1
|
Colin MN, Claudiana NSE, Kaffah AU, Hasanah AN, Megantara S. Review on Cassia alata Bioactive Compounds: In silico, in vitro, and in vivo Studies. Drug Des Devel Ther 2024; 18:4427-4447. [PMID: 39381590 PMCID: PMC11460278 DOI: 10.2147/dddt.s477679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024] Open
Abstract
Cassia alata Linn is a popular herbal remedy in many countries, and its activities have been studied through many studies, starting from in silico, in vitro, and in vivo. This narrative review will focus more on secondary metabolites that are responsible for certain pharmacological activities that have undergone in vivo, in vitro, and in silico testing to determine the underlying mechanism. Twenty pharmacological activities have been identified, with the flavonoid group (emodin, kaempferol, quercetin) as the most prevalent secondary metabolite found in Cassia alata. There have been numerous studies looking at the role of flavonoids about specific diseases, and flavonoid testing is quite thorough because it covers three different study types. However, there has not been significant progress accomplished in terms of the evaluation of the dosage form so that test results for promising activities like antidiabetic, antifungal, and antiviral can be carried out into further research. Additionally, several disorders lack comprehensive investigation, particularly in silico studies, therefore further study is required to fill any gaps in the knowledge.
Collapse
Affiliation(s)
- Michelle Natasha Colin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Nur Shelly Ester Claudiana
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Annisa Utami Kaffah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
2
|
Janpaijit S, Sukprasansap M, Tencomnao T, Prasansuklab A. Anti-Neuroinflammatory Potential of Areca Nut Extract and Its Bioactive Compounds in Anthracene-Induced BV-2 Microglial Cell Activation. Nutrients 2024; 16:2882. [PMID: 39275198 PMCID: PMC11397359 DOI: 10.3390/nu16172882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Particulate matter (PM2.5) containing polycyclic aromatic hydrocarbons (PAHs) is of considerable environmental importance worldwide due to its adverse effects on human health, which are associated with neurodegenerative diseases (NDDs). Areca catechu L. (AC) fruit is known to possess various pharmacological properties; however, the anti-neuroinflammatory roles of AC on the suppression of PAH-induced neuroinflammation are still limited. Thus, we focused on the effects and related signaling cascades of AC and its active compounds against anthracene-induced toxicity and inflammation in mouse microglial BV-2 cells. Phytochemicals in the ethanolic extract of AC (ACEE) were identified using LC-MS, and molecular docking was conducted to screen the interaction between compounds and target proteins. Significant bioactive compounds in ACEE such as arecoline, (-)-epicatechin, and syringic acid were evinced through the LC-MS spectrum. The docking study revealed that (-)-epicatechin showed the highest binding affinities against NF-κB. For cell-based approaches, anthracene induced intracellular ROS, mRNA levels of TNF-α, IL-1β, and IL-6, and the release of TNF-α through enhancing JNK, p38, and NF-κB signaling pathways. However, the co-treatment of cells with ACEE or (-)-epicatechin could reverse those anthracene-induced changes. The overall study suggested that ACEE-derived bioactive compounds such as (-)-epicatechin may be developed as a potential anti-neuroinflammatory agent by preventing inflammation-mediated NDDs.
Collapse
Affiliation(s)
- Sakawrat Janpaijit
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Tewin Tencomnao
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura), Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Sun Y, Feng J, Hou W, Qi H, Liu Y. Comprehensive insights into areca nut: active components and omics technologies for bioactivity evaluation and quality control. Front Pharmacol 2024; 15:1407212. [PMID: 38873426 PMCID: PMC11169615 DOI: 10.3389/fphar.2024.1407212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Areca nut (AN), the fruit or seed of Areca catechu Linn, has many uses, including chewing and medicinal purposes. It has sparked worries about health due to the presence of alkaloids. Chewing AN may have a variety of negative consequences; however, the medicinal use of AN has no notable adverse effects. To completely understand and effectively use AN, researchers have investigated its chemical makeup or biological activity, analyzed the variations between different AN species and different periods, and improved extraction and processing procedures. Today, an increasing number of researchers are exploring the underlying reasons for AN variations, as well as the molecular mechanisms of biosynthesis of chemical components, to comprehend and change AN at the genetic level. This review presents an overview of the clinical study, pharmacology, and detection of the main bioactive components in AN, and the main factors influencing their content, delving into the omics applications in AN research. On the basis of the discussions and summaries, this review identifies current research gaps and proposes future directions for investigation.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
4
|
Ocampo-Gallego JS, Pedroza-Escobar D, Caicedo-Ortega AR, Berumen-Murra MT, Novelo-Aguirre AL, de Sotelo-León RD, Delgadillo-Guzmán D. Human neutrophil elastase inhibitors: Classification, biological-synthetic sources and their relevance in related diseases. Fundam Clin Pharmacol 2024; 38:13-32. [PMID: 37609718 DOI: 10.1111/fcp.12946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Human neutrophil elastase is a multifunctional protease enzyme whose function is to break the bonds of proteins and degrade them to polypeptides or amino acids. In addition, it plays an essential role in the immune mechanism against bacterial infections and represents a key mediator in tissue remodeling and inflammation. However, when the extracellular release of this enzyme is dysregulated in response to low levels of its physiological inhibitors, it ultimately leads to the degradation of proteins, in particular elastin, as well as other components of the extracellular matrix, producing injury to epithelial cells, which can promote sustained inflammation and affect the innate immune system, and, therefore, be the basis for the development of severe inflammatory diseases, especially those associated with the cardiopulmonary system. OBJECTIVE This review aims to provide an update on the elastase inhibitory properties of several molecules, either synthetic or biological sources, as well as their classification and relevance in related pathologies since a clear understanding of the function of these molecules with the inhibitory capacity of this protease can provide valuable information for the development of pharmacological therapies that manage to modify the prognosis and survival of various inflammatory diseases. METHODS Collected data from scientific databases, including PubMed, Google Scholar, Science Direct, Nature, Wiley, Scopus, and Scielo. Articles published in any country and language were included. RESULTS We reviewed and included 132 articles conceptualizing neutrophil elastase activity and known inhibitors. CONCLUSION Understanding the mechanism of action of elastase inhibitors based on particular aspects such as their kinetic behavior, structure-function relationship, chemical properties, origin, pharmacodynamics, and experimental progress has allowed for a broad classification of HNE inhibitors.
Collapse
Affiliation(s)
| | - David Pedroza-Escobar
- Departamento de Bioquimica, Centro de Investigacion Biomedica, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Ruth Caicedo-Ortega
- Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota, Colombia
| | - María Teresa Berumen-Murra
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Ana Lucía Novelo-Aguirre
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| | - Rebeca Denis de Sotelo-León
- Departmento de Nutricion. Unidad de Medicina Familiar, UMAA 53, Instituto Mexicano del Seguro Social, Durango, Mexico
| | - Dealmy Delgadillo-Guzmán
- Departamento de Farmacologia, Facultad de Medicina UT, Universidad Autonoma de Coahuila, Torreon, Mexico
| |
Collapse
|
5
|
Sinsuebpol C, Nakpheng T, Srichana T, Sawatdee S, Pipatrattanaseree W, Burapapadh K, Changsan N. Assessing the Anti-Aging and Wound Healing Capabilities of Etlingera elatior Inflorescence Extract: A Comparison of Three Inflorescence Color Varieties. Molecules 2023; 28:7370. [PMID: 37959789 PMCID: PMC10647484 DOI: 10.3390/molecules28217370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Torch ginger, Etlingera elatior, is a Zingiberaceae plant with various red, pink, and white inflorescence. The wound healing potential and anti-aging effects of freeze-dried torch ginger inflorescence extracts (FTIEs) from three varieties were compared. The red FTIE had the highest content of phenolic, flavonoid, caffeoylquinic acid, and chlorogenic acid, followed by the white and pink FTIE. Consistent with the chemical constituents, the red FTIE demonstrated the greatest capacities for free radical scavenging, anti-tyrosinase, and anti-collagenase activity, followed by the white and pink FTIE. In cell-based studies, FTIEs displayed cytotoxicity to B16F10 melanoma cells, with the red FTIE showing the greatest activity (LC50 of 115.5 μg/mL). In contrast, the pink and the white FTIEs had less cytotoxicity impact. Nonetheless, at 1000 μg/mL, all three FTIE variants were safe on L929 fibroblasts or RAW 264.7 monocyte cells. White FTIE (500 μg/mL) exhibited the highest activity in stimulating collagen production and the greatest impact on cell migration, whereas the pink and red FTIE had a lesser effect. All FTIEs slightly suppressed the pro-inflammatory cytokines produced by lipopolysaccharide-stimulated monocytes, with no significant variation between FTIE variants. In conclusion, all FTIEs revealed promising potential for anti-aging cosmeceuticals and wound care products at specific concentrations.
Collapse
Affiliation(s)
- Chutima Sinsuebpol
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand; (C.S.)
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand (T.S.)
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla 90112, Thailand (T.S.)
| | - Somchai Sawatdee
- Drug and Cosmetics Excellence Center, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand;
| | | | | | - Narumon Changsan
- College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand; (C.S.)
| |
Collapse
|
6
|
Widoyanti AAE, Chaikong K, Rangsinth P, Saengratwatchara P, Leung GPH, Prasansuklab A. Valorization of Nam Wah Banana ( Musa paradisiaca L.) Byproducts as a Source of Bioactive Compounds with Antioxidant and Anti-inflammatory Properties: In Vitro and In Silico Studies. Foods 2023; 12:3955. [PMID: 37959074 PMCID: PMC10649638 DOI: 10.3390/foods12213955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Nam Wah banana (Musa paradisiaca L.) is the most common banana cultivar in Thailand. Large amounts of its non-consumable byproducts are considered undervalued and thrown as waste. Exploring the potential utilization and application of banana byproducts for human benefit can add to their value and minimize the risk of threats. This study aimed to investigate phytochemicals, antioxidant and anti-inflammatory activities, and toxicity of Nam Wah banana byproducts. Five banana plant parts, including the midrib, leaf, peduncle, unripe and ripe peels, were extracted using hexane, ethyl acetate, ethanol, and water. Among the extracts tested, the ethyl acetate leaf extract showed the strongest antioxidant capacity and anti-inflammatory activity, probably through the inhibition of inducible nitric oxide synthase (iNOS) and 15-lipoxygenase (15-LOX). Positive correlations existed between the activities and the total phenolic/flavonoid content of banana byproducts. An in silico docking analysis demonstrated that flavonoid glycosides in banana byproducts, such as kaempferol-3-O-rutinoside and rutin, may bind to inducible iNOS, whereas omega-3-polyunsaturated fatty acids, such as eicosapentaenoic acid, may bind to 15-LOX and cyclooxygenase-2 (COX-2). The extracts showed either low or no toxicity. These findings suggest that banana byproducts are a natural source of antioxidant and anti-inflammatory compounds. It is recommended that additional investigations be conducted to explore their potential therapeutic applications in treating disorders linked with oxidative stress or inflammation. This research has the potential to enhance the value of banana byproducts.
Collapse
Affiliation(s)
- Ansella Amanda Epifani Widoyanti
- Graduate Program in Public Health Sciences, College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Kamonwan Chaikong
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Patcharaporn Saengratwatchara
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (K.C.); (P.S.)
- Faculty of Pharmacy, Payap University, Chiangmai 50000, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural Products for Neuroprotection and Anti-ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Int J Mol Sci 2023; 24:15444. [PMID: 37895122 PMCID: PMC10607442 DOI: 10.3390/ijms242015444] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)).
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Medical College, Jan Kochanowski University, 35-317 Kielce, Poland
| |
Collapse
|
8
|
Pattarachotanant N, Rangsinth P, Warayanon W, Leung GPH, Chuchawankul S, Prasansuklab A, Tencomnao T. Protective Effect of Aquilaria crassna Leaf Extract against Benzo[a]pyrene-Induced Toxicity in Neuronal Cells and Caenorhabditis elegans: Possible Active Constituent Includes Clionasterol. Nutrients 2023; 15:3985. [PMID: 37764767 PMCID: PMC10534377 DOI: 10.3390/nu15183985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Aquilaria crassna (AC) is a beneficial plant widely used to alleviate various health ailments. Nevertheless, the neuroprotection, antiaging, and xenobiotic detoxification against high benzo[a]pyrene induction have not been investigated. This study aimed to investigate the effects of ethanolic extract of AC leaves (ACEE) in vitro using SH-SY5Y cells and in vivo using Caenorhabditis elegans (C. elegans). Neuroprotective activities and cell cycle progression were studied using SH-SY5Y cells. Additionally, C. elegans was used to determine longevity, health span, and transcriptional analysis. Furthermore, ACEE possible active compounds were analyzed by gas chromatograph-mass spectrometry (GC-MS) analysis and the possible active compounds were evaluated using a molecular docking study. First, ACEE possessed neuroprotective effects by normalizing cell cycle progression via the regulation of AhR/CYP1A1/cyclin D1 pathway. Next, ACEE played a role in xenobiotic detoxification in high B[a]P-induced C. elegans by the amelioration of lifespan reduction, and body length and size decrease through the reduction in gene expression in hexokinase (hxk) and CYP35 pathway. Finally, phytochemicals of ACEE were identified and we uncovered that clionasterol was the possible active constituent in powerfully inhibiting both CYP1A1 and hexokinase II receptor. Essentially, ACEE was recognized as a potential alternative medicine to defend against high B[a]P effects on neurotoxicity and xenobiotic detoxification.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (W.W.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Watis Warayanon
- Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (W.W.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (P.R.); (G.P.-H.L.)
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (W.W.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing (Neur-Age Natura) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (W.W.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|