1
|
Kanaujia A, Gupta S. Tracing scientific and technological development in genetically modified crops. Transgenic Res 2024:10.1007/s11248-024-00412-x. [PMID: 39292371 DOI: 10.1007/s11248-024-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Genetically Modified (GM) Organisms have been used in various domains since their introduction in the 1980s. According to ISAAA data, the use of GM crops in agriculture has also increased significantly in the past 30 years. However, even after 3 decades of commercialisation, GM crops are still surrounded with controversies with different countries adopting varying approaches to their introduction in the consumer markets, owing to different stances of various stakeholders. Motivated by this multitude of opinions, and absence of knowledge mapping, this study has undertaken scientometric analysis of the publication (Web of Science) and patent (Lens.org) data about genetically modified technology use in agriculture to explore the changing knowledge patterns and technological advancements in the area. It explores both scientific and technological perspectives regarding the use of Genetically Modified Crops, by using publication as well as patent data. The findings of this study highlight the major domains of research, technology development, and leading actors in the ecosystem. These findings can be helpful in taking effective policy decisions, and furthering the research activities. It presents a composite picture using both publications and patent data. Further, it will be of utility to explore the other technologies which are replacing GM technology in agriculture in future studies.
Collapse
Affiliation(s)
- Anurag Kanaujia
- Department of Computer Science, Banaras Hindu University, Varanasi, 221005, India.
- Delhi School of Analytics, University of Delhi, New Delhi, 110089, India.
| | - Solanki Gupta
- Department of Computer Science, Banaras Hindu University, Varanasi, 221005, India
- School of Engineering and Technology, K. R. Mangalam University, Sohna Road, Gurgram, Haryana, 122103, India
| |
Collapse
|
2
|
Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, Ali A, Ahmad IA, Mehran M, Xu F, Yang C, Yang J, Ding G. Drought-induced adaptive and ameliorative strategies in plants. CHEMOSPHERE 2024; 364:143134. [PMID: 39168385 DOI: 10.1016/j.chemosphere.2024.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Sharjeel Haider
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Khadija Bibi
- Department of Botany, Faculty of Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Wen Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ayaz Ali
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Iftikhar Ali Ahmad
- Key Laboratory of Soil Health Diagnostic and Green Remediation, Ministry of Ecology and Environment, College of Resource and Environment, Huazhong Agricultural University, China
| | - Muhammad Mehran
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Fangsen Xu
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chunlei Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China.
| | - Jinpeng Yang
- Hubei Academy of Tobacco Science, Wuhan, 430030, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
3
|
Mat Jalaluddin NS, Ahmad Fuaad AAH, Othman RY. Regulatory landscape and public perception for gene-edited bananas in the Southeast Asian region. Transgenic Res 2024; 33:89-97. [PMID: 38600337 DOI: 10.1007/s11248-024-00379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Banana is a premier fruit crop in many parts of the world especially Southeast Asia. The demand for banana has contributed to significant national income to primary banana producers in the SEA region such as the Philippines, Indonesia, Thailand, Vietnam, and Malaysia. However, the widely traded banana industry is plagued by numerous threats including pests and diseases, post-harvest issues and extreme climate vulnerability. To address these challenges, new breeding techniques such as gene editing have been explored for breeding programs to develop improved banana varieties. The first gene-edited non-browning banana has been deregulated in the Philippines recently, and more regulatory applications are expected to submit for approvals soon. Hence, it is timely to review the policy options for gene editing that have been adopted and discussed in the Southeast Asian countries and highlight the implications of differing regulatory approaches to gene editing for trading activities. Positive stakeholders' perceptions and public acceptance are key factors in allowing the benefits of gene editing and thus appropriate outreach strategies are important to gain acceptance and avoid the "GMO stigma" that may be associated with gene-edited products.
Collapse
Affiliation(s)
- Nurzatil Sharleeza Mat Jalaluddin
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Rofina Yasmin Othman
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Advance Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Atimango AO, Wesana J, Kalule SW, Verbeke W, De Steur H. Genome editing in food and agriculture: from regulations to consumer perspectives. Curr Opin Biotechnol 2024; 87:103127. [PMID: 38564970 DOI: 10.1016/j.copbio.2024.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
Genome editing (GE) has emerged as a technology that could revolutionize food and agricultural production. While its advent has evoked enthusiasm for a more sustainable food system, there exists heterogeneity in regulations and public opinions regarding the technology. This review discusses evidence on the implications of government regulations on GE, and perceptions of genome-edited (GEd) food and related regulations. The review highlights consumers' positive attitude and preference for GEd foods when compared with genetically modified foods, despite the limited awareness and knowledge of GE technology. While policy changes might trigger debates, providing tailored benefits, information to consumers could further improve their attitude toward GE.
Collapse
Affiliation(s)
- Alice O Atimango
- Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Department of Rural Development and Agribusiness, Faculty of Agriculture and Environment, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Joshua Wesana
- Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Faculty of Agriculture and Environmental Sciences, Mountains of the Moon University, Kasindikwa Village, Lake Saaka, Fort-Portal, Uganda
| | - Stephen W Kalule
- Department of Rural Development and Agribusiness, Faculty of Agriculture and Environment, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Wim Verbeke
- Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Hans De Steur
- Department of Agricultural Economics, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
5
|
Mahmood MA, Greenwood JR. ZmGLK36 transcription factor bestows viral resistance in rice and wheat. TRENDS IN PLANT SCIENCE 2024; 29:613-615. [PMID: 38114353 DOI: 10.1016/j.tplants.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Maize rough dwarf disease (MRDD) threatens the sustainable production of major cereal crops. Recently, Xu et al. reported a new resistance gene, ZmGLK36, which promotes MRDD resistance in maize by increasing jasmonic acid (JA)-mediated defence. This discovery provides opportunities to develop resistance to rice black-streaked dwarf virus (RBSDV) in other cereal crops such as rice and wheat.
Collapse
Affiliation(s)
- Muhammad Arslan Mahmood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
6
|
Zaman QU, Raza A, Lozano-Juste J, Chao L, Jones MGK, Wang HF, Varshney RK. Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops. Trends Biotechnol 2024; 42:560-574. [PMID: 37993299 DOI: 10.1016/j.tibtech.2023.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
The CRISPR/Cas system comprises RNA-guided nucleases, the target specificity of which is directed by Watson-Crick base pairing of target loci with single guide (sg)RNA to induce the desired edits. CRISPR-associated proteins and other engineered nucleases are opening new avenues of research in crops to induce heritable mutations. Here, we review the diversity of CRISPR-associated proteins and strategies to deregulate genome-edited (GEd) crops by considering them to be close to natural processes. This technology ensures yield without penalties, advances plant breeding, and guarantees manipulation of the genome for desirable traits. DNA-free and off-target-free GEd crops with defined characteristics can help to achieve sustainable global food security under a changing climate, but need alignment of international regulations to operate in existing supply chains.
Collapse
Affiliation(s)
- Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China; Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia 46022, Spain
| | - Li Chao
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Michael G K Jones
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia
| | - Hua-Feng Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
7
|
Tachikawa M, Matsuo M. Global regulatory trends of genome editing technology in agriculture and food. BREEDING SCIENCE 2024; 74:3-10. [PMID: 39246438 PMCID: PMC11375430 DOI: 10.1270/jsbbs.23046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/06/2023] [Indexed: 09/10/2024]
Abstract
There is a need to introduce new regulations regarding genome editing technology and its application to agriculture and food. Regulations are different among countries and sometimes inconsistent. Here, we summarize the current regulations regarding the use of genome editing technology in agriculture and food in various countries around the world. We also discuss the main regulatory developments expected to occur in the future.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Makiko Matsuo
- Graduate School of Public Policy, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Caradus JR. Processes for regulating genetically modified and gene edited plants. GM CROPS & FOOD 2023; 14:1-41. [PMID: 37690075 PMCID: PMC10761188 DOI: 10.1080/21645698.2023.2252947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
Innovation in agriculture has been essential in improving productivity of crops and forages to support a growing population, improving living standards while contributing toward maintaining environment integrity, human health, and wellbeing through provision of more nutritious, varied, and abundant food sources. A crucial part of that innovation has involved a range of techniques for both expanding and exploiting the genetic potential of plants. However, some techniques used for generating new variation for plant breeders to exploit are deemed higher risk than others despite end products of both processes at times being for all intents and purposes identical for the benefits they provide. As a result, public concerns often triggered by poor communication from innovators, resulting in mistrust and suspicion has, in turn, caused the development of a range of regulatory systems. The logic and motivations for modes of regulation used are reviewed and how the benefits from use of these technologies can be delivered more efficiently and effectively is discussed.
Collapse
|
9
|
Ahmad A, Jamil A, Munawar N. GMOs or non-GMOs? The CRISPR Conundrum. FRONTIERS IN PLANT SCIENCE 2023; 14:1232938. [PMID: 37877083 PMCID: PMC10591184 DOI: 10.3389/fpls.2023.1232938] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
CRISPR-Cas9, the "genetic scissors", is being presaged as a revolutionary technology, having tremendous potential to create designer crops by introducing precise and targeted modifications in the genome to achieve global food security in the face of climate change and increasing population. Traditional genetic engineering relies on random and unpredictable insertion of isolated genes or foreign DNA elements into the plant genome. However, CRISPR-Cas based gene editing does not necessarily involve inserting a foreign DNA element into the plant genome from different species but introducing new traits by precisely altering the existing genes. CRISPR edited crops are touching markets, however, the world community is divided over whether these crops should be considered genetically modified (GM) or non-GM. Classification of CRISPR edited crops, especially transgene free crops as traditional GM crops, will significantly affect their future and public acceptance in some regions. Therefore, the future of the CRISPR edited crops is depending upon their regulation as GM or non-GMs, and their public perception. Here we briefly discuss how CRISPR edited crops are different from traditional genetically modified crops. In addition, we discuss different CRISPR reagents and their delivery tools to produce transgene-free CRISPR edited crops. Moreover, we also summarize the regulatory classification of CRISPR modifications and how different countries are regulating CRISPR edited crops. We summarize that the controversy of CRISPR-edited plants as GM or non-GM will continue until a universal, transparent, and scalable regulatory framework for CRISPR-edited plants will be introduced worldwide, with increased public awareness by involving all stakeholders.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Nayla Munawar
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
10
|
Wei W, Stewart CN. Biosafety and Ecological Assessment of Genetically Engineered and Edited Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2551. [PMID: 37447112 DOI: 10.3390/plants12132551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Nearly three decades have passed since the first commercial cultivation of genetically engineered (GE) crops [...].
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Charles Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, 112 Plant Biotechnology Building, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
11
|
Camargo LSA, Saraiva NZ, Oliveira CS, Carmickle A, Lemos DR, Siqueira LGB, Denicol AC. Perspectives of gene editing for cattle farming in tropical and subtropical regions. Anim Reprod 2023; 19:e20220108. [PMID: 36819485 PMCID: PMC9924776 DOI: 10.1590/1984-3143-ar2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 02/19/2023] Open
Abstract
Cattle productivity in tropical and subtropical regions can be severely affected by the environment. Reproductive performance, milk and meat production are compromised by the heat stress imposed by the elevated temperature and humidity. The resulting low productivity contributes to reduce the farmer's income and to increase the methane emissions per unit of animal protein produced and the pressure on land usage. The introduction of highly productive European cattle breeds as well as crossbreeding with local breeds have been adopted as strategies to increase productivity but the positive effects have been limited by the low adaptation of European animals to hot climates and by the reduction of the heterosis effect in the following generations. Gene editing tools allow precise modifications in the animal genome and can be an ally to the cattle industry in tropical and subtropical regions. Alleles associated with production or heat tolerance can be shifted between breeds without the need of crossbreeding. Alongside assisted reproductive biotechnologies and genome selection, gene editing can accelerate the genetic gain of indigenous breeds such as zebu cattle. This review focuses on some of the potential applications of gene editing for cattle farming in tropical and subtropical regions, bringing aspects related to heat stress, milk yield, bull reproduction and methane emissions.
Collapse
Affiliation(s)
| | | | | | - Allie Carmickle
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | | | | | | |
Collapse
|
12
|
Tachikawa M, Matsuo M. Divergence and convergence in international regulatory policies regarding genome-edited food: How to find a middle ground. FRONTIERS IN PLANT SCIENCE 2023; 14:1105426. [PMID: 36794228 PMCID: PMC9923018 DOI: 10.3389/fpls.2023.1105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Regulations for organisms and products to which genome-editing technologies are applied are increasing in diversity, with the path-dependent effect of previous regulations for genetically modified organisms. Regulations for genome-editing technologies are a patchwork of international regulations that are difficult to harmonize. However, if the approaches are arranged in chronological order and the overall trend is examined, the regulation of genome-edited organisms and GM food products has recently been trending toward a middle ground which can be characterized as "limited convergence." There is a trend toward the adoption of two approaches: one that considers GMOs but tries to apply simplified regulations and another that excludes them from the scope of regulations as non-GMOs but requires confirmation. In this paper, we discuss why there is a tendency toward convergence of these two approaches and examine the challenges and implications of these two approaches for the governance of the agricultural and food sectors.
Collapse
Affiliation(s)
- Masashi Tachikawa
- Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Makiko Matsuo
- Graduate School of Public Policy, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Ly DNP, Iqbal S, Fosu-Nyarko J, Milroy S, Jones MGK. Multiplex CRISPR-Cas9 Gene-Editing Can Deliver Potato Cultivars with Reduced Browning and Acrylamide. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020379. [PMID: 36679094 PMCID: PMC9864857 DOI: 10.3390/plants12020379] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 01/10/2023] [Indexed: 05/14/2023]
Abstract
Storing potato tubers at cold temperatures, either for transport or continuity of supply, is associated with the conversion of sucrose to reducing sugars. When cold-stored cut tubers are processed at high temperatures, with endogenous asparagine, acrylamide is formed. Acrylamide is classified as a carcinogen. Potato processors prefer cultivars which accumulate fewer reducing sugars and thus less acrylamide on processing, and suitable processing cultivars may not be available. We used CRISPR-Cas9 to disrupt the genes encoding vacuolar invertase (VInv) and asparagine synthetase 1 (AS1) of cultivars Atlantic and Desiree to reduce the accumulation of reducing sugars and the production of asparagine after cold storage. Three of the four guide RNAs employed induced mutation frequencies of 17-98%, which resulted in deletions, insertions and substitutions at the targeted gene sites. Eight of ten edited events had mutations in at least one allele of both genes; for two, only the VInv was edited. No wild-type allele was detected in both genes of events DSpco7, DSpFN4 and DSpco12, suggesting full allelic mutations. Tubers of two Atlantic and two Desiree events had reduced fructose and glucose concentrations after cold storage. Crisps from these and four other Desiree events were lighter in colour and included those with 85% less acrylamide. These results demonstrate that multiplex CRISPR-Cas9 technology can generate improved potato cultivars for healthier processed potato products.
Collapse
Affiliation(s)
- Diem Nguyen Phuoc Ly
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Sadia Iqbal
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| | - John Fosu-Nyarko
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| | - Stephen Milroy
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- Potato Research Western Australia, Murdoch University, Perth, WA 6150, Australia
| | - Michael G. K. Jones
- Crop Biotechnology Research Group, School of Agricultural Sciences, College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Potato Research Western Australia, Murdoch University, Perth, WA 6150, Australia
- Correspondence: (S.I.); (J.F.-N.); (M.G.K.J.)
| |
Collapse
|
14
|
Heinemann JA, Clark K, Hiscox TC, McCabe AW, Agapito-Tenfen SZ. Are null segregants new combinations of heritable material and should they be regulated? Front Genome Ed 2023; 4:1064103. [PMID: 36704579 PMCID: PMC9871356 DOI: 10.3389/fgeed.2022.1064103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Through genome editing and other techniques of gene technology, it is possible to create a class of organism called null segregants. These genetically modified organisms (GMOs) are products of gene technology but are argued to have no lingering vestige of the technology after the segregation of chromosomes or deletion of insertions. From that viewpoint regulations are redundant because any unique potential for the use of gene technology to cause harm has also been removed. We tackle this question of international interest by reviewing the early history of the purpose of gene technology regulation. The active ingredients of techniques used for guided mutagenesis, e.g., site-directed nucleases, such as CRISPR/Cas, are promoted for having a lower potential per reaction to create a hazard. However, others see this as a desirable industrial property of the reagents that will lead to genome editing being used more and nullifying the promised hazard mitigation. The contest between views revolves around whether regulations could alter the risks in the responsible use of gene technology. We conclude that gene technology, even when used to make null segregants, has characteristics that make regulation a reasonable option for mitigating potential harm. Those characteristics are that it allows people to create more harm faster, even if it creates benefits as well; the potential for harm increases with increased use of the technique, but safety does not; and regulations can control harm scaling.
Collapse
Affiliation(s)
- Jack A. Heinemann
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katrin Clark
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tessa C. Hiscox
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Andrew W. McCabe
- Centre for Integrated Research in Biosafety and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sarah Z. Agapito-Tenfen
- Climate and Environment Division, NORCE Norwegian Research Centre AS, Tromsø, Norway,*Correspondence: Sarah Z. Agapito-Tenfen,
| |
Collapse
|