1
|
Kalachova T, Jindřichová B, Pospíchalová R, Fujera J, Artemenko A, Jančík J, Antonova A, Kylián O, Prukner V, Burketová L, Šimek M, Homola T. Plasma Treatment Modifies Element Distribution in Seed Coating and Affects Further Germination and Plant Growth through Interaction with Soil Microbiome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5609-5624. [PMID: 38467054 DOI: 10.1021/acs.jafc.3c07160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
This study investigates the impact of plasma-seed interaction on germination and early plant development, focusing on Arabidopsis thaliana and Brassica napus. The investigation delves into changes in chemical composition, water absorption, and surface morphology induced by plasma filaments generated in synthetic air. These analyses were conducted using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Although plasma treatment enhanced water absorption and modified surface chemistry, its impact on germination demonstrated species- and context-dependent variations. Notably, the accelerated germination and morphogenesis of seedlings in microbiome-enriched (MB+) soil could be achieved also in microbiome-deprived (MB-) soil by short-term plasma treatment of seeds. Remarkably, the positive effects of plasma treatment on early developmental events (germination, morphogenesis) and later events (formation of inflorescences) were more pronounced in the context of MB- soil but were accompanied by a slight decrease in disease resistance, which was not detected in MB+ soil. The results underscore the intricate dynamics of plasma-plant interactions and stress the significance of accounting for the soil microbiome while designing experiments with potential field application.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Barbora Jindřichová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Romana Pospíchalová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Jiří Fujera
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
| | - Anna Artemenko
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jakub Jančík
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Anzhela Antonova
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Ondřej Kylián
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Václav Prukner
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 313, 165 00 Prague 6, Lysolaje, Czech Republic
| | - Milan Šimek
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
| | - Tomáš Homola
- Institute of Plasma Physics of the Czech Academy of Sciences, U Slovanky 2525/1a, 182 00 Praha 8, Czech Republic
| |
Collapse
|
2
|
Zhong L, Niu B, Xiang D, Wu Q, Peng L, Zou L, Zhao J. Endophytic fungi in buckwheat seeds: exploring links with flavonoid accumulation. Front Microbiol 2024; 15:1353763. [PMID: 38444811 PMCID: PMC10912284 DOI: 10.3389/fmicb.2024.1353763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Buckwheat is a famous edible and medicinal coarse cereal which contain abundant of bioactive flavonoids, such as rutin. In this study, the composition and diversity of endophytic fungi in eight different buckwheat seeds were analyzed by high-throughput sequencing of ITS rDNA. Results showed that, the fungal sequences reads were allocated to 272 OTUs, of them, 49 OTUs were shared in eight buckwheat seeds. These endophytic fungi could be classified into 6 phyla, 19 classes, 41 orders, 79 families, 119 genera, and 191 species. At genus level, Alternaria sp. was the domain fungal endophyte. Besides, fungal endophytes belonged to the genera of Epicocum, Cladosporium, Botrytis, Filbobasidium, Stemphylium, and Vishniacozyma were highly abundant in buckwheat seeds. The total flavonoids and rutin contents in tartary buckwheat cultivars (CQ, XQ, CH, K2) were much higher than those in common buckwheat cultivars (HT, T2, T4, T8). For tartary buckwheat cultivars, the total flavonoids and rutin contents were ranging from 2.6% to 3.3% and 0.9% to 1.3%, respectively. Accordingly, the tartary buckwheat samples displayed stronger antioxidant activity than the common buckwheat. Spearman correlation heat map analysis was successfully found that certain fungal species from the genera of Alternaria, Botryosphaeria, Colletorichum and Diymella exhibited significant positive correlation with flavonoids contents. Results of this study preliminary revealed the fungi-plant interaction relationship at secondary metabolite level, and could provide novel strategy for increasing the flavonoids accumulation of buckwheat seeds, as well as improving their quality.
Collapse
Affiliation(s)
- Lingyun Zhong
- College of Preclinical Medicine, Chengdu University, Chengdu, China
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Bei Niu
- College of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
3
|
Sayahi K, Sari AH, Hamidi A, Nowruzi B, Hassani F. Application of cold argon plasma on germination, root length, and decontamination of soybean cultivars. BMC PLANT BIOLOGY 2024; 24:59. [PMID: 38247007 PMCID: PMC10801988 DOI: 10.1186/s12870-024-04730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.
Collapse
Affiliation(s)
- Khadijeh Sayahi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Aidin Hamidi
- Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Hassani
- Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Park YJ, Kim SY, Song WJ. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on buckwheat seeds through combination treatment with plasma, vacuum packaging, and hot water. J Appl Microbiol 2023; 134:lxad272. [PMID: 37974046 DOI: 10.1093/jambio/lxad272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS The objectives of this study were to evaluate the effect of combination treatment with cold plasma (CP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on buckwheat seeds, and determined the germination rates of seeds and the quality of sprouts following combination treatment. METHODS AND RESULTS Buckwheat seeds inoculated with Salmonella Typhimurium and Listeria monocytogenes were treated with CP, HW, CP + HW, VP + HW, or CP + VP + HW. The germination rates of the HW-, CP + HW-, VP + HW-, and CP + VP + HW-treated seeds and the antioxidant activities and rutin contents of the CP + HW- and CP + VP + HW-treated sprouts were determined. HW, CP + HW, and CP + VP + HW were found to reduce the levels of the two pathogens to below the detection limit (1.0 log CFU g-1) at 70°C. However, HW and CP + HW significantly reduced the germination rate of buckwheat seeds. CP + VP + HW did not affect the germination rate of seeds nor the antioxidant activities and rutin content of buckwheat sprouts. CONCLUSIONS These results indicate that CP + VP + HW can be used as a novel control method to reduce foodborne pathogens in seeds without causing quality deterioration.
Collapse
Affiliation(s)
- Ye-Jin Park
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Su-Yeon Kim
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| | - Won-Jae Song
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic of Korea
| |
Collapse
|
5
|
Tardast Z, Iranbakhsh A, Ebadi M, Oraghi Ardebili Z. Corona discharge plasma stimulated production of atropine in callus of Datura inoxia by DNA hypomethylation and gene regulation: a novel technology for plant cell and tissue culture. PROTOPLASMA 2023; 260:1515-1525. [PMID: 37233753 DOI: 10.1007/s00709-023-01863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Few investigations have tested the practical use of cold plasma as a novel technology to meet the requirements in the plant cell and tissue culture field. To fill the knowledge gap, we intend to respond to the question of whether plasma priming influenced DNA ultrastructure and the production of atropine (a tropane alkaloid) in Datura inoxia. Calluses were treated with the corona discharge plasma at time durations ranging from 0 to 300 s. Significant increases (about 60%) in biomass were observed in the plasma-primed calluses. The plasma priming of calluses enhanced the accumulation of atropine about 2-fold. The plasma treatments increased proline concentrations and soluble phenols. The drastic increases in the activity of the phenylalanine ammonia-lyase (PAL) enzyme resulted from the applied treatments. Likewise, the plasma treatment of 180 s upregulated the expression of the PAL gene by 8-fold. Also, the expression of the ornithine decarboxylase (ODC) and tropinone reductase I (TR I) genes were stimulated by 4.3-fold and 3.2-fold, respectively, in response to the plasma treatment. The putrescine N-methyltransferase gene displayed a similar trend to that of TR I and ODC genes following the plasma priming. Methylation sensitive amplification polymorphism method was employed to explore the plasma-associated epigenetic changes in DNA ultrastructure. The molecular assessment referred to DNA hypomethylation, validating an epigenetic response. This biological assessment study validates the hypothesis that plasma priming of callus is an efficient, cost-effective, and eco-friendly tool to enhance callogenesis efficiency, elicit metabolism, affect gene regulation, and modify chromatin ultrastructure in D. inoxia.
Collapse
Affiliation(s)
- Zahra Tardast
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
6
|
Starič P, Kolmanič A, Junkar I, Vogel-Mikuš K. Chemical alterations of grain surface by cold plasma technology: Comparison of buckwheat and wheat grain responses to oxygen low-pressure plasma. Heliyon 2023; 9:e20215. [PMID: 37809366 PMCID: PMC10559984 DOI: 10.1016/j.heliyon.2023.e20215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Cold plasma (CP) has a great potential for decontamination or improvement of grain germination. However, disputing results have been reported, as plasma treatment can affect species and varieties of grains in different ways. The differences may be due to the chemical composition of grain pericarps, the structure of the grains and metabolic response mechanisms. CP treatment decreased grain germination rate, speed and activity of α-amylase of buckwheat grains. Such effects on both varieties of wheat grains were present after longer exposure to plasma. Lipid peroxidation was highest in buckwheat grains, whereas wheat grains were less affected. Plasma-treated Gorolka variety exhibited a low level of lipid peroxidation, no different to untreated grains, compared to Primorka grains, where longer treatment triggered higher levels of lipid peroxidation. The response of grains to CP treatment depends on the chemical and structural properties of grains pericarp, as well as plant tolerance to certain abiotic conditions.
Collapse
Affiliation(s)
- Pia Starič
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana, Slovenia
- Institute Jožef Stefan, Jamova cesta 39, Ljubljana, Slovenia
| | - Aleš Kolmanič
- Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, Slovenia
| | - Ita Junkar
- Institute Jožef Stefan, Jamova cesta 39, Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana, Slovenia
- Institute Jožef Stefan, Jamova cesta 39, Ljubljana, Slovenia
| |
Collapse
|
7
|
Mravlje J, Kobal T, Regvar M, Starič P, Zaplotnik R, Mozetič M, Vogel-Mikuš K. The Sensitivity of Fungi Colonising Buckwheat Grains to Cold Plasma Is Species Specific. J Fungi (Basel) 2023; 9:609. [PMID: 37367545 DOI: 10.3390/jof9060609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi are the leading cause of plant diseases worldwide and are responsible for enormous agricultural and industrial losses on a global scale. Cold plasma (CP) is a potential tool for eliminating or inactivating fungal contaminants from biological material such as seeds and grains. This study used a low-pressure radiofrequency CP system with oxygen as the feed gas to test the decontamination efficacy of different genera and species commonly colonising buckwheat grains. Two widely accepted methods for evaluating fungal decontamination after CP treatment of seeds were compared: direct cultivation technique or contamination rate method (%) and indirect cultivation or colony-forming units (CFU) method. For most of the tested fungal taxa, an efficient decrease in contamination levels with increasing CP treatment time was observed. Fusarium graminearum was the most susceptible to CP treatment, while Fusarium fujikuroi seems to be the most resistant. The observed doses of oxygen atoms needed for 1-log reduction range from 1024-1025 m-2. Although there was some minor discrepancy between the results obtained from both tested methods (especially in the case of Fusarium spp.), the trends were similar. The results indicate that the main factors affecting decontamination efficiency are spore shape, size, and colouration.
Collapse
Affiliation(s)
- Jure Mravlje
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Tanja Kobal
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Marjana Regvar
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Pia Starič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Rok Zaplotnik
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Katarina Vogel-Mikuš
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
- Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Sun H, Duan Y, Li H, Hu X, Li B, Zhuang J, Feng J, Ma R, Jiao Z. Microbiota characterization of atmospheric cold plasma treated blueberries. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
9
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Comparison of Presowing Wheat Treatments by Low-Temperature Plasma, Electric Field, Cold Hardening, and Action of Tebuconazole-Based Disinfectant. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This work compares the presowing treatment of winter wheat seeds with a low-temperature plasma, a constant high-voltage electric field, a plant protection disinfectant, and cold hardening on the resistance of seedlings to freezing and their morphophysiological characteristics at the initial stage of germination. Various treatment combinations were considered, including the effect of the disinfectant jointly with low-temperature plasma treatment. The greatest stimulating effect from the point of view of seedlings’ morphophysiological characteristics was achieved when seeds were cold-hardened. The action of low-temperature plasma is noticeable up to the third day of germination. The treatment with the low-temperature plasma of seeds pretreated and not-pretreated with the disinfectant had a similar effect on the morphophysiological characteristics of seedlings. The plasma treatment and the electric field were combined with each other, i.e., the plasma treatment effects were added to the electric field effects. Resistance to low temperatures was increased with the hardening of seeds treated with the electric field and the disinfectant. Resistance to low temperatures was reduced when treated with the electric field and/or low-temperature plasma after being treated with the disinfectant.
Collapse
|
11
|
Konchekov EM, Kolik LV, Danilejko YK, Belov SV, Artem’ev KV, Astashev ME, Pavlik TI, Lukanin VI, Kutyrev AI, Smirnov IG, Gudkov SV. Enhancement of the Plant Grafting Technique with Dielectric Barrier Discharge Cold Atmospheric Plasma and Plasma-Treated Solution. PLANTS 2022; 11:plants11101373. [PMID: 35631800 PMCID: PMC9146419 DOI: 10.3390/plants11101373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
A garden plant grafting technique enhanced by cold plasma (CAP) and plasma-treated solutions (PTS) is described for the first time. It has been shown that CAP created by a dielectric barrier discharge (DBD) and PTS makes it possible to increase the growth of Pyrus communis L. by 35–44%, and the diameter of the root collar by 10–28%. In this case, the electrical resistivity of the graft decreased by 20–48%, which indicated the formation of a more developed vascular system at the rootstock–scion interface. The characteristics of DBD CAP and PTS are described in detail.
Collapse
Affiliation(s)
- Evgeny M. Konchekov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
- Correspondence:
| | - Leonid V. Kolik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Yury K. Danilejko
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Sergey V. Belov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Konstantin V. Artem’ev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Tatiana I. Pavlik
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Vladimir I. Lukanin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
| | - Alexey I. Kutyrev
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| | - Igor G. Smirnov
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.K.); (Y.K.D.); (S.V.B.); (K.V.A.); (M.E.A.); (T.I.P.); (V.I.L.); (S.V.G.)
- Federal Scientific Agroengineering Center VIM, 109428 Moscow, Russia; (A.I.K.); (I.G.S.)
| |
Collapse
|
12
|
Decontamination and Germination of Buckwheat Grains upon Treatment with Oxygen Plasma Glow and Afterglow. PLANTS 2022; 11:plants11101366. [PMID: 35631791 PMCID: PMC9146572 DOI: 10.3390/plants11101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Buckwheat is an alternative crop known for its many beneficial effects on our health. Fungi are an important cause of plant diseases and food spoilage, often posing a threat to humans and animals. This study reports the effects of low-pressure cold plasma treatment on decontamination and germination of common (CB) and Tartary buckwheat (TB) grains. Both plasma glow and afterglow were applied. The glow treatment was more effective in decontamination: initial contamination was reduced to less than 30% in CB and 10% in TB. Fungal diversity was also affected as only a few genera persisted after the glow treatment; however, it also significantly reduced or even ceased the germination capacity of both buckwheat species. Detailed plasma characterisation by optical spectroscopy revealed extensive etching of outer layers as well as cotyledons. Afterglow treatment resulted in a lower reduction of initial fungal contamination (up to 30% in CB and up to 50% in TB) and had less impact on fungal diversity but did not drastically affect germination: 60–75% of grains still germinated even after few minutes of treatment. The vacuum conditions alone did not affect the fungal population or the germination despite an extensive release of water.
Collapse
|
13
|
Kreft I, Germ M, Golob A, Vombergar B, Bonafaccia F, Luthar Z. Impact of Rutin and Other Phenolic Substances on the Digestibility of Buckwheat Grain Metabolites. Int J Mol Sci 2022; 23:3923. [PMID: 35409281 PMCID: PMC8999605 DOI: 10.3390/ijms23073923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tartary buckwheat (Fagopyrum tataricum Gaertn.) is grown in eastern and central Asia (the Himalayan regions of China, Nepal, Bhutan and India) and in central and eastern Europe (Luxemburg, Germany, Slovenia and Bosnia and Herzegovina). It is known for its high concentration of rutin and other phenolic metabolites. Besides the grain, the other aboveground parts of Tartary buckwheat contain rutin as well. After the mixing of the milled buckwheat products with water, the flavonoid quercetin is obtained in the flour-water mixture, a result of rutin degradation by rutinosidase. Heating by hot water or steam inactivates the rutin-degrading enzymes in buckwheat flour and dough. The low buckwheat protein digestibility is due to the high content of phenolic substances. Phenolic compounds have low absorption after food intake, so, after ingestion, they remain for some time in the gastrointestinal tract. They can act in an inhibitory manner on enzymes, degrading proteins and other food constituents. In common and Tartary buckwheat, the rutin and quercetin complexation with protein and starch molecules has an impact on the in vitro digestibility and the appearance of resistant starch and slowly digestible proteins. Slowly digestible starch and proteins are important for the functional and health-promoting properties of buckwheat products.
Collapse
Affiliation(s)
- Ivan Kreft
- Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Mateja Germ
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Aleksandra Golob
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Blanka Vombergar
- The Education Centre Piramida Maribor, SI-2000 Maribor, Slovenia;
| | - Francesco Bonafaccia
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| | - Zlata Luthar
- Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (M.G.); (A.G.); (F.B.)
| |
Collapse
|
14
|
Wang Y, Nie Z, Ma T. The Effects of Plasma-Activated Water Treatment on the Growth of Tartary Buckwheat Sprouts. Front Nutr 2022; 9:849615. [PMID: 35284468 PMCID: PMC8908094 DOI: 10.3389/fnut.2022.849615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aim was to investigate the effects of buckwheat sprout treated with plasma-activated water (PAW) and their quality, nutrients (protein, amino acids, fat, and carbohydrates), functional active ingredients (total flavonoids, total phenolic acids, γ-gamma aminobutyric acid (GABA), and polysaccharides), and antioxidant activity during germination. PAW had no negative effects on the germination rate, but promoted the stem growth instead, which indicated 1.12-fold higher germination rate compared with the control group. The results of sensory evaluation demonstrated that the obtained sprouts were bright green, shinning, crisp and smooth, with sufficient moisture, and easy to chew. During germination (1–9 days), the water content, amino acids, and reducing sugars of sprouts showed an increasing trend and were basically higher in the PAW group than in the control group, while protein, carbohydrate, and crude fat presented a decreasing trend. The results were that the flavonoid, phenolic acid, γ-GABA, polysaccharides content, and antioxidant activity during germination showed a gradual upward trend but with slight differences, and the antioxidant properties of buckwheat sprouts might be related to the phenolic acid and polysaccharides content. These data show that the PAW treatment on buckwheat sprout have great potential as a dietary source of antioxidant function with health benefits.
Collapse
|
15
|
Veerana M, Yu N, Ketya W, Park G. Application of Non-Thermal Plasma to Fungal Resources. J Fungi (Basel) 2022; 8:jof8020102. [PMID: 35205857 PMCID: PMC8879654 DOI: 10.3390/jof8020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Nannan Yu
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Wirinthip Ketya
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Department of Plasma-Bio Display, Kwangwoon University, Seoul 01897, Korea; (M.V.); (N.Y.); (W.K.)
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
- Correspondence: ; Tel.: +82-2-940-8324
| |
Collapse
|
16
|
Development of Cold Plasma Technologies for Surface Decontamination of Seed Fungal Pathogens: Present Status and Perspectives. J Fungi (Basel) 2021; 7:jof7080650. [PMID: 34436189 PMCID: PMC8401644 DOI: 10.3390/jof7080650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/28/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
In view of the ever-growing human population and global environmental crisis, new technologies are emerging in all fields of our life. In the last two decades, the development of cold plasma (CP) technology has offered a promising and environmentally friendly solution for addressing global food security problems. Besides many positive effects, such as promoting seed germination, plant growth, and development, CP can also serve as a surface sterilizing agent. It can be considered a method for decontamination of microorganisms on the seed surface alternative to the traditional use of fungicides. This review covers basics of CP technology and its application in seed decontamination. As this is a relatively young field of research, the data are scarce and hard to compare due to various plasma setups and parameters. On the other hand, the rapidly growing research field offers opportunities for novel findings and applications.
Collapse
|
17
|
Recek N, Holc M, Vesel A, Zaplotnik R, Gselman P, Mozetič M, Primc G. Germination of Phaseolus vulgaris L. Seeds after a Short Treatment with a Powerful RF Plasma. Int J Mol Sci 2021; 22:ijms22136672. [PMID: 34206400 PMCID: PMC8268350 DOI: 10.3390/ijms22136672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/04/2022] Open
Abstract
Seeds of common bean (Phaseolus vulgaris L.), of the Etna variety, were treated with low-pressure oxygen plasma sustained by an inductively coupled radiofrequency discharge in the H-mode for a few seconds. The high-intensity treatment improved seed health in regard to fungal contamination. Additionally, it increased the wettability of the bean seeds by altering surface chemistry, as established by X-ray photoelectron spectroscopy, and increasing surface roughness, as seen with a scanning electron microscope. The water contact angle at the seed surface dropped to immeasurably low values after a second of plasma treatment. Hydrophobic recovery within a month returned those values to no more than half of the original water contact angle, even for beans treated for the shortest time (0.5 s). Increased wettability resulted in accelerated water uptake. The treatment increased the bean radicle length, which is useful for seedling establishment in the field. These findings confirm that even a brief plasma treatment is a useful technique for the disinfection and stimulation of radicle growth. The technique is scalable to large systems due to the short treatment times.
Collapse
Affiliation(s)
- Nina Recek
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
- Correspondence:
| | - Matej Holc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Alenka Vesel
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Rok Zaplotnik
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Peter Gselman
- Interkorn Ltd., Gančani 94, 9231 Beltinci, Slovenia;
| | - Miran Mozetič
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| | - Gregor Primc
- Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (M.H.); (A.V.); (R.Z.); (M.M.); (G.P.)
| |
Collapse
|