1
|
Wang X, Gan J, Han M, Wu Y, Liu L, Zhao Y, Zhao R. Comparison of structure and the synergistic anti-hepatocellular carcinoma effect of three polysaccharides from vinegar-baked Radix Bupleuri. Int J Biol Macromol 2024; 282:136755. [PMID: 39442850 DOI: 10.1016/j.ijbiomac.2024.136755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Three polysaccharides from Vinegar-baked Radix Bupleuri (VR) and their combined effects were studied. VRP3-3 was a branched polysaccharide with a molecular weight (Mw) of 16.05 kDa characterized by 1,5 linked-α-Araf, 1,2,4 linked-α-Rhap and 1,4 linked-α-GalpA as main chain with a small amount of esterification and acetylation groups. And side chains were connected to the O-3 of Araf, O-4 of Rhap. VRP2-3 had a Mw of 95.35 kDa, its backbone comprised of 1,2 linked-α-Galp, 1,4 linked-β-GalpA(O-Ac), 1,2,4 linked-α-Rhap and 1,5 linked α-Araf. The residues of 1,4 linked-β-Galp,1,3 linked-β-Galp and 1,6 linked-β-D-Galp were connected at O-4 of α-L-Rhap and O-3 of α-L-Araf as its side chain. VRP2-4 was a pectin polysaccharide with a Mw of 57.90 kDa. Its main chain was constituted of 1,4 linked-α-Galp, 1,4 linked-α-GalpA(OMe), 1,4 linked-α-GalpA and 1,2,4 linked-α-Rhap, with some acetylation. As the major side chain, 1,5 linked-α-Araf was connected to O-4 of α-Rhap, a small amount of t-α-Galp and t-α-Manp were also included. VRP3-3 showed superior synergistic effect in combination with paclitaxel, methotrexate and cisplatin than the other two polysaccharides. The VR polysaccharide with a ~16 kDa molecular weight, a larger polymerization degree of arabinan in the backbone and the triple helix structure are the key structures for activity. Together, our findings clarify the pharmacodynamic basis of VR and provide promising adjuvants for Hepatocellular Carcinoma (HCC) chemotherapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Jianfeng Gan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Minghui Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Yayun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Ya Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
2
|
Kerhoas M, Le Vée M, Carteret J, Jouan E, Tastet V, Bruyère A, Huc L, Fardel O. Inhibition of human drug transporter activities by succinate dehydrogenase inhibitors. CHEMOSPHERE 2024; 358:142122. [PMID: 38663675 DOI: 10.1016/j.chemosphere.2024.142122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 μM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 μM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 μM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.
Collapse
Affiliation(s)
- Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, F-Marne-La-Vallée, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
3
|
Xu W, Ye X, Wu M, Jiang X, Hugo Tse LH, Gu Y, Shu K, Xu L, Jian Y, Mo G, Xu J, Ding Y, Gao R, Shen J, Ye F, Yan Z, Dai L. Chiral Gd-DOTA as a Versatile Platform for Hepatobiliary and Tumor Targeting MRI Contrast Agents. J Med Chem 2023; 66:14669-14682. [PMID: 37855413 DOI: 10.1021/acs.jmedchem.3c01183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The leakage of gadolinium ions (Gd3+) from commercial Gd3+-based contrast agents (GBCAs) in patients is currently the major safety concern in clinical magnetic resonance imaging (MRI) scans, and the lack of task-specific GBCAs limits its usage in the early detection of disease and imaging of specific biological regions. Herein, ultrastable GBCAs were constructed via decorating chiral Gd-DOTA with a phenylic analogue to one of the pendent arms, and the stability constant was determined as high as 27.08, accompanied by negligible decomplexation in 1 M of HCl over 2 years. A hepatic-specific chiral Gd-DOTA was screened out as a potential alternative to commercial Gd-EOB-DTPA, while combination with functional molecules favored chiral Gd-DOTA as tumor targeting probes. Therefore, the novel chiral Gd-DOTA is believed to be an ideal platform for designing the next generation of GBCAs for various clinical purposes due to its outstanding inert nature.
Collapse
Affiliation(s)
- Weiyuan Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Xinjian Ye
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Lik Hang Hugo Tse
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yanjuan Gu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kun Shu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Liuhui Xu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Gengshen Mo
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Yinghui Ding
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ruonan Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Jianliang Shen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lixiong Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
4
|
Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O. Interactions of organophosphate flame retardants with human drug transporters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115348. [PMID: 37597291 DOI: 10.1016/j.ecoenv.2023.115348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marie Kerhoas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Anna Zerdoug
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé), France.
| |
Collapse
|
5
|
Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, Brouwer KLR. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep 2022; 12:14333. [PMID: 35995956 PMCID: PMC9395349 DOI: 10.1038/s41598-022-18174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Abigail Klein
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Drug transporters are implicated in the diffusion of tacrolimus into the T lymphocyte in kidney and liver transplant recipients: Genetic, mRNA, protein expression, and functionality. Drug Metab Pharmacokinet 2022; 47:100473. [DOI: 10.1016/j.dmpk.2022.100473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022]
|
7
|
Marin JJG, Monte MJ, Macias RIR, Romero MR, Herraez E, Asensio M, Ortiz-Rivero S, Cives-Losada C, Di Giacomo S, Gonzalez-Gallego J, Mauriz JL, Efferth T, Briz O. Expression of Chemoresistance-Associated ABC Proteins in Hepatobiliary, Pancreatic and Gastrointestinal Cancers. Cancers (Basel) 2022; 14:cancers14143524. [PMID: 35884584 PMCID: PMC9320734 DOI: 10.3390/cancers14143524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary One-third of the approximately 10 million deaths yearly caused by cancer worldwide are due to hepatobiliary, pancreatic, and gastrointestinal tumors. One primary reason for this high mortality is the lack of response of these cancers to pharmacological treatment. More than 100 genes have been identified as responsible for seven mechanisms of chemoresistance, but only a few of them play a critical role. These include ABC proteins (mainly MDR1, MRP1-6, and BCRP), whose expression pattern greatly determines the individual sensitivity of each tumor to pharmacotherapy. Abstract Hepatobiliary, pancreatic, and gastrointestinal cancers account for 36% of the ten million deaths caused by cancer worldwide every year. The two main reasons for this high mortality are their late diagnosis and their high refractoriness to pharmacological treatments, regardless of whether these are based on classical chemotherapeutic agents, targeted drugs, or newer immunomodulators. Mechanisms of chemoresistance (MOC) defining the multidrug resistance (MDR) phenotype of each tumor depend on the synergic function of proteins encoded by more than one hundred genes classified into seven groups (MOC1-7). Among them, the efflux of active agents from cancer cells across the plasma membrane caused by members of the superfamily of ATP-binding cassette (ABC) proteins (MOC-1b) plays a crucial role in determining tumor MDR. Although seven families of human ABC proteins are known, only a few pumps (mainly MDR1, MRP1-6, and BCRP) have been associated with reducing drug content and hence inducing chemoresistance in hepatobiliary, pancreatic, and gastrointestinal cancer cells. The present descriptive review, which compiles the updated information on the expression of these ABC proteins, will be helpful because there is still some confusion on the actual relevance of these pumps in response to pharmacological regimens currently used in treating these cancers. Moreover, we aim to define the MOC pattern on a tumor-by-tumor basis, even in a dynamic way, because it can vary during tumor progression and in response to chemotherapy. This information is indispensable for developing novel strategies for sensitization.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Rocio I. R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Javier Gonzalez-Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Jose L. Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Institute of Biomedicine (IBIOMED), University of León, Campus of Vegazana s/n, 24071 Leon, Spain
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany;
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (M.J.M.); (R.I.R.M.); (M.R.R.); (E.H.); (M.A.); (S.O.-R.); (C.C.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain; (J.G.-G.); (J.L.M.)
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-663056225 (O.B.)
| |
Collapse
|
8
|
Mackenzie CA, Austin E, Thompson M, Tirona RG. Cyclosporine as a novel treatment for amatoxin-containing mushroom poisoning: a case series. TOXICOLOGY COMMUNICATIONS 2022. [DOI: 10.1080/24734306.2021.2006957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Constance A. Mackenzie
- Ontario Poison Centre, Hospital for Sick Children, Division of Clinical Pharmacology and Toxicology, Toronto, Ontario, Canada
- Divisions of Clinical Pharmacology and Toxicology/Respirology, Western University, London, Ontario, Canada
| | - Emily Austin
- Ontario Poison Centre, Hospital for Sick Children, Division of Clinical Pharmacology and Toxicology, Toronto, Ontario, Canada
- St. Michael’s Hospital, Division of Emergency Medicine, Toronto, Ontario, Canada
| | - Margaret Thompson
- Ontario Poison Centre, Hospital for Sick Children, Division of Clinical Pharmacology and Toxicology, Toronto, Ontario, Canada
- St. Michael’s Hospital, Division of Emergency Medicine, Toronto, Ontario, Canada
| | - Rommel G. Tirona
- Departments of Physiology & Pharmacology and Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
10
|
Wahlicht T, Vièyres G, Bruns SA, Meumann N, Büning H, Hauser H, Schmitz I, Pietschmann T, Wirth D. Controlled Functional Zonation of Hepatocytes In Vitro by Engineering of Wnt Signaling. ACS Synth Biol 2020; 9:1638-1649. [PMID: 32551516 DOI: 10.1021/acssynbio.9b00435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Key liver functions, including protein synthesis, carbohydrate metabolism, and detoxification, are performed by specific populations of hepatocytes that are defined by their relative positions within the liver lobules. On a molecular level, the functional heterogeneity with periportal and pericentral phenotypes, so-called metabolic liver zonation, is mainly established by a gradient of canonical Wnt signaling activity. Since the relevant physiological cues are missing in in vitro liver models, they fail to reflect the functional heterogeneity and thus lack many liver functions. We synthetically re-engineered Wnt signaling in murine and human hepatocytes using a doxycycline-dependent cassette for externally controlled digital expression of stabilized β-catenin. Thereby, we achieved adjustable mosaic-like activation of Wnt signaling in in vitro-cultured hepatocytes that was resistant to negative-feedback loops. This allowed the establishment of long-term-stable periportal-like and pericentral-like phenotypes that mimic the heterogeneity observed in vivo. The in vitro-zonated hepatocytes show differential expression of drug-metabolizing enzymes and associated differential toxicity and higher levels of autophagy. Furthermore, recombinant adeno-associated virus and hepatitis C virus preferentially transduce the pericentral-like zonation phenotype, suggesting a bias of these viruses that has been unappreciated to date. These tightly controlled in vivo-like systems will be important for studies evaluating aspects of liver zonation and for the assessment of drug toxicity for mouse and man.
Collapse
Affiliation(s)
- Tom Wahlicht
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Gabrielle Vièyres
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Svenja A. Bruns
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Nadja Meumann
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
| | - Hildegard Büning
- German Center for Infection Research (DZIF), Hannover−Braunschweig Partner Site, 38124 Braunschweig, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Hansjörg Hauser
- Department of Scientific Strategy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute for Molecular and Clinical Immunology, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Dagmar Wirth
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Medical University Hannover, 30625 Hannover, Germany
| |
Collapse
|
11
|
Moschny J, Lorenzen W, Hilfer A, Eckenstaler R, Jahns S, Enke H, Enke D, Schneider P, Benndorf RA, Niedermeyer THJ. Precursor-Directed Biosynthesis and Fluorescence Labeling of Clickable Microcystins. JOURNAL OF NATURAL PRODUCTS 2020; 83:1960-1970. [PMID: 32464061 DOI: 10.1021/acs.jnatprod.0c00251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microcystins, cyclic nonribosomal heptapeptides, are the most well-known cyanobacterial toxins. They are exceptionally well studied, but open questions remain concerning their physiological role for the producing microorganism or their suitability as lead compounds for anticancer drug development. One means to study specialized metabolites in more detail is the introduction of functional groups that make a compound amenable for bioorthogonal, so-called click reactions. Although it was reported that microcystins cannot be derivatized by precursor-directed biosynthesis, we successfully used this approach to prepare clickable microcystins. Supplementing different azide- or terminal alkyne containing amino acid analogues into the cultivation medium of microcystin-producing cyanobacteria strains, we found that these strains differ strongly in their substrate acceptance. Exploiting this flexibility, we generated more than 40 different clickable microcystins. We conjugated one of these derivatives with a fluorogenic dye and showed that neither incorporation of the unnatural amino acid analogue nor attachment of the fluorescent label significantly affects the cytotoxicity against cell lines expressing the human organic anion transporting polypeptides 1B1 or 1B3. Using time-lapse microscopy, we observed that the fluorescent microcystin is rapidly taken up into eukaryotic cells expressing these transporters.
Collapse
Affiliation(s)
- Julia Moschny
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | | | | | - Robert Eckenstaler
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | | | - Heike Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Dan Enke
- Cyano Biotech GmbH, 12489 Berlin, Germany
| | - Philipp Schneider
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ralf A Benndorf
- Department of Clinical Pharmacy and Pharmacotherapy, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy, University of Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Guéniche N, Bruyere A, Ringeval M, Jouan E, Huguet A, Le Hégarat L, Fardel O. Differential interactions of carbamate pesticides with drug transporters. Xenobiotica 2020; 50:1380-1392. [PMID: 32421406 DOI: 10.1080/00498254.2020.1771473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mélanie Ringeval
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antoine Huguet
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Ludovic Le Hégarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, Rennes, France
| |
Collapse
|
13
|
Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol 2020; 16:239-253. [PMID: 32077332 DOI: 10.1080/17425255.2020.1732348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette superfamily of transporters. Using the energy garnered from the hydrolysis of ATP, BCRP actively removes drugs and endogenous molecules from the cell. With broad expression across the liver, kidney, brain, placenta, testes, and small intestines, BCRP can impact the pharmacokinetics and pharmacodynamics of xenobiotics.Areas covered: The purpose of this review is to summarize the transcriptional signaling pathways that regulate BCRP expression across various tissues and mammalian species. We will cover the endobiotic- and xenobiotic-activated transcription factors that regulate the expression and activity of BCRP. These include the estrogen receptor, progesterone receptor, peroxisome proliferator-activated receptor, constitutive androstane receptor, pregnane X receptor, nuclear factor e2-related factor 2, and aryl hydrocarbon receptor.Expert opinion: Key transcription factors regulate BCRP expression and function in response to hormones and xenobiotics. Understanding this regulation provides an opportunity to improve pharmacotherapeutic outcomes by enhancing the efficacy and reducing the toxicity of drugs that are substrates of this efflux transporter.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.,Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
14
|
Jinakote M, Ontawong A, Soodvilai S, Pimta J, Pasachan T, Chatsudthipong V, Srimaroeng C. High affinity of 4-(4-(dimethylamino)styryl)-N-methylpyridinium transport for assessing organic cation drugs in hepatocellular carcinoma cells. Fundam Clin Pharmacol 2020; 34:365-379. [PMID: 31883148 DOI: 10.1111/fcp.12531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 11/27/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
Human organic cation transporter 1 (hOCT1) and human organic cation transporter 3 (hOCT3) are highly expressed in hepatocytes and play important roles in cationic drug absorption, distribution, and elimination. A previous study demonstrated that downregulation of hOCT1 and hOCT3 mRNA was related to hepatocellular carcinoma (HepG2) prognosis and severity. Whether these transporters expressed in HepG2 cells serve for cationic drug delivery has not been investigated. Besides radioactive transport, options for assessing hOCTs in hepatocytes are limited. This study clarified the significant roles of hOCTs in HepG2 by comparing cationic fluorescent 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+ ) with traditional [3 H]-1-methyl-4-phenylpyridinium (MPP+ ). The results showed ASP+ was preferably transported into HepG2 compared to [3 H]-MPP+ with high affinity and a high maximal transport rate. Selective transport of ASP+ mediated by hOCTs was influenced by extracellular pH, temperature, and membrane depolarization, corresponding to hOCT1 and hOCT3 expressions. Furthermore, transport of cationic drugs, metformin, and paclitaxel in HepG2 cells was blunted by OCT inhibitors, suggesting that hOCT1 and hOCT3 expressed in HepG2 cells exhibit notable impacts on cationic drug actions. The fluorescent ASP+ -based in vitro model may also provide a rapid and powerful analytical tool for further screening of cationic drug actions and interactions with hOCTs, particularly hOCT1 and hOCT3 in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Metee Jinakote
- Faculty of Oriental Medicine, Chiang Rai College, Chiang Rai, 57000, Thailand.,Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atcharaporn Ontawong
- Unit of Excellence of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Sunhapas Soodvilai
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jeerawat Pimta
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tipthida Pasachan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chutima Srimaroeng
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
15
|
Vera IM, Grilo Ruivo MT, Lemos Rocha LF, Marques S, Bhatia SN, Mota MM, Mancio-Silva L. Targeting liver stage malaria with metformin. JCI Insight 2019; 4:127441. [PMID: 31852843 DOI: 10.1172/jci.insight.127441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Despite an unprecedented 2 decades of success, the combat against malaria - the mosquito-transmitted disease caused by Plasmodium parasites - is no longer progressing. Efforts toward eradication are threatened by the lack of an effective vaccine and a rise in antiparasite drug resistance. Alternative approaches are urgently needed. Repurposing of available, approved drugs with distinct modes of action are being considered as viable and immediate adjuncts to standard antimicrobial treatment. Such strategies may be well suited to the obligatory and clinically silent first phase of Plasmodium infection, where massive parasite replication occurs within hepatocytes in the liver. Here, we report that the widely used antidiabetic drug, metformin, impairs parasite liver stage development of both rodent-infecting Plasmodium berghei and human-infecting P. falciparum parasites. Prophylactic treatment with metformin curtails parasite intracellular growth in vitro. An additional effect was observed in mice with a decrease in the numbers of infected hepatocytes. Moreover, metformin provided in combination with conventional liver- or blood-acting antimalarial drugs further reduced the total burden of P. berghei infection and substantially lessened disease severity in mice. Together, our findings indicate that repurposing of metformin in a prophylactic regimen could be considered for malaria chemoprevention.
Collapse
Affiliation(s)
- Iset Medina Vera
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Margarida T Grilo Ruivo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Leonardo F Lemos Rocha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Sofia Marques
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Cambridge, Masschusetts, USA
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Liliana Mancio-Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
17
|
Chen M, Neul C, Schaeffeler E, Frisch F, Winter S, Schwab M, Koepsell H, Hu S, Laufer S, Baker SD, Sparreboom A, Nies AT. Sorafenib Activity and Disposition in Liver Cancer Does Not Depend on Organic Cation Transporter 1. Clin Pharmacol Ther 2019; 107:227-237. [PMID: 31350763 DOI: 10.1002/cpt.1588] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/22/2019] [Indexed: 12/11/2022]
Abstract
Systemic therapy of advanced hepatocellular carcinoma (HCC) with the small-molecule multikinase inhibitor sorafenib is associated with large interindividual pharmacokinetic variability and unpredictable side effects potentially requiring dose reduction or treatment termination. Organic cation transporter (OCT1; gene SLC22A1) has been proposed as a clinical biomarker of HCC response. Because proof is lacking that OCT1 transports sorafenib, we used a combinatorial approach to define how OCT1 contributes to sorafenib transport. Overexpression of functional OCT1 protein in Xenopus laevis oocytes and mammalian cell lines did not facilitate sorafenib transport. Otherwise, sorafenib considerably accumulated in liver cancer cell lines despite negligible OCT1 mRNA and protein levels. Sorafenib pharmacokinetics was independent of OCT1 genotype in mice. Finally, SLC22A1 mRNA expression was significantly reduced by DNA methylation in The Cancer Genome Atlas HCC cohort. These results clearly demonstrate OCT1-independent cellular sorafenib uptake indicating that OCT1 is apparently not a valid biomarker of sorafenib response in HCC.
Collapse
Affiliation(s)
- Mingqing Chen
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Franziska Frisch
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Departments of Clinical Pharmacology, Pharmacy, and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Stefan Laufer
- Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, University of Tübingen, Tübingen, Germany
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Cluster of Excellence iFIT (EXC2180) "Image-guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Kang HE, Malinen MM, Saran C, Honkakoski P, Brouwer KLR. Optimization of Canalicular ABC Transporter Function in HuH-7 Cells by Modification of Culture Conditions. Drug Metab Dispos 2019; 47:1222-1230. [PMID: 31371422 DOI: 10.1124/dmd.119.087676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Human hepatoma cell lines are useful for evaluation of drug-induced hepatotoxicity, hepatic drug disposition, and drug-drug interactions. However, their applicability is compromised by aberrant expression of hepatobiliary transporters. This study was designed to evaluate whether extracellular matrix (Matrigel) overlay and dexamethasone (DEX) treatment would support cellular maturation of long-term HuH-7 hepatoma cell cultures and improve the expression, localization, and activity of canalicular ATP-binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1), multidrug resistance-associated protein 2 (MRP2/ABCC2), and bile salt export pump (BSEP/ABCB11). Matrigel overlay promoted the maturation of HuH-7 cells toward cuboidal, hepatocyte-like cells displaying bile canaliculi-like structures visualized by staining for filamentous actin (F-actin), colocalization of MRP2 with F-actin, and by accumulation of the MRP2 substrate 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) within the tubular canaliculi. The cellular phenotype was rather homogenous in the Matrigel-overlaid cultures, whereas the standard HuH-7 cultures contained both hepatocyte-like cells and flat epithelium-like cells. Only Matrigel-overlaid HuH-7 cells expressed MDR1 at the canaliculi and excreted the MDR1 probe substrate digoxin into biliary compartments. DEX treatment resulted in more elongated and branched canaliculi and restored canalicular expression and function of BSEP. These findings suggest that hepatocyte polarity, elongated canalicular structures, and proper localization and function of canalicular ABC transporters can be recovered, at least in part, in human hepatoma HuH-7 cells by applying the modified culture conditions. SIGNIFICANCE STATEMENT: We report the first demonstration that proper localization and function of canalicular ABC transporters can be recovered in human hepatoma HuH-7 cells by modification of cell culture conditions. Matrigel overlay and dexamethasone supplementation increased the proportion of hepatocyte-like cells, strongly augmented the canalicular structures between the cells, and restored the localization and function of key canalicular ABC transporters. These results will facilitate the development of reproducible, economical, and easily achievable liver cell models for drug development.
Collapse
Affiliation(s)
- Hee Eun Kang
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
| | - Melina M Malinen
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
| | - Chitra Saran
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
| | - Paavo Honkakoski
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
| | - Kim L R Brouwer
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea (H.E.K.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (H.E.K., M.M.M., C.S., P.H., K.L.R.B.) and Department of Pharmacology, UNC School of Medicine (C.S.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (M.M.M., P.H.)
| |
Collapse
|
19
|
Le Vée M, Bacle A, Bruyere A, Fardel O. Neonicotinoid pesticides poorly interact with human drug transporters. J Biochem Mol Toxicol 2019; 33:e22379. [DOI: 10.1002/jbt.22379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/26/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Marc Le Vée
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)Univ Rennes Rennes France
| | - Astrid Bacle
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), CHU RennesUniv Rennes Rennes France
| | - Arnaud Bruyere
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)Univ Rennes Rennes France
| | - Olivier Fardel
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), CHU RennesUniv Rennes Rennes France
| |
Collapse
|
20
|
Le Vée M, Bacle A, Jouan E, Lecureur V, Potin S, Fardel O. Induction of multidrug resistance-associated protein 3 expression by diesel exhaust particle extract in human bronchial epithelial BEAS-2B cells. Toxicol In Vitro 2019; 58:60-68. [PMID: 30898553 DOI: 10.1016/j.tiv.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette (ABC) drug transporters. The present study was designed to determine whether organic DEP extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 μg/mL) was demonstrated to induce mRNA and protein expression of the multidrug resistance-associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway by AhR antagonist or AhR silencing, as well as the silencing of nuclear-factor-E2-related factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a concentration-dependent manner. Taken together, these data indicate that DEPs may impair expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
21
|
Malinen MM, Ito K, Kang HE, Honkakoski P, Brouwer KLR. Protein expression and function of organic anion transporters in short-term and long-term cultures of Huh7 human hepatoma cells. Eur J Pharm Sci 2019; 130:186-195. [PMID: 30685239 DOI: 10.1016/j.ejps.2019.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
Human-derived hepatic cell lines are a valuable alternative to primary hepatocytes for drug metabolism, transport and toxicity studies. However, their relevance for investigations of drug-drug and drug-organic anion (e.g., bile acid, steroid hormone) interactions at the transporter level remains to be established. The aim of the present study was to determine the suitability of the Huh7 cell line for transporter-dependent experiments. Huh7 cells were cultured for 1 to 4 weeks and subsequently were analyzed for protein expression, localization and activity of solute carrier (SLC) and ATP-binding cassette (ABC) transporters involved in organic anion transport using liquid chromatography-tandem mass spectroscopy, immunocytochemistry, and model substrates [3H]taurocholate (TCA), [3H]dehydroepiandrosterone sulfate (DHEAS) and 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) diacetate. The extended 4-week culture resulted in a phenotype resembling primary hepatocytes and differentiated HepaRG cells: cuboidal hepatocyte-like cells with elongated bile canaliculi-like structures were surrounded by epithelium-like cells. Protein expression of OSTα, OSTβ and OATP1B3 increased over time. Moreover, the uptake of the SLC probe substrate DHEAS was higher in 4-week than in 1-week Huh7 cultures. NTCP, OATP1B1, BSEP and MRP3 were barely or not detectable in Huh7 cells. OATP2B1, MRP2 and MRP4 protein expression remained at similar levels over the four weeks of culture. The activity of MRP2 and the formation of bile canaliculi-like structures were confirmed by accumulation of CDF in the intercellular compartments. Results indicate that along with morphological maturation, transporters responsible for alternative bile acid secretion pathways are expressed and active in long-term cultures of Huh7 cells, suggesting that differentiated Huh7 cells may be suitable for studying the function and regulation of these organic anion transporters.
Collapse
Affiliation(s)
- Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan.
| | - Hee Eun Kang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea.
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Mayati A, Moreau A, Jouan E, Febvre-James M, Denizot C, Parmentier Y, Fardel O. mRNA Expression and Activity of Nucleoside Transporters in Human Hepatoma HepaRG Cells. Pharmaceutics 2018; 10:pharmaceutics10040246. [PMID: 30469356 PMCID: PMC6320972 DOI: 10.3390/pharmaceutics10040246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Marie Febvre-James
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
- Pôle Biologie, Centre Hospitalier Universitaire, F-35033 Rennes, France.
| |
Collapse
|
23
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2017; 46:166-177. [DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
|
25
|
Mathialagan S, Costales C, Tylaska L, Kimoto E, Vildhede A, Johnson J, Johnson N, Sarashina T, Hashizume K, Isringhausen CD, Vermeer LMM, Wolff AR, Rodrigues AD. In vitro studies with two human organic anion transporters: OAT2 and OAT7. Xenobiotica 2017; 48:1037-1049. [DOI: 10.1080/00498254.2017.1384595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Chester Costales
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Anna Vildhede
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Jillian Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Nathaniel Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | | | | | | | | | | | - A. David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| |
Collapse
|
26
|
Miglionico R, Ostuni A, Armentano MF, Milella L, Crescenzi E, Carmosino M, Bisaccia F. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype. Cell Mol Biol Lett 2017; 22:7. [PMID: 28536638 PMCID: PMC5415800 DOI: 10.1186/s11658-017-0036-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Background Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Methods Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. Results To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. Conclusions These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.
Collapse
Affiliation(s)
- Rocchina Miglionico
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | | | - Luigi Milella
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Elvira Crescenzi
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| | - Faustino Bisaccia
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano, 85100 Potenza, Italy
| |
Collapse
|