1
|
Raza A, Bhardwaj S, Rahman MA, García-Caparrós P, Copeland RGR, Charagh S, Rivero RM, Gopalakrishnan S, Corpas FJ, Siddique KHM, Hu Z. Fighting to thrive via plant growth regulators: Green chemical strategies for drought stress tolerance. PHYSIOLOGIA PLANTARUM 2024; 176:e14605. [PMID: 39513406 DOI: 10.1111/ppl.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024]
Abstract
As global climate change intensifies, the occurrence and severity of various abiotic stresses will significantly threaten plant health and productivity. Drought stress (DS) is a formidable obstacle, disrupting normal plant functions through specific morphological, physiological, biochemical, and molecular mechanisms. Understanding how plants navigate DS is paramount to mitigating its adverse effects. In response to DS, plants synthesize or accumulate various plant growth regulators (PGRs), including phytohormones, neurotransmitters, gasotransmitters, and polyamines, which present promising sustainable green chemical strategies to adapt or tolerate stress conditions. These PGRs orchestrate crucial plant structure and function adjustments, activating defense systems and modulating cellular-level responses, transcript levels, transcription factors, metabolic genes, and stress-responsive candidate proteins. However, the efficacy of these molecules in mitigating DS depends on the plant species, applied PGR dose, treatment type, duration of DS exposure, and growth stages. Thus, exploring the integrated impact of PGRs on enhancing plant fitness and DS tolerance is crucial for global food security and sustainable agriculture. This review investigates plant responses to DS, explains the potential of exogenously applied diverse PGRs, dissects the complex chemistry among PGRs, and sheds light on omics approaches for harnessing the molecular basis of DS tolerance. This updated review delivers comprehensive mechanistic insights for leveraging various PGRs to enhance overall plant fitness under DS conditions.
Collapse
Affiliation(s)
- Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh, India
| | | | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Almería, Spain
| | - Rhys G R Copeland
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, Zhejiang, China
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Murcia, Spain
| | | | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Zhangli Hu
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Technology Research Center for Marine Algal Biotechnology, Shenzhen Collaborative Innovation Public Service Platform for Marine Algae Industry, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Nouman W, Gull T, Shaheen M, Gul R. Hormesis management of Moringa oleifera with exogenous application of plant growth regulators under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:947-963. [PMID: 38013429 DOI: 10.1080/15226514.2023.2285846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The study investigated the adaptability of Moringa oleifera to saline conditions, focusing on its hormesis behavior. It also examined how various plant growth regulators affected growth, physiological parameters, and bioactive compounds of moringa. In the first phase, different NaCl stress levels (0, 50, 100, 150, 200, and 250 mM) were applied. Notably, significant stimulation was observed at 100 mM stress for growth, total phenolics, total flavonoids and total chlorophyll content while 150 mM stress had a marked inhibitory effect, with survival decreasing at 200 and 250 mM NaCl levels. A 38% reduction in root attributes and shoot length, along with a 55% decrease in leaf score, was observed at 150 mM stress. Total phenolics showed a positive correlation with growth attributes. In the second phase, moringa plants grown under 50, 100, and 150 mM NaCl stress were treated with various plant growth regulators, including cytokinin (50 mg L-1), thiourea (5 mM), bezyl amino purine (BAP @50 mg L-1), salicylic acid (50 mg L-1), hydrogen peroxide (H2O2@120 μM), or ascorbic acid (50 mg L-1) to mitigate adverse effects of salinity. Cytokinin, BAP, and salicylic acid applications improved salinity tolerance, enhancing enzymatic, and non-enzymatic antioxidants, and the abundance of kaempferol, quercetin, hydroxybenzoic, and hydroxycinnamic acids. Pearson correlation and principal component analysis manifested relationships among growth parameters, antioxidant activities, flavonoids, and phenolic acids. This study provides new insights into hormesis management for moringa plants and the influence of plant growth regulators on flavonoids and phenolic acid levels in moringa leaves under saline conditions.
Collapse
Affiliation(s)
- Wasif Nouman
- Department of Forestry and Range Management, Bahauddin Zakariya University, Multan, Pakistan
- Times Institute, Multan, Pakistan
| | - Tehseen Gull
- Department of Chemistry, Times Institute, Multan, Pakistan
| | - Mehak Shaheen
- Department of Forestry, Range and Wildlife, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Rehman Gul
- Soil and Water Testing Laboratory for Research, Lahore, Pakistan
| |
Collapse
|
3
|
Kakalis A, Tsekouras V, Mavrikou S, Moschopoulou G, Kintzios S, Evergetis E, Iliopoulos V, Koulocheri SD, Haroutounian SA. Farm or Lab? A Comparative Study of Oregano's Leaf and Callus Volatile Isolates Chemistry and Cytotoxicity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1472. [PMID: 37050098 PMCID: PMC10096753 DOI: 10.3390/plants12071472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Oregano (Origanum vulgare, Lamiaceae plant family) is a well-known aromatic herb with great commercial value, thoroughly utilized by food and pharmaceutical industries. The present work regards the comparative assessment of in vitro propagated and commercially available oregano tissue natural products. This study includes their secondary metabolites' biosynthesis, antioxidant properties, and anticancer activities. The optimization of callus induction from derived oregano leaf explants and excessive oxidative browning was performed using various plant growth regulators, light conditions, and antioxidant compounds. The determination of oregano callus volatiles against the respective molecules in maternal herbal material was performed using gas chromatography-mass spectrometry (GC/MS) analysis. In total, the presence of twenty-seven phytochemicals was revealed in both leaf and callus extracts, from which thirteen molecules were biosynthesized in both tissues studied, seven compounds were present only in callus extracts, and seven metabolites only in leaf extracts. Carvacrol and sabinene hydrate were the prevailing volatiles in all tissues exploited, along with alkanes octacosane and triacontane and the trimethylsilyl (TMS) derivative of carvacrol that were detected in significant amounts only in callus extracts. The MTT assay was employed to assess the in vitro cytotoxic properties of oregano extracts against the epithelial human breast cancer MDA-MB-231 and the human neuroblastoma SK-N-SH cell lines. The extracts displayed concentration and time-dependent responses in cell proliferation rates.
Collapse
Affiliation(s)
- Antonis Kakalis
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
| | - Sofia Mavrikou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, EU-CONEXUS European University, 11855 Athens, Greece
- EU-CONEXUS European University for Smart Urban Coastal Sustainability, 020276 Bucharest, Romania
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
4
|
Mamgain J, Mujib A, Syeed R, Ejaz B, Malik MQ, Bansal Y. Genome size and gas chromatography-mass spectrometry (GC-MS) analysis of field-grown and in vitro regenerated Pluchea lanceolata plants. J Appl Genet 2023; 64:1-21. [PMID: 36175751 PMCID: PMC9522435 DOI: 10.1007/s13353-022-00727-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/17/2023]
Abstract
Pluchea lanceolata is a threatened pharmacologically important plant from the family Asteraceae. It is a source of immunologically active compounds; large-scale propagation may offer compounds with medicinal benefits. Traditional propagation method is ineffective as the seeds are not viable; and root sprout propagation is a slow process and produces less numbers of plants. Plant tissue culture technique is an alternative, efficient method for increasing mass propagation and it also facilitate genetic improvement. The present study investigated a three-way regeneration system in P. lanceolata using indirect shoot regeneration (ISR), direct shoot regeneration (DSR), and somatic embryo mediated regeneration (SER). Aseptic leaf and nodal explants were inoculated on Murashige and Skoog (MS) medium amended with plant growth regulators (PGRs), 2,4-dichlorophenoxy acetic acid (2,4-D), 1-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP) either singly or in combinations. Compact, yellowish green callus was obtained from leaf explants in 1.0 mg/l BAP (89.10%) added medium; ISR percentage was high, i.e., 69.33% in 2.0 mg/l BAP + 0.5 mg/l NAA enriched MS with 4.02 mean number of shoots per callus mass. Highest DSR frequency (67.15%) with an average of 5.62 shoot numbers per explant was noted in 0.5 mg/l BAP added MS medium. Somatic embryos were produced in 1.0 mg/l NAA fortified medium with 4.1 mean numbers of somatic embryos per culture. On BAP (1.0 mg/l) + 0.5 mg/l gibberellic acid (GA3) amended medium, improved somatic embryo germination frequency (68.14%) was noted showing 12.18 mean numbers of shoots per culture. Histological and scanning electron microscopic (SEM) observation revealed different stages of embryos, confirming somatic embryogenesis in P. lanceolata. Best rooting frequency (83.95%) of in vitro raised shootlets was obtained in 1.0 mg/l IBA supplemented half MS medium with a maximum of 7.83 roots per shoot. The regenerated plantlets were transferred to the field with 87% survival rate. The 2C genome size of ISR, DSR, and SER plants was measured and noted to be 2.24, 2.25, and 2.22 pg respectively, which are similar to field-grown mother plant (2C = 2.26 pg). Oxidative and physiological events suggested upregulation of enzymatic activities in tissue culture regenerated plants compared to mother plants, so were photosynthetic pigments. Implementation of gas chromatography-mass spectrometry (GC-MS) technique on in vivo and in vitro raised plants revealed the presence of diverse phyto-chemicals. The yields of alpha amyrin and lupeol (medicinally important triterpenoids) were quantified using high-performance thin-layer chromatography (HPTLC) method and enhanced level of alpha amyrin (2.129 µg g-1 dry wt) and lupeol (1.232 µg g-1 dry wt) was noted in in vitro grown leaf tissues, suggesting in vitro conditions act as a potential trigger for augmenting secondary metabolite synthesis. The present protocol represents a reliable mass propagation technique in producing true-to-type plants of P. lanceolata, conserving 2C DNA and ploidy successfully without affecting genetic homogeneity.
Collapse
Affiliation(s)
- Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India.
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Yashika Bansal
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Danova K, Pistelli L. Plant Tissue Culture and Secondary Metabolites Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233312. [PMID: 36501351 PMCID: PMC9739642 DOI: 10.3390/plants11233312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 05/29/2023]
Abstract
Plants have developed a complex biochemical system for interacting and coping with dynamic environmental challenges throughout their whole life [...].
Collapse
Affiliation(s)
- Kalina Danova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl.9, 1113 Sofia, Bulgaria
| | - Laura Pistelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
6
|
Metabolomic Profiling, Antioxidant and Antimicrobial Activity of Bidens pilosa. Processes (Basel) 2021. [DOI: 10.3390/pr9060903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bidens pilosa L. (fam. Asteraceae) is an annual herb used globally in phytotherapy and each plant material or the whole plant have been declared to be effective. Therefore, the aim of the present study was to conduct metabolomic profiling of different plant materials, including the quali-quantitative composition of phenolic compounds. The intrinsic scavenging/reducing properties and antimicrobial effects of the extracts were assayed against numerous bacterial, Candida and dermatophytes species, whereas docking runs were conducted for tentatively unravelling the mechanism of action underlying antimicrobial effects. Oligosaccharide, disaccharide and fatty acids were present at higher concentrations in root rather than in the other plant parts. Monoglycerides were more abundant in stem than in the other plant parts, whereas peptide and diterpenoid were prominent in leaf and root, respectively. By contrast, amino acids showed very different distribution patterns in the four plant parts. Regarding the phenolic composition, appreciable levels of caftaric acid were found in most of the analyzed methanol extracts, that were also particularly efficacious as antiradical and anti-mycotic agents against C. albicans and dermatophytes. The docking experiments also showed a micromolar affinity of caftaric acid towards the lanosterol 14α-demethylase, deeply involved in fungal metabolism. In conclusion, the present study corroborates the B. pilosa as a phytotherapy remedy against infectious disease.
Collapse
|