1
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024; 116:1513-1520. [PMID: 39234898 PMCID: PMC11567784 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
2
|
Yang X, Li M, Jia ZC, Liu Y, Wu SF, Chen MX, Hao GF, Yang Q. Unraveling the secrets: Evolution of resistance mediated by membrane proteins. Drug Resist Updat 2024; 77:101140. [PMID: 39244906 DOI: 10.1016/j.drup.2024.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
Membrane protein-mediated resistance is a multidisciplinary challenge that spans fields such as medicine, agriculture, and environmental science. Understanding its complexity and devising innovative strategies are crucial for treating diseases like cancer and managing resistant pests in agriculture. This paper explores the dual nature of resistance mechanisms across different organisms: On one hand, animals, bacteria, fungi, plants, and insects exhibit convergent evolution, leading to the development of similar resistance mechanisms. On the other hand, influenced by diverse environmental pressures and structural differences among organisms, they also demonstrate divergent resistance characteristics. Membrane protein-mediated resistance mechanisms are prevalent across animals, bacteria, fungi, plants, and insects, reflecting their shared survival strategies evolved through convergent evolution to address similar survival challenges. However, variations in ecological environments and biological characteristics result in differing responses to resistance. Therefore, examining these differences not only enhances our understanding of adaptive resistance mechanisms but also provides crucial theoretical support and insights for addressing drug resistance and advancing pharmaceutical development.
Collapse
Affiliation(s)
- Xue Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Min Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Zi-Chang Jia
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Yan Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an 271018, China.
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Weigang Road 1, Nanjing, Jiangsu 210095, China.
| | - Mo-Xian Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
3
|
Ali Khan C, Kirsch N, Brockmöller J, Redeker KEM. An extended substrate spectrum of the proton organic cation antiporter and relation to other cation transporters. Basic Clin Pharmacol Toxicol 2024. [PMID: 39429132 DOI: 10.1111/bcpt.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Most central nervous system (CNS) active drugs are organic cations, which need carrier proteins for efficient transfer through the blood-brain barrier (BBB). A genetically still unidentified proton organic cation (H+/OC) antiporter is found in several tissues, including endothelial cells of the BBB. We characterized the substrate spectrum of the H+/OC antiporter and the overlap in substrate spectrum with OCTN1, OCTN2 or OCT3 by screening 87 potential substrates for transport activity. Based on high antiport rates, 45 of the tested substances were substrates of the H+/OC antiporter. They included antidepressants (like tranylcypromine or nortriptyline), antipsychotics (like levomepromazine) and local anaesthetics. Concentration-dependent transport was confirmed for 38 of the substrates. Transport uptake depending on a pH gradient across the cell membrane confirmed that 43 drugs were indeed substrates of the H+/OC antiporter. However, the patterns of pH dependence differed between the substrates, possibly indicating different modes of transport or the existence of multiple antiporter proteins. The substrate overlap between the H+/OC antiporter and OCTN1, OCTN2 or OCT3 was minimal, indicating that the latter three are not the proteins underlying the H+/OC antiporter activity. Overall, about 50% of positively charged drugs may be substrates of the antiporter, which may be the most important membrane transport protein for many drugs.
Collapse
Affiliation(s)
- Cauzar Ali Khan
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | - Nicolai Kirsch
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| | - Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Germany
| |
Collapse
|
4
|
Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol 2024; 981:176882. [PMID: 39128808 DOI: 10.1016/j.ejphar.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Interferon beta (IFNβ) is a member of the type-1 interferon family and has various immunomodulatory functions in neuropathological conditions. Although the level of IFNβ is low under healthy conditions, it is increased during inflammatory processes to protect the central nervous system (CNS). In particular, microglia and astrocytes are the main sources of IFNβ upon inflammatory insult in the CNS. The protective effects of IFNβ are well characterized in reducing the progression of multiple sclerosis (MS); however, little is understood about its effects in other neurological/neurodegenerative diseases. In this review, different types of IFNs and their signaling pathways will be described. Then we will focus on the potential role and therapeutic effect of IFNβ in several CNS-related diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury, prion disease and spinocerebellar ataxia 7.
Collapse
Affiliation(s)
- Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li Z, Kovshova T, Malinovskaya J, Knoll J, Shanehsazzadeh S, Osipova N, Chernysheva A, Melnikov P, Gelperina S, Wacker MG. Blood-Nanoparticle Interactions Create a Brain Delivery Superhighway for Doxorubicin. Int J Nanomedicine 2024; 19:2039-2056. [PMID: 38476274 PMCID: PMC10928925 DOI: 10.2147/ijn.s440598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/09/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose This study investigated the brain targeting mechanism of doxorubicin-loaded polybutyl cyanoacrylate (PBCA) nanoparticles, particularly their interactions with the blood-brain barrier (BBB). The BBB protects the brain from drugs in the bloodstream and represents a crucial obstacle in the treatment of brain cancer. Methods An advanced computer model analyzed the brain delivery of two distinct formulations, Doxil® and surfactant-coated PBCA nanoparticles. Computational learning was combined with in vitro release and cell interaction studies to comprehend the underlying brain delivery pathways. Results Our analysis yielded a surprising discovery regarding the brain delivery mechanism of PBCA nanoparticles. While Doxil® exhibited the expected behavior, accumulating in the brain through extravasation in tumor tissue, PBCA nanoparticles employed a unique and previously uncharacterized mechanism. They underwent cell hitchhiking, resulting in a remarkable more than 1000-fold increase in brain permeation rate compared to Doxil® (2.59 × 10-4 vs 0.32 h-1). Conclusion The nonspecific binding to blood cells facilitated and intensified interactions of surfactant-coated PBCA nanoparticles with the vascular endothelium, leading to enhanced transcytosis. Consequently, the significant increase in circulation time in the bloodstream, coupled with improved receptor interactions, contributes to this remarkable uptake of doxorubicin into the brain.
Collapse
Affiliation(s)
- Zhuoxuan Li
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Tatyana Kovshova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julia Malinovskaya
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julian Knoll
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Saeed Shanehsazzadeh
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| | - Nadezhda Osipova
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Anastasia Chernysheva
- V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Melnikov
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Gelperina
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Matthias G Wacker
- National University of Singapore, Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, Singapore
| |
Collapse
|
6
|
Ma Y, Jiang M, Javeria H, Tian D, Du Z. Accurate prediction of K p,uu,brain based on experimental measurement of K p,brain and computed physicochemical properties of candidate compounds in CNS drug discovery. Heliyon 2024; 10:e24304. [PMID: 38298681 PMCID: PMC10828645 DOI: 10.1016/j.heliyon.2024.e24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024] Open
Abstract
A mathematical equation model was developed by building the relationship between the fu,b/fu,p ratio and the computed physicochemical properties of candidate compounds, thereby predicting Kp,uu,brain based on a single experimentally measured Kp,brain value. A total of 256 compounds and 36 marketed published drugs including acidic, basic, neutral, zwitterionic, CNS-penetrant, and non-CNS penetrant compounds with diverse structures and physicochemical properties were involved in this study. A strong correlation was demonstrated between the fu,b/fu,p ratio and physicochemical parameters (CLogP and ionized fraction). The model showed good performance in both internal and external validations. The percentages of compounds with Kp,uu,brain predictions within 2-fold variability were 80.0 %-83.3 %, and more than 90 % were within a 3-fold variability. Meanwhile, "black box" QSAR models constructed by machine learning approaches for predicting fu,b/fu,p ratio based on the chemical descriptors are also presented, and the ANN model displayed the highest accuracy with an RMSE value of 0.27 and 86.7 % of the test set drugs fell within a 2-fold window of linear regression. These models demonstrated strong predictive power and could be helpful tools for evaluating the Kp,uu,brain by a single measurement parameter of Kp,brain during lead optimization for CNS penetration evaluation and ranking CNS drug candidate molecules in the early stages of CNS drug discovery.
Collapse
Affiliation(s)
- Yongfen Ma
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
- DMPK Department, Sironax (Beijing) Co., Ltd, Beijing, 102206, China
| | - Mengrong Jiang
- DMPK Department, Sironax (Beijing) Co., Ltd, Beijing, 102206, China
| | - Huma Javeria
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dingwei Tian
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenxia Du
- College of Chemistry, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
7
|
Ronaldson PT, Davis TP. Blood-brain barrier transporters: a translational consideration for CNS delivery of neurotherapeutics. Expert Opin Drug Deliv 2024; 21:71-89. [PMID: 38217410 PMCID: PMC10842757 DOI: 10.1080/17425247.2024.2306138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Successful neuropharmacology requires optimization of CNS drug delivery and, by extension, free drug concentrations at brain molecular targets. Detailed assessment of blood-brain barrier (BBB) physiological characteristics is necessary to achieve this goal. The 'next frontier' in CNS drug delivery is targeting BBB uptake transporters, an approach that requires evaluation of brain endothelial cell transport processes so that effective drug accumulation and improved therapeutic efficacy can occur. AREAS COVERED BBB permeability of drugs is governed by tight junction protein complexes (i.e., physical barrier) and transporters/enzymes (i.e., biochemical barrier). For most therapeutics, a component of blood-to-brain transport involves passive transcellular diffusion. Small molecule drugs that do not possess acceptable physicochemical characteristics for passive permeability may utilize putative membrane transporters for CNS uptake. While both uptake and efflux transport mechanisms are expressed at the brain microvascular endothelium, uptake transporters can be targeted for optimization of brain drug delivery and improved treatment of neurological disease states. EXPERT OPINION Uptake transporters represent a unique opportunity to optimize brain drug delivery by leveraging the endogenous biology of the BBB. A rigorous understanding of these transporters is required to improve translation from the bench to clinical trials and stimulate the development of new treatment paradigms for neurological diseases.
Collapse
Affiliation(s)
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona College of Medicine
| |
Collapse
|