treatment of human diseases. Sophoraflavanone G (SFG), a lavandulyl flavanone naturally occurring in several Sophora plant species, belongs to the group of prenylated flavonoids that have garnered significant interest in contemporary research. The natural molecule exhibits a wide range of pharmacological properties and shows remarkable efficacy. Its ability to effectively suppress a range of malignant tumor cells, such as leukemia, breast cancer, and lung cancer, is attributed to its multi-target, multi-pathway, and multi-faceted mechanisms of action. Simultaneously, it can also alleviate various inflammatory diseases by mediating inflammatory mediators and molecular pathways. Furthermore, it has the capability to combat antibiotic resistance, exhibit synergistic antibacterial properties with diverse antibiotics, and prevent and treat various agricultural pests. Theoretically, it can bring benefits to human health and has potential value as a drug. Nevertheless, the drawbacks of poor water solubility and inadequate targeting cannot be overlooked. To comprehensively assess the current research on SFG, leverage its structural advantages and pharmacological activity, overcome its low bioavailability limitations, expedite its progression into a novel therapeutic drug, and better serve the clinic, this article presents a overall retrospect of the current research status of SFG. The discussion includes an analysis of the structural characteristics, physicochemical properties, bioavailability, pharmacological activities, and structure-activity relationships of SFG, with the goal of offering valuable insights and guidance for future research endeavors in this field.
Collapse
Affiliation(s)
- Yingying Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, China; Biological Science and Technology Department, Heilongjiang Vocational College for Nationalities, Harbin, China
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Weizhe Deng
- Department of Traditional Chinese Medicine, 962 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Xiuyan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Zhixin Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China; Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China.
| |
Collapse
|
32
|
Zhang J, Shu J, Stout RW, Russo PS, Liu Z. Solubilization of Paclitaxel with Natural Compound Rubusoside toward Improving Oral Bioavailability in a Rodent Model. Pharmaceutics 2024; 16:1104. [PMID: 39204449 PMCID: PMC11359394 DOI: 10.3390/pharmaceutics16081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Paclitaxel, which features low water solubility and permeability, is an efflux pump substrate. The current paclitaxel drugs are given intravenously after resolving the solubility issue. Yet, oral delivery to achieve therapeutic bioavailability is not effective due to low absorption. This study evaluated a natural compound, rubusoside, to improve oral bioavailability in an animal model. Free paclitaxel molecules were processed into nano-micelles formed in water with rubusoside. The particle size of the nano-micelles in water was determined using dynamic light scattering. The oral bioavailability of paclitaxel in nano-micelles was determined against Cremophor/alcohol-solubilized Taxol after oral and intravenous administration to pre-cannulated Sprague Dawley rats. When loaded into the rubusoside-formed nano-micelles, paclitaxel reached a supersaturated concentration of 6 mg/mL, 60,000-fold over its intrinsic saturation of 0.1 µg/mL. The mean particle size was 4.7 ± 0.7 nm in diameter. Compared with Taxol®, maximum blood concentration was increased by 1.5-fold; the time to reach maximum concentration shortened to 0.8 h from 1.7 h; and, relative oral bioavailability increased by 88%. Absolute oral bioavailability was 1.7% and 1.3% for the paclitaxel nano-micelles and Taxol®, respectively. Solubilizing paclitaxel with rubusoside was successful, but oral bioavailability remained low. Further inhibition of the efflux pump and/or first metabolism may allow more oral paclitaxel to enter systemic circulation.
Collapse
Affiliation(s)
- Jian Zhang
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jicheng Shu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China
| | - Rhett W. Stout
- Department of Pathological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Paul S. Russo
- Department of Materials Science, Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Zhijun Liu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (J.Z.); (J.S.)
| |
Collapse
|
33
|
Clemence BF, Xiao L, Yang G. Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel. Polymers (Basel) 2024; 16:2368. [PMID: 39204588 PMCID: PMC11360765 DOI: 10.3390/polym16162368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this composite (CS/CMCD/BBH) was effectively accomplished. The BBH was used as a model drug and the resulting hydrogel demonstrated a sustained drug release profile. In addition to its improved solubility and sustained release characteristics, the hydrogel exhibited excellent antibacterial activity against common pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). Additionally, in vitro studies indicated that the hydrogel was not cytotoxic to NIH3T3 and HaCaT cells, suggesting its safety for biomedical applications. This lack of cytotoxic effects, combined with the mechanical strength, solubility improvements, and antibacterial properties of the hydrogel, positions the CS/CMCD/BBH hydrogel as a promising candidate for the effective oral delivery of BBH. By addressing the solubility and delivery challenges of BBH, this hydrogel offers a viable solution for the oral administration of BBH, with potential applications in various biomedical fields.
Collapse
Affiliation(s)
- Bukatuka Futila Clemence
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lin Xiao
- School of Biomedical Engineering, Sun Yat-Set University, Shenzhen 518107, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
| |
Collapse
|
34
|
Zell L, Hofer TS, Schubert M, Popoff A, Höll A, Marschhofer M, Huber-Cantonati P, Temml V, Schuster D. Impact of 2-hydroxypropyl-β-cyclodextrin inclusion complex formation on dopamine receptor-ligand interaction - A case study. Biochem Pharmacol 2024; 226:116340. [PMID: 38848779 DOI: 10.1016/j.bcp.2024.116340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The octanol-water distribution coefficient (logP), used as a measure of lipophilicity, plays a major role in the drug design and discovery processes. While average logP values remain unchanged in approved oral drugs since 1983, current medicinal chemistry trends towards increasingly lipophilic compounds that require adapted analytical workflows and drug delivery systems. Solubility enhancers like cyclodextrins (CDs), especially 2-hydroxypropyl-β-CD (2-HP-β-CD), have been studied in vitro and in vivo investigating their ADMET (adsorption, distribution, metabolism, excretion and toxicity)-related properties. However, data is scarce regarding the applicability of CD inclusion complexes (ICs) in vitro compared to pure compounds. In this study, dopamine receptor (DR) ligands were used as a case study, utilizing a combined in silico/in vitro workflow. Media-dependent solubility and IC stoichiometry were investigated using HPLC. NMR was used to observe IC formation-caused chemical shift deviations while in silico approaches utilizing basin hopping global minimization were used to propose putative IC binding modes. A cell-based in vitro homogeneous time-resolved fluorescence (HTRF) assay was used to quantify ligand binding affinity at the DR subtype 2 (D2R). While all ligands showed increased solubility using 2-HP-β-CD, they differed regarding IC stoichiometry and receptor binding affinity. This case study shows that IC-formation was ligand-dependent and sometimes altering in vitro binding. Therefore, IC complex formation can't be recommended as a general means of improving compound solubility for in vitro studies as they may alter ligand binding.
Collapse
Affiliation(s)
- Lukas Zell
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Thomas S Hofer
- Institute of General, Inorganic and Theoretical Chemistry, Center for Biochemistry and Biomedicine, University of Innsbruck, 6020 Innsbruck, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria; Department of Chemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Alexander Popoff
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Anna Höll
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Moritz Marschhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Petra Huber-Cantonati
- Department of Pharmaceutical Biology, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Veronika Temml
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria
| | - Daniela Schuster
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, 5020 Salzburg, Austria; Research and Innovation Center for Novel Therapies and Regenerative Medicine, Austria.
| |
Collapse
|
35
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
36
|
Ozon EA, Mati E, Karampelas O, Anuta V, Sarbu I, Musuc AM, Mitran RA, Culita DC, Atkinson I, Anastasescu M, Lupuliasa D, Mitu MA. The development of an innovative method to improve the dissolution performance of rivaroxaban. Heliyon 2024; 10:e33162. [PMID: 39021978 PMCID: PMC11253053 DOI: 10.1016/j.heliyon.2024.e33162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Recent advancements in the formulation of solid dosage forms involving active ingredient-cyclodextrin complexes have garnered considerable attention in pharmaceutical research. While previous studies predominantly focused on incorporating these complexes into solid states, issues regarding incomplete inclusion prompted the exploration of novel methods. In this study, we aimed to develop an innovative approach to integrate liquid-state drug-cyclodextrin inclusion complexes into solid dosage forms. Our investigation centered on rivaroxaban, a hydrophobic compound practically insoluble in water, included in hydroxypropyl-β-cyclodextrin at a 1:1 M ratio, and maintained in a liquid state. To enhance viscosity, hydroxypropyl-cellulose (2 % w/w) was introduced, and the resulting dispersion was sprayed onto the surface of cellulose pellets (CELLETS®780) using a Caleva Mini Coater. The process parameters were meticulously controlled, with atomization air pressure set at 1.1 atm and a fluidizing airflow maintained at 35-45 m3/h. Characterization of the coated cellets, alongside raw materials, was conducted using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) analyses. Physicochemical evaluations affirmed the successful incorporation of rivaroxaban into hydroxypropyl-β-cyclodextrin, with the final cellets demonstrating excellent flowability, compressibility, and adequate hardness. Quantitative analysis via the HPLC-DAD method confirmed a drug loading of 10 mg rivaroxaban/750 mg coated cellets. In vitro dissolution studies were performed in two distinct media: 0.022 M sodium acetate buffer pH 4.5 with 0.2 % sodium dodecyl sulfate (mirroring compendial conditions for 10 mg rivaroxaban tablets), and 0.05 M phosphate buffer pH 6.8 without surfactants, compared to reference capsules and conventional tablet formulations. The experimental capsules exhibited similar release profiles to the commercial product, Xarelto® 10 mg, with enhanced dissolution rates observed within the initial 10 min. This research presents a significant advancement in the development of solid dosage forms incorporating liquid-state drug-cyclodextrin inclusion complexes, offering a promising avenue for improving drug delivery and bioavailability.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Erand Mati
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Valentina Anuta
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Iulian Sarbu
- "Titu Maiorescu" University, Faculty of Pharmacy, Department of Pharmaceutical Physics and Biophysics, Drug Industry and Pharmaceutical Biotechnologies, 16 Sincai Boulevard, 040314, Bucharest, Romania
| | - Adina Magdalena Musuc
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Raul-Augustin Mitran
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Daniela C. Culita
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Irina Atkinson
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Mihai Anastasescu
- Institute of Physical Chemistry - Ilie Murgulescu, Romanian Academy, 202 Spl. Independentei, 060021, Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945, Bucharest, Romania
| |
Collapse
|
37
|
Tincu (Iurciuc) CE, Daraba OM, Jérôme C, Popa M, Ochiuz L. Albumin-Based Hydrogel Films Covalently Cross-Linked with Oxidized Gellan with Encapsulated Curcumin for Biomedical Applications. Polymers (Basel) 2024; 16:1631. [PMID: 38931981 PMCID: PMC11207739 DOI: 10.3390/polym16121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine serum albumin (BSA) hydrogels are non-immunogenic, low-cost, biocompatible, and biodegradable. In order to avoid toxic cross-linking agents, gellan was oxidized with NaIO4 to obtain new functional groups like dialdehydes for protein-based hydrogel cross-linking. The formed dialdehyde groups were highlighted with FT-IR and NMR spectroscopy. This paper aims to investigate hydrogel films for biomedical applications obtained by cross-linking BSA with oxidized gellan (OxG) containing immobilized β-cyclodextrin-curcumin inclusion complex (β-CD-Curc) The β-CD-Curc improved the bioavailability and solubility of Curc and was prepared at a molar ratio of 2:1. The film's structure and morphology were evaluated using FT-IR spectroscopy and SEM. The swelling degree (Q%) values of hydrogel films depend on hydrophilicity and pH, with higher values at pH = 7.4. Additionally, the conversion index of -NH2 groups into Schiff bases increases with an increase in OxG amount. The polymeric matrix provides protection for Curc, is non-cytotoxic, and enhances antioxidant activity. At pH = 5.5, the skin permeability and release efficiency of encapsulated curcumin were higher than at pH = 7.4 because of the interaction of free aldehyde and carboxylic groups from hydrogels with amine groups from proteins present in the skin membrane, resulting in a better film adhesion and more efficient curcumin release.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Oana Maria Daraba
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, Complex and Entangled Systems from Atoms to Materials, University of Liège, 4000 Liège, Belgium;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, Sector 5, 050044 Bucureşti, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|
38
|
Mahfufah U, Sya'ban Mahfud MA, Saputra MD, Abd Azis SB, Salsabila A, Asri RM, Habibie H, Sari Y, Yulianty R, Alsayed AR, Pamornpathomkul B, Mir M, Permana AD. Incorporation of Inclusion Complexes in the Dissolvable Microneedle Ocular Patch System for the Efficiency of Fluconazole in the Therapy of Fungal Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25637-25651. [PMID: 38728098 DOI: 10.1021/acsami.3c19482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Fluconazole (FNL) is one of the first-line treatments for fungal keratitis as it is an effective broad-spectrum antimicrobial commonly administered orally or topically. However, FNL has a very low water solubility, limiting its drug formulation, therapeutic application, and bioavailability through tissues. To overcome these limitations, this study aimed to develop FNL inclusion complexes (FNL-IC) with cyclodextrin (α-cyclodextrin, sulfobutylether-β-cyclodextrin, and hydroxypropyl-γ cyclodextrin) and incorporate it into a dissolvable microneedle (DMN) system to improve solubility and drug penetration. FNL-IC was evaluated for saturation solubility, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release, minimum inhibitory concentration, minimum fungicidal concentration, and time-killing assay. DMN-FNL-IC was evaluated for mechanical and insertion properties, surface pH, moisture absorption ability, water vapor transmission, and drug content recovery. Moreover, ocular kinetic, ex vivo antimicrobial, in vivo antifungal, and chorioallantoic membrane (HET-CAM) assays were conducted to assess the overall performance of the formulation. Mechanical strength and insertion properties revealed that DMN-FNL-IC has great mechanical and insertion properties. The in vitro release of FNL-IC was significantly improved, exhibiting a 9-fold increase compared to pure FNL. The ex vivo antifungal activity showed significant inhibition of Candida albicans from 6.54 to 0.73 log cfu/mL or 100-0.94%. In vivo numbers of colonies of 0.87 ± 0.13 log cfu/mL (F2), 4.76 ± 0.26 log cfu/mL (FNL eye drops), 3.89 ± 0.24 log cfu/mL (FNL ointments), and 8.04 ± 0.58 log cfu/mL (control) showed the effectiveness of DMN preparations against other standard commercial preparations. The HET-CAM assay showed that DMN-FNL-IC (F2) did not show any vascular damage. Finally, a combination of FNL-IC and DMN was developed appropriately for ocular delivery of FNL, which was safe and increased the effectiveness of treatments for fungal keratitis.
Collapse
Affiliation(s)
- Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | - Azimah Salsabila
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yessie Sari
- Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | | | - Maria Mir
- Department of Pharmacy, Iqra University, Islamabad 45320, Pakistan
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
39
|
Wu L, Li D, Wang P, Dong L, Zhang W, Xu J, Jin X. In Vitro Stability and Pharmacokinetic Study of Pedunculoside and Its Beta-CD Polymer Inclusion Complex. Pharmaceutics 2024; 16:591. [PMID: 38794253 PMCID: PMC11125186 DOI: 10.3390/pharmaceutics16050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Pedunculoside, a triterpene saponin derived from various Ilex species, holds potential as a treatment for cardiovascular diseases. However, its clinical application is hindered by poor bioavailability, rapid elimination, and extensive intestinal metabolism to rotundic acid. To address these issues, a water-soluble inclusion complex of pedunculoside, namely, the beta-CD polymer inclusion complex of pedunculoside (pedunculoside-βCDP), was prepared in this study, and a comparative in vitro stability and pharmacokinetic behavior study was performed between pedunculoside and pedunculoside-βCDP. Both pedunculoside and pedunculoside-βCDP exhibited the highest stability in simulated gastric fluid and simulated intestinal fluid but were readily metabolized when co-incubated with Bifidobacterium adolescentis and Bifidobacterium breve. An LC-MS/MS analytical method for the simultaneous determination of pedunculoside and rotundic acid in rat plasma was successfully established, validated, and applied to investigate the pharmacokinetic behavior after rats were intravenously administered with pedunculoside or pedunculoside-βCDP. The results indicated that pedunculoside-βCDP could significantly improve the pharmacokinetic profile of pedunculoside by increasing plasma exposure, retarding elimination, and reducing intestinal metabolism. This study enhances our understanding of pedunculoside-βCDP's metabolic fate and pharmacokinetic properties and potentially advances its further research, development, and clinical application.
Collapse
Affiliation(s)
- Liang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Danfeng Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peijing Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linling Dong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jianjun Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoliang Jin
- Clinical Pharmacology Department, Changchun GeneScience Pharmaceutical Co., Ltd., Shanghai 200235, China
| |
Collapse
|
40
|
Bahavarnia F, Hasanzadeh M, Bahavarnia P, Shadjou N. Advancements in application of chitosan and cyclodextrins in biomedicine and pharmaceutics: recent progress and future trends. RSC Adv 2024; 14:13384-13412. [PMID: 38660530 PMCID: PMC11041621 DOI: 10.1039/d4ra01370k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
The global community is faced with numerous health concerns such as cancer, cardiovascular and neurological diseases, diabetes, joint pain, osteoporosis, among others. With the advancement of research in the fields of materials chemistry and medicine, pharmaceutical technology and biomedical analysis have entered a new stage of development. The utilization of natural oligosaccharides and polysaccharides in pharmaceutical/biomedical studies has gained significant attention. Over the past decade, several studies have shown that chitosan and cyclodextrin have promising biomedical implications in background analysis, ongoing development, and critical applications in biomedical and pharmaceutical research fields. This review introduces different types of saccharides/natural biopolymers such as chitosan and cyclodextrin and discusses their wide-ranging applications in the biomedical/pharmaceutical research area. Recent research advances in pharmaceutics and drug delivery based on cyclodextrin, and their response to smart stimuli, as well as the biological functions of cyclodextrin and chitosan, such as the immunomodulatory effects, antioxidant, and antibacterial properties, have also been discussed, along with their applications in tissue engineering, wound dressing, and drug delivery systems. Finally, the innovative applications of chitosan and cyclodextrin in the pharmaceutical/biomedicine were reviewed, and current challenges, research/technological gaps, and future development opportunities were surveyed.
Collapse
Affiliation(s)
- Farnaz Bahavarnia
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Parinaz Bahavarnia
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences Tabriz Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Chemistry, Urmia University Urmia Iran
| |
Collapse
|
41
|
Meng YQ, Ren J, Sun JX, Guo FY, Min JZ, Nan JX, Quan JS, Lian LH, Jin CH. Synthesis and anti-liver fibrosis activity of imidazole and thiazole compounds containing amino acids. Eur J Med Chem 2024; 269:116311. [PMID: 38508118 DOI: 10.1016/j.ejmech.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 μM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-β-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.
Collapse
Affiliation(s)
- Yu-Qing Meng
- Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Jie Ren
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jing-Xin Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fang-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Jun-Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China
| | - Ji-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Li-Hua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| | - Cheng-Hua Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China; Interdisciplinary Program of Biological Function Molecules, College of Integration Science, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
42
|
Kraszni M, Balogh B, Mándity I, Horváth P. Advantages of Induced Circular Dichroism Spectroscopy for Qualitative and Quantitative Analysis of Solution-Phase Cyclodextrin Host-Guest Complexes. Int J Mol Sci 2023; 25:412. [PMID: 38203583 PMCID: PMC10779089 DOI: 10.3390/ijms25010412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The presence of a chiral or chirally perturbed chromophore in the molecule under investigation is a fundamental requirement for the appearance of a circular dichroism (CD) spectrum. For native and for most of the substituted cyclodextrins, this condition is not applicable, because although chiral, cyclodextrins lack a chromophore group and therefore have no characteristic CD spectra over 220 nm. The reason this method can be used is that if the guest molecule has a chromophore group and this is in the right proximity to the cyclodextrin, it becomes chirally perturbed. As a result, the complex will now provide a CD signal, and this phenomenon is called induced circular dichroism (ICD). The appearance of the ICD spectrum is clear evidence of the formation of the complex, and the spectral sign and intensity is a good predictor of the structure of the complex. By varying the concentration of cyclodextrin, the ICD signal changes, resulting in a saturation curve, and from these data, the stability constant can be calculated for a 1:1 complex. This article compares ICD and NMR spectroscopic and molecular modeling results of cyclodextrin complexes of four model compounds: nimesulide, fenbufen, fenoprofen, and bifonazole. The results obtained by the different methods show good agreement, and the structures estimated from the ICD spectra are supported by NMR data and molecular modeling.
Collapse
Affiliation(s)
- Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, 1092 Budapest, Hungary;
| | - Balázs Balogh
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, 1092 Budapest, Hungary; (B.B.); (I.M.)
| | - István Mándity
- Department of Organic Chemistry, Semmelweis University, Hőgyes Endre utca 7, 1092 Budapest, Hungary; (B.B.); (I.M.)
| | - Péter Horváth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre utca 9, 1092 Budapest, Hungary;
| |
Collapse
|
43
|
Najm A, Niculescu AG, Bolocan A, Rădulescu M, Grumezescu AM, Beuran M, Gaspar BS. Chitosan and Cyclodextrins-Versatile Materials Used to Create Drug Delivery Systems for Gastrointestinal Cancers. Pharmaceutics 2023; 16:43. [PMID: 38258054 PMCID: PMC10819812 DOI: 10.3390/pharmaceutics16010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Gastrointestinal cancers are characterized by a frequent incidence, a high number of associated deaths, and a tremendous burden on the medical system and patients worldwide. As conventional chemotherapeutic drugs face numerous limitations, researchers started to investigate better alternatives for extending drug efficacy and limiting adverse effects. A remarkably increasing interest has been addressed to chitosan and cyclodextrins, two highly versatile natural carbohydrate materials endowed with unique physicochemical properties. In this respect, numerous studies reported on fabricating various chitosan and cyclodextrin-based formulations that enabled prolonged circulation times, improved cellular internalization of carried drugs, preferential uptake by the targeted cells, reduced side effects, enhanced apoptosis rates, and increased tumor suppression rates. Therefore, this paper aims to briefly present the advantageous properties of these oligo- and polysaccharides for designing drug delivery systems, further focusing the discussion on nanocarrier systems based on chitosan/cyclodextrins for treating different gastrointestinal cancers. Specifically, there are reviewed studies describing promising solutions for colorectal, liver, gastric, pancreatic, and other types of cancers of the digestive system towards creating an updated framework of what concerns anticancer chitosan/cyclodextrin-based drug delivery systems.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Carol Davila University of Medicine and Pharmacy, The University Emergency Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.-G.N.); (A.M.G.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari, Sector 5, 050474 Bucharest, Romania; (A.N.); (M.B.); (B.S.G.)
- Emergency Hospital Floreasca Bucharest, 8 Calea Floresca, Sector 1, 014461 Bucharest, Romania
| |
Collapse
|