1
|
Barbacariu CA, Dumitru G, Rimbu CM, Horhogea CE, Dîrvariu L, Todirașcu-Ciornea E, Șerban DA, Burducea M. Inclusion of Sorghum in Cyprinus carpio L. Diet: Effects on Growth, Flesh Quality, Microbiota, and Oxidative Status. Animals (Basel) 2024; 14:1549. [PMID: 38891599 PMCID: PMC11171069 DOI: 10.3390/ani14111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigates the impact of including sorghum in the diet of the common carp (Cyprinus carpio) on its growth, blood parameters, meat composition, intestinal microbiota, and oxidative stress. Experimental diets with varying sorghum content (0%-V0 or control, 10%-V1, 20%-V2, and 30%-V3) were administered to carp weighing 43 g initially. Notably, in the 30% variant, sorghum entirely replaced corn and barley in the diet. Chemical analysis of sorghum unveiled a protein content of 14% and a fat content of 3.9%. Sorghum inclusion led to a decline in final body weight and weight gain, particularly notable in the V3 group with 30% sorghum. However, other physiological parameters, such as feed conversion ratio, specific growth rate, and organ indices, remained unaffected. Protein and salt content in carp flesh increased with higher sorghum inclusion levels, while hematological parameters showed minimal variations. Analysis of the intestinal microbiota revealed increases in both aerobic and anaerobic bacterial populations with sorghum inclusion. Furthermore, sorghum concentration inversely correlated with glutathione levels and positively correlated with malondialdehyde content, indicating a disruption of antioxidant defense mechanisms and elevated oxidative stress.
Collapse
Affiliation(s)
- Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (C.-A.B.); (L.D.); (D.A.Ș.)
| | - Gabriela Dumitru
- Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania;
| | - Cristina Mihaela Rimbu
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences ‘’Ion Ionescu de la Brad’’ Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania; (C.M.R.)
| | - Cristina Elena Horhogea
- Department of Public Health, Faculty of Veterinary Medicine, University of Life Sciences ‘’Ion Ionescu de la Brad’’ Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania; (C.M.R.)
| | - Lenuța Dîrvariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (C.-A.B.); (L.D.); (D.A.Ș.)
| | | | - Dana Andreea Șerban
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (C.-A.B.); (L.D.); (D.A.Ș.)
- Faculty of Food and Animal Sciences, University of Life Sciences “Ion Ionescu de la Brad” Iaşi, Mihail Sadoveanu Alley 6-8, 700490 Iasi, Romania
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (C.-A.B.); (L.D.); (D.A.Ș.)
| |
Collapse
|
2
|
Doudey L, Samet B, Tounsi H, Kazemian H. Unlocking the potential of Tunisian dam sediment: optimizing zeolite X synthesis via Taguchi and Box-Behnken methods for sustainable resource recovery and versatile applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14574-14592. [PMID: 38273085 DOI: 10.1007/s11356-024-31944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
The Tunisian Lebna dam sediment was utilized to create the zeolite faujasite type Na-X. The aim of this investigation is to optimize the yield of Na-X zeolite using alkaline fusion hydrothermal treatment. Taguchi orthogonal array design was employed with nine trials to explore operating parameters including fusion temperature and time, activator type, and sediment type. The efficiency of alkaline fusion was evaluated using acid solubility. After dissolving the optimal alkali-fused sample in water, the Box-Behnken plan was used to identify the influence of L/S ratio, crystallization temperature, and time on zeolite Na-X yield. Rietveld analysis identified the mineral phases in the sediment as quartz (82.0%), calcite (8.8%), kaolinite (6.0), and illite (1.2%). With a NaOH activator, 850 °C fusion temperature for 30 min, 15 L/S ratio, and 75 °C crystallization temperature for 4 days, highly crystalline zeolite Na-X was created. FTIR, TGA, N2 adsorption-desorption isotherm, and X-ray diffraction were used to thoroughly describe this sample. The findings reveal the substantial zeolitization potential of the raw Lebna dam sediment, resulting in a high yield of zeolite Na-X.
Collapse
Affiliation(s)
- Leila Doudey
- Laboratory of Advanced Materials (LAMA), National Engineering School of Sfax (ENIS), University of Sfax, Soukra Road Km 4, 3038-1171, Sfax, Tunisia
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, British Columbia, Canada
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Basma Samet
- Laboratory of Advanced Materials (LAMA), National Engineering School of Sfax (ENIS), University of Sfax, Soukra Road Km 4, 3038-1171, Sfax, Tunisia
| | - Hassib Tounsi
- Laboratory of Advanced Materials (LAMA), National Engineering School of Sfax (ENIS), University of Sfax, Soukra Road Km 4, 3038-1171, Sfax, Tunisia
| | - Hossein Kazemian
- Materials Technology & Environmental Research (MATTER) Lab, University of Northern British Columbia, Prince George, British Columbia, Canada.
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, British Columbia, Canada.
- Environmental Sciences Program, Faculty of Environment, University of Northern British Columbia, V2N4Z9, Prince George, British Columbia, Canada.
| |
Collapse
|
3
|
Lobiuc A, Stoleru V, Gheorghiţă R, Burducea M. The Effect of Municipal Biosolids on the Growth, Physiology and Synthesis of Phenolic Compounds in Ocimum basilicum L. Int J Mol Sci 2023; 25:448. [PMID: 38203619 PMCID: PMC10779201 DOI: 10.3390/ijms25010448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The continuous development of drinking water networks is leading to the production of increasing amounts of waste water and sewage sludge. Secondary-treated sewage sludge is called biosolids and can be used as fertilizers in agriculture due to its rich nutrient content. The aim of this study was to evaluate the effects of biosolids mixed with an eroded soil on the morphology, physiology and synthesis of bioactive compounds in basil. The study was performed in pots under laboratory-controlled conditions. In total, four substrates were tested: S1 biosolids 100%, S2 biosolids 15% + eroded soil 85%, S3 eroded soil 100% and S4 control (commercial growing substrate). At the morphological level, a significant increase in plant height, number of branches, fresh biomass and dry biomass was found in the S2 variant. At the physiological level, photosynthesis and chlorophyll content did not vary significantly, but the quantum yield of PSII (ΦPSII) was significantly higher at S1 and S2. The oxidative status evaluated by determining the activity of SOD, POD and CAT enzymes was better in S2 and S3 compared to S3. Regarding the synthesis of bioactive compounds (rosmarinic acid, caffeic acid and gallic acid), it was stimulated in S1 and S2. In conclusion, biosolids application stimulated the stress response mechanisms in basil plants by increasing the quantum yield chlorophyll fluorescence and catalase activity, alleviating the negative effects of eroded soil.
Collapse
Affiliation(s)
- Andrei Lobiuc
- Department of Medicine and Biological Sciences, Stefan cel Mare University, 720229 Suceava, Romania; (A.L.); (R.G.)
| | - Vasile Stoleru
- Department of Horticulture Technologies, “Ion Ionescu de la Brad” University of Life Sciences, 700490 Iasi, Romania;
| | - Roxana Gheorghiţă
- Department of Medicine and Biological Sciences, Stefan cel Mare University, 720229 Suceava, Romania; (A.L.); (R.G.)
| | - Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania
| |
Collapse
|
4
|
Stanković M. 10th Anniversary of Plants-Recent Advances and Further Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1696. [PMID: 37111918 PMCID: PMC10145593 DOI: 10.3390/plants12081696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Published for the first time in 2012, Plants will celebrate its 10th anniversary [...].
Collapse
Affiliation(s)
- Milan Stanković
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Helium Atmospheric Pressure Plasma Jet Effects on Two Cultivars of Triticum aestivum L. Foods 2023; 12:foods12010208. [PMID: 36613422 PMCID: PMC9818699 DOI: 10.3390/foods12010208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The use of cold plasma in the treatment of seeds before sowing presents a promising technique for sustainable agriculture. The objective of this study is to evaluate the effect of cold plasma treatment on the morphology of wheat seeds (Triticum aestivum L. 'Dacic' and 'Otilia'), their germination, biochemical composition, and the nutritional quality of wheat grass. Wheat seeds were morphologically and elementally characterized by atomic force microscopy (AFM), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray computer tomography (CT), and particle-induced X-ray emission (PIXE). Helium was used as a working gas for plasma generation and the analysis of the species produced showed the presence of NOγ, OH, N2 and N2+ and O. Evaluation of germination and plant growth for 10 days (wheat grass stage) highlighted a specific trend for each cultivar. The biochemical analysis of wheat grass highlighted an increase in the chlorophyll content in the plasma-treated variants, an increase in the flavonoid and polyphenol content in 'Dacic'-treated variant, while the soluble protein content, antioxidant activity, and color were not affected. The analysis of the nutritional quality of wheat grass by the FT-NIR analytical technique highlighted an increase in the ash content in the plasma-treated wheat cultivars, while the humidity, proteins, neutral detergent fiber (NDF), acid detergent fiber (ADF), and energy values were not affected.
Collapse
|
6
|
Evaluation of DDGS as a Low-Cost Feed Ingredient for Common Carp ( Cyprinus carpio Linneus) Cultivated in a Semi-Intensive System. Life (Basel) 2022; 12:life12101609. [PMID: 36295044 PMCID: PMC9604809 DOI: 10.3390/life12101609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Distillers dried grains with solubles (DDGS), a coproduct from the ethanol production industry, is successfully used as an ingredient in feeding cattle and pigs due to its relatively high protein and nutrient content and low price compared to cereals. The aim of this study was to establish the optimal DDGS concentration that can be included in the diet of common carp. A seven-week experiment was performed on common carp with an initial weight of 86 g feed with three experimental diets D0 (DDGS 0%), D1 (DDGS 25%) and D2 (DDGS 35%). The chemical composition of DDGS analyzed by Fourier Transform Near-Infrared (FT-NIR) spectroscopy showed a protein content of 27.56% and oil at 6.75%. Diets with DDGS did not produce significant changes in growth parameters, flesh quality, and blood biochemical profile. Regarding the oxidative status in the muscle tissue, D1 and D2 significantly reduced, in a dose-dependent manner, the specific activity of SOD and GSH, while CAT and GPX were left unaffected. In the liver tissue, CAT, GSH, MDA and carbonylated proteins were reduced in the DDGS diets. The microbiological analysis of the intestinal contents revealed a variation in microbial density depending on the diet used. The total number of aerobic germs was between 224.2 × 104 and 69.84 × 106 (D2 > D1 > D0) and the total number of anaerobic germs was between 15.2 × 102 and 28.2 × 102 (D2 > D0 > D1).
Collapse
|
7
|
Burducea M, Dincheva I, Dirvariu L, Oprea E, Zheljazkov VD, Barbacariu CA. Wheat and Barley Grass Juice Addition to a Plant-Based Feed Improved Growth and Flesh Quality of Common Carp (Cyprinus carpio). Animals (Basel) 2022; 12:ani12081046. [PMID: 35454292 PMCID: PMC9031860 DOI: 10.3390/ani12081046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Several plant extract additives are being increasingly used in aquaculture for their positive effects on fish growth and immunity. Plant extract additives are called phytogenics. The chemical composition of the additives influences their biological activity. The plant extracts used in this study were wheat grass juice and barley grass juice. Their inclusion in a plant-based diet for common carp improved growth performance and flesh quality. The positive effects of the plant extracts could be attributed to their contents of unsaturated fatty acids, essential amino acids, sugars and organic acids. Abstract Phytogenics are plant extract additives used for their bioactive properties. The objective of this study was to assess the effect of plant extracts, wheat grass juice (WGJ) and barley grass juices (BGJ) addition to fish diet on growth and meat quality of common carp. Fish (51 ± 33 g initial weight) were fed for four weeks with three plant-based diets: (1) control feed (Con), (2) control feed supplemented with 2% WGJ (Con+WGJ), and (3) control feed supplemented with 2% BGJ (Con+BGJ). The results showed that the inclusion of the two juices in the plant-based feed stimulated the growth and improved meat quality by lowering the fat and ash content. Feed conversion ratio and condition factor were not affected. There were no significant differences in Fe and Zn contents of meat; however, Cu decreased, while Mn was lower in the Con+WGJ group and higher in the Con+BGJ group compared to Con. A high content of unsaturated fatty acids (FA, oleic acid and linoleic acid) and desirable ratios of saturated/unsaturated FA (0.27–0.29) and Ω6/Ω3 (2.5–2.78) were found in all groups. The juices were characterized in terms of lipid profile and polar compounds by GC-MS technique. The observed positive effects can be attributed to the rich composition of juices that included unsaturated FA, amino acids, sugars and organic compounds.
Collapse
Affiliation(s)
- Marian Burducea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (M.B.); (L.D.); (E.O.); (C.-A.B.)
| | - Ivayla Dincheva
- Department of Agrobiotechologies, Agrobioinstitute, Agricultural Academy, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9635413
| | - Lenuta Dirvariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (M.B.); (L.D.); (E.O.); (C.-A.B.)
| | - Eugen Oprea
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (M.B.); (L.D.); (E.O.); (C.-A.B.)
| | - Valtcho D. Zheljazkov
- Crop and Soil Science Department, Oregon State University, 3050 SW Campus Way, 109 Crop Science Building, Corvallis, OR 97331, USA;
| | - Cristian-Alin Barbacariu
- Research and Development Station for Aquaculture and Aquatic Ecology, “Alexandru Ioan Cuza” University, Carol I, 20A, 700505 Iasi, Romania; (M.B.); (L.D.); (E.O.); (C.-A.B.)
| |
Collapse
|