1
|
Soudthedlath K, Nakamura T, Ushiwatari T, Fukazawa J, Osakabe K, Osakabe Y, Maruyama-Nakashita A. SULTR2;1 Adjusts the Bolting Timing by Transporting Sulfate from Rosette Leaves to the Primary Stem. PLANT & CELL PHYSIOLOGY 2024; 65:770-780. [PMID: 38424724 DOI: 10.1093/pcp/pcae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
Sulfur (S) is an essential macronutrient for plant growth and metabolism. SULTR2;1 is a low-affinity sulfate transporter facilitating the long-distance transport of sulfate in Arabidopsis. The physiological function of SULTR2;1 in the plant life cycle still needs to be determined. Therefore, we analyzed the sulfate transport, S-containing metabolite accumulation and plant growth using Arabidopsis SULTR2;1 disruption lines, sultr2;1-1 and sultr2;1-2, from seedling to mature growth stages to clarify the metabolic and physiological roles of SULTR2;1. We observed that sulfate distribution to the stems was affected in sultr2;1 mutants, resulting in decreased levels of sulfate, cysteine, glutathione (GSH) and total S in the stems, flowers and siliques; however, the GSH levels increased in the rosette leaves. This suggested the essential role of SULTR2;1 in sulfate transport from rosette leaves to the primary stem. In addition, sultr2;1 mutants unexpectedly bolted earlier than the wild-type without affecting the plant biomass. Correlation between GSH levels in rosette leaves and the bolting timing suggested that the rosette leaf GSH levels or limited sulfate transport to the early stem can trigger bolting. Overall, this study demonstrated the critical roles of SULTR2;1 in maintaining the S metabolite levels in the aerial part and transitioning from the vegetative to the reproductive growth phase.
Collapse
Affiliation(s)
- Khamsalath Soudthedlath
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
- Ministry of Agriculture and Forestry, Biotechnology and Ecology Institute, Vientiane 01170, Laos
| | - Toshiki Nakamura
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Tsukasa Ushiwatari
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Jutarou Fukazawa
- Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Higashi-Hiroshima, 739-8528 Japan
| | - Keishi Osakabe
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8506, Japan
| | - Yuriko Osakabe
- School of Life Science and Technology, Tokyo Institute of Technology, Kanagawa, Tokyo, 226-8503, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
2
|
Chen Y, Xiao X, Yang R, Sun Z, Yang S, Zhang H, Xing B, Li Y, Liu Q, Lu Q, Shi Y, Yuan Y, Miao C, Li P. Genome-wide identification and expression-pattern analysis of sulfate transporter (SULTR) gene family in cotton under multiple abiotic stresses and fiber development. Funct Integr Genomics 2024; 24:108. [PMID: 38773054 DOI: 10.1007/s10142-024-01387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Sulfate transporter (SULTR) proteins are in charge of the transport and absorption on sulfate substances, and have been reported to play vital roles in the biological processes of plant growth and stress response. However, there were few reports of genome-wide identification and expression-pattern analysis of SULTRs in Hibiscus mutabilis. Gossypium genus is a ideal model for studying the allopolyploidy, therefore two diploid species (G. raimondii and G. arboreum) and two tetraploid species (G. hirsutum and G. barbadense) were chosen in this study to perform bioinformatic analyses, identifying 18, 18, 35, and 35 SULTR members, respectively. All the 106 cotton SULTR genes were utilized to construct the phylogenetic tree together with 11 Arabidopsis thaliana, 13 Oryza sativa, and 8 Zea mays ones, which was divided into Group1-Group4. The clustering analyses of gene structures and 10 conserved motifs among the cotton SULTR genes showed the consistent evolutionary relationship with the phylogenetic tree, and the results of gene-duplication identification among the four representative Gossypium species indicated that genome-wide or segment duplication might make main contributions to the expansion of SULTR gene family in cotton. Having conducted the cis-regulatory element analysis in promoter region, we noticed that the existing salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) elements could have influences with expression levels of cotton SULTR genes. The expression patterns of GhSULTR genes were also investigated on the 7 different tissues or organs and the developing ovules and fibers, most of which were highly expressed in root, stem, sepal, receptacel, ovule at 10 DPA, and fiber at 20 and 25 DPA. In addition, more active regulatory were observed in GhSULTR genes responding to multiple abiotic stresses, and 12 highly expressed genes showed the similar expression patterns in the quantitative Real-time PCR experiments under cold, heat, salt, and drought treatments. These findings broaden our insight into the evolutionary relationships and expression patterns of the SULTR gene family in cotton, and provide the valuable information for further screening the vital candidate genes on trait improvement.
Collapse
Affiliation(s)
- Yu Chen
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xianghui Xiao
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Rui Yang
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuitun, 833200, China
| | - Zhihao Sun
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Shuhan Yang
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Haibo Zhang
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Baoguang Xing
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Yanfang Li
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Qiankun Liu
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Quanwei Lu
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China
| | - Yuzhen Shi
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Youlu Yuan
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| | - Chen Miao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Pengtao Li
- Henan Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng, 475004, China.
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China.
| |
Collapse
|
3
|
Mutanwad KV, Debreczeny M, Lucyshyn D. Root Hair Imaging Using Confocal Microscopy. Methods Mol Biol 2024; 2787:81-94. [PMID: 38656483 DOI: 10.1007/978-1-0716-3778-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Plant genetics plays a key role in determining root hair initiation and development. A complex network of genetic interactions therefore closely monitors and influences root hair phenotype and morphology. The significance of these genes can be studied by employing, for instance, loss-of-function mutants, overexpression plant lines, and fluorescently labeled constructs. Confocal laser scanning microscopy is a great tool to visually observe and document these morphological features. This chapter elaborates the techniques involved in handling of microscopic setup to acquire images displaying root hair distribution along the fully elongated zone of Arabidopsis thaliana roots. Additionally, we illustrate an approach to visualize early fate determination of epidermal cells in the root apical meristem, by describing a method for imaging YFP tagged transgenic plant lines.
Collapse
Affiliation(s)
- Krishna Vasant Mutanwad
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Monika Debreczeny
- Core Facility Multiscale Imaging, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Doris Lucyshyn
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
4
|
Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1534-1550. [PMID: 37464897 DOI: 10.1093/pcp/pcad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Glucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two β-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification. Thus, in this study, we assessed growth, metabolic and transcriptional phenotypes of mature bglu28/30 double mutants grown under different S conditions. Our results showed that compared to wild-type plants grown under -S, mature bglu28/30 mutants displayed impaired growth and accumulated increased levels of GSL in their reproductive organs and rosette leaves of before-bolting plants. In contrast, the levels of primary S-containing metabolites, glutathione and cysteine decreased in their mature seeds. Furthermore, the transport of GSL from rosette leaves to the reproductive organs was stimulated in the bglu28/30 mutants under -S. Transcriptome analysis revealed that genes related to other biological processes, such as ethylene response, defense response and plant response to heat, responded differentially to -S in the bglu28/30 mutants. Altogether, these findings broadened our understanding of the roles of BGLU28/30-dependent GSL catabolism in plant adaptation to nutrient stress.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuo Enomoto
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimada, 428-8501 Japan
| | - Sho Nishida
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg DK-1871, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg DK-1871, Denmark
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
5
|
Ma Y, Zhu W, Zhao W, Zhang B, He J, Zhang C, Li P, Hu Y, Zhou Z, Yan Z, Li J, Cai W, Ren G, Chen R. MtESN2 is a subgroup II sulphate transporter required for symbiotic nitrogen fixation and prevention of nodule early senescence in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2023; 46:3558-3574. [PMID: 37545348 DOI: 10.1111/pce.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
Adequate distribution of mineral sulphur (S) nutrition to nodules mediated by sulphate transporters is crucial for nitrogen fixation in symbiosis establishment process. However, the molecular mechanisms underlying this process remain largely unknown. In this study, we characterized the function of Early Senescent Nodule 2 (MtESN2), a gene crucial to nitrogen fixation in Medicago truncatula. Mutations in MtESN2 resulted in severe developmental and functional defects including dwarf shoots, early senescent nodules, and lower nitrogenase activity under symbiotic conditions compared to wild-type plants. MtESN2 encodes an M. truncatula sulphate transporter that is expressed only in roots and nodules, with the highest expression levels in the transition zone and nitrogen-fixing zone of nodules. MtESN2 exhibited sulphate transport activity when expressed in yeast. Immunolocalization analysis showed that MtESN2-yellow fluorescent protein fusion protein was localized to the plasma membranes of both uninfected and infected cells of nodules, where it might transport sulphate into both rhizobia-infected and uninfected cells within the nodules. Our results reveal an unreported sulphate transporter that contributes to effective symbiosis and prevents nodule early senescence in M. truncatula.
Collapse
Affiliation(s)
- Yanlin Ma
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Weike Zhu
- College of Cuiying Honors, Lanzhou University, Lanzhou, China
| | - Weichen Zhao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Beihong Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanxia He
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chenyan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Peng Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yibo Hu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zaicai Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zezhang Yan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Juanjuan Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Wenkai Cai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guangpeng Ren
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rujin Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Yasuda M, Fujita M, Soudthedlath K, Kusajima M, Takahashi H, Tanaka T, Narita F, Asami T, Maruyama-Nakashita A, Nakashita H. Characterization of Disease Resistance Induced by a Pyrazolecarboxylic Acid Derivative in Arabidopsis thaliana. Int J Mol Sci 2023; 24:9037. [PMID: 37240381 PMCID: PMC10219097 DOI: 10.3390/ijms24109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid (SA)-mediated signaling pathway. Here, we characterized 3-chloro-1-methyl-1H-pyrazole-5-carboxylic acid (CMPA) as an effective SAR inducer in Arabidopsis. The soil drench application of CMPA enhanced a broad range of disease resistance against the bacterial pathogen Pseudomonas syringae and fungal pathogens Colletotrichum higginsianum and Botrytis cinerea in Arabidopsis, whereas CMPA did not show antibacterial activity. Foliar spraying with CMPA induced the expression of SA-responsible genes such as PR1, PR2 and PR5. The effects of CMPA on resistance against the bacterial pathogen and the expression of PR genes were observed in the SA biosynthesis mutant, however, while they were not observed in the SA-receptor-deficient npr1 mutant. Thus, these findings indicate that CMPA induces SAR by triggering the downstream signaling of SA biosynthesis in the SA-mediated signaling pathway.
Collapse
Affiliation(s)
- Michiko Yasuda
- Plant Acquired Immunity Research Unit, RIKEN Advanced Science Institute, Wako 351-0198, Japan
| | - Moeka Fujita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Khamsalath Soudthedlath
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideki Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Tomoya Tanaka
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Futo Narita
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Hideo Nakashita
- Plant Acquired Immunity Research Unit, RIKEN Advanced Science Institute, Wako 351-0198, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
7
|
Claeijs N, Vissenberg K. Phenotypic effect of growth media on Arabidopsis thaliana root hair growth. PLANT SIGNALING & BEHAVIOR 2022; 17:2104002. [PMID: 36000477 PMCID: PMC9466613 DOI: 10.1080/15592324.2022.2104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Over the years, many different growth media have been used to grow Arabidopsis thaliana in vitro in petri dishes. For these media the nutrient composition may vary, sugars may or may not be added, the medium may or may not be buffered and there is a choice between different gelling agents. The magnitude of possible combinations of these variables obstructs easy comparison of seedling phenotypes grown on the different media. This is especially obvious when it concerns the study of root hairs that are extremely sensitive to changes in their environment. To demonstrate this effect, we have grown Arabidopsis thaliana wild-type seeds on 18 different combinations of growth media and quantified root hair development. Comparison of root hair length and the respective root hair profiles identified the media that result in the formation of the longest root hairs. On these favored media they elongate through tip growth at a constant growth rate until they reach their final length (around 0.6 mm) at a distance of ±4 mm from the root tip.
Collapse
Affiliation(s)
- Naomi Claeijs
- Integrated Molecular Plant Physiology Research (IMPRES); Biology Department, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research (IMPRES); Biology Department, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry & Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| |
Collapse
|
8
|
Piotrowska J, Jodoi Y, Trang NH, Wawrzynska A, Takahashi H, Sirko A, Maruyama-Nakashita A. The C-Terminal Region of SLIM1 Transcription Factor Is Required for Sulfur Deficiency Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192595. [PMID: 36235462 PMCID: PMC9573389 DOI: 10.3390/plants11192595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 05/14/2023]
Abstract
Sulfur LIMitation1 (SLIM1) transcription factor coordinates gene expression in plants in response to sulfur deficiency (-S). SLIM1 belongs to the family of plant-specific EIL transcription factors with EIN3 and EIL1, which regulate the ethylene-responsive gene expression. The EIL domains consist of DNA binding and dimerization domains highly conserved among EIL family members, while the N- and C-terminal regions are structurally variable and postulated to have regulatory roles in this protein family, such that the EIN3 C-terminal region is essential for its ethylene-responsive activation. In this study, we focused on the roles of the SLIM1 C-terminal region. We examined the transactivation activity of the full-length and the truncated SLIM1 in yeast and Arabidopsis. The full-length SLIM1 and the truncated form of SLIM1 with a deletion of C-terminal 106 amino acids (ΔC105) transactivated the reporter gene expression in yeast when they were fused to the GAL4 DNA binding domain, whereas the deletion of additional 15 amino acids to remove the C-terminal 120 amino acids (ΔC120) eliminated such an activity, identifying the necessity of that 15-amino-acid segment for transactivation. In the Arabidopsis slim1-2 mutant, the transcript levels of SULTR1;2 sulfate transporter and the GFP expression derived from the SULTR1;2 promoter-GFP (PSULTR1;2-GFP) transgene construct were restored under -S by introducing the full-length SLIM1, but not with the C-terminal truncated forms ΔC105 and ΔC57. Furthermore, the transcript levels of -S-responsive genes were restored concomitantly with an increase in glutathione accumulation in the complementing lines with the full-length SLIM1 but not with ΔC57. The C-terminal 57 amino acids of SLIM1 were also shown to be necessary for transactivation of a -S-inducible gene, SHM7/MSA1, in a transient expression system using the SHM7/MSA1 promoter-GUS as a reporter. These findings suggest that the C-terminal region is essential for the SLIM1 activity.
Collapse
Affiliation(s)
- Justyna Piotrowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Yuki Jodoi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Nguyen Ha Trang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Anna Wawrzynska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Hideki Takahashi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
9
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
10
|
A Low Level of NaCl Stimulates Plant Growth by Improving Carbon and Sulfur Assimilation in Arabidopsis thaliana. PLANTS 2021; 10:plants10102138. [PMID: 34685947 PMCID: PMC8541631 DOI: 10.3390/plants10102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/03/2022]
Abstract
High-salinity stress represses plant growth by inhibiting various metabolic processes. In contrast to the well-studied mechanisms mediating tolerance to high levels of salt, the effects of low levels of salts have not been well studied. In this study, we examined the growth of Arabidopsis thaliana plants under different NaCl concentrations. Interestingly, both shoot and root biomass increased in the presence of 5 mM NaCl, whereas more than 10 mM NaCl decreased plant biomass. To clarify the biological mechanism by which a low level of NaCl stimulated plant growth, we analyzed element accumulation in plants grown under different NaCl concentrations. In addition to the Na and Cl contents, C, S, Zn, and Cu contents were increased under 5 mM NaCl in shoots; this was not observed at higher NaCl concentrations. Adverse effects of high salinity, such as decreased levels of nitrate, phosphate, sulfate, and some cations, did not occur in the presence of 5 mM NaCl. An increase in C was possibly attributed to increased photosynthesis supported by Cl, Zn, and Cu, which also increased in shoots after NaCl application. Salt stress-responsive gene expression was enhanced under 20 mM NaCl but not at lower doses. Among the S metabolites analyzed, cysteine (Cys) was increased by 5 mM NaCl, suggesting that S assimilation was promoted by this dose of NaCl. These results indicate the usefulness of NaCl for plant growth stimulation.
Collapse
|
11
|
Root hairs: the villi of plants. Biochem Soc Trans 2021; 49:1133-1146. [PMID: 34013353 DOI: 10.1042/bst20200716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023]
Abstract
Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.
Collapse
|
12
|
de Bang TC, Husted S, Laursen KH, Persson DP, Schjoerring JK. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. THE NEW PHYTOLOGIST 2021; 229:2446-2469. [PMID: 33175410 DOI: 10.1111/nph.17074] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 05/22/2023]
Abstract
The visual deficiency symptoms developing on plants constitute the ultimate manifestation of suboptimal nutrient supply. In classical plant nutrition, these symptoms have been extensively used as a tool to characterise the nutritional status of plants and to optimise fertilisation. Here we expand this concept by bridging the typical deficiency symptoms for each of the six essential macronutrients to their molecular and physiological functionalities in higher plants. We focus on the most recent insights obtained during the last decade, which now allow us to better understand the links between symptom and function for each element. A deep understanding of the mechanisms underlying the visual deficiency symptoms enables us to thoroughly understand how plants react to nutrient limitations and how these disturbances may affect the productivity and biodiversity of terrestrial ecosystems. A proper interpretation of visual deficiency symptoms will support the potential for sustainable crop intensification through the development of new technologies that facilitate automatised management practices based on imaging technologies, remote sensing and in-field sensors, thereby providing the basis for timely application of nutrients via smart and more efficient fertilisation.
Collapse
Affiliation(s)
- Thomas Christian de Bang
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Kristian Holst Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Daniel Pergament Persson
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Jan Kofod Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| |
Collapse
|
13
|
Li Q, Gao Y, Yang A. Sulfur Homeostasis in Plants. Int J Mol Sci 2020; 21:E8926. [PMID: 33255536 PMCID: PMC7727837 DOI: 10.3390/ijms21238926] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sulfur (S) is an essential macronutrient for plant growth and development. S is majorly absorbed as sulfate from soil, and is then translocated to plastids in leaves, where it is assimilated into organic products. Cysteine (Cys) is the first organic product generated from S, and it is used as a precursor to synthesize many S-containing metabolites with important biological functions, such as glutathione (GSH) and methionine (Met). The reduction of sulfate takes place in a two-step reaction involving a variety of enzymes. Sulfate transporters (SULTRs) are responsible for the absorption of SO42- from the soil and the transport of SO42- in plants. There are 12-16 members in the S transporter family, which is divided into five categories based on coding sequence homology and biochemical functions. When exposed to S deficiency, plants will alter a series of morphological and physiological processes. Adaptive strategies, including cis-acting elements, transcription factors, non-coding microRNAs, and phytohormones, have evolved in plants to respond to S deficiency. In addition, there is crosstalk between S and other nutrients in plants. In this review, we summarize the recent progress in understanding the mechanisms underlying S homeostasis in plants.
Collapse
Affiliation(s)
| | | | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; (Q.L.); (Y.G.)
| |
Collapse
|
14
|
Jiménez-Morales E, Aguilar-Hernández V, Aguilar-Henonin L, Guzmán P. Molecular basis for neofunctionalization of duplicated E3 ubiquitin ligases underlying adaptation to drought tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:474-492. [PMID: 33164265 DOI: 10.1111/tpj.14938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Multigene families in plants expanded from ancestral genes via gene duplication mechanisms constitute a significant fraction of the coding genome. Although most duplicated genes are lost over time, many are retained in the genome. Clusters of tandemly arrayed genes are commonly found in the plant genome where they can promote expansion of gene families. In the present study, promoter fusion to the GUS reporter gene was used to examine the promoter architecture of duplicated E3 ligase genes that are part of group C in the Arabidopsis thaliana ATL family. Acquisition of gene expression by AtATL78, possibly generated from defective AtATL81 expression, is described. AtATL78 expression was purportedly enhanced by insertion of a TATA box within the core promoter region after a short tandem duplication that occurred during evolution of Brassicaceae lineages. This gene is associated with an adaptation to drought tolerance of A. thaliana. These findings also suggest duplicated genes could serve as a reservoir of tacit genetic information, and expression of these duplicated genes is activated upon acquisition of core promoter sequences. Remarkably, drought transcriptome profiling in response to rehydration suggests that ATL78-dependent gene expression predominantly affects genes with root-specific activities.
Collapse
Affiliation(s)
- Estela Jiménez-Morales
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Victor Aguilar-Hernández
- CONACYT, Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, CP 97200, Mérida, Yucatán, México
| | - Laura Aguilar-Henonin
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| | - Plinio Guzmán
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Guanajuato, 36824, México
| |
Collapse
|
15
|
Morikawa-Ichinose T, Miura D, Zhang L, Kim SJ, Maruyama-Nakashita A. Involvement of BGLU30 in Glucosinolate Catabolism in the Arabidopsis Leaf under Dark Conditions. PLANT & CELL PHYSIOLOGY 2020; 61:1095-1106. [PMID: 32255184 DOI: 10.1093/pcp/pcaa035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Glucosinolates (GSLs) are secondary metabolites that play important roles in plant defense and are suggested to act as storage compounds. Despite their important roles, metabolic dynamics of GSLs under various growth conditions remain poorly understood. To determine how light conditions influence the levels of different GSLs and their distribution in Arabidopsis leaves, we visualized the GSLs under different light conditions using matrix-assisted laser desorption/ionization mass spectrometry imaging. We observed the unique distribution patterns of each GSL in the inner regions of leaves and marked decreases under darkness, indicating light conditions influenced GSL metabolism. GSLs are hydrolyzed by a group of ß-glucosidase (BGLU) called myrosinase. Previous transcriptome data for GSL metabolism under light and dark conditions have revealed the highly induced expression of BGLU30, one of the putative myrosinases, which is also annotated as Dark INducible2, under darkness. Impairment of the darkness-induced GSL decrease in the disruption mutants of BGLU30, bglu30, indicated that BGLU30 mediated GSL hydrolysis under darkness. Based on the GSL profiles in the wild-type and bglu30 leaves under both conditions, short-chain GSLs were potentially preferable substrates for BGLU30. Our findings provide an effective way of visualizing GSL distribution in plants and highlighted the carbon storage GSL function.
Collapse
Affiliation(s)
- Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Liu Zhang
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Allahham A, Kanno S, Zhang L, Maruyama-Nakashita A. Sulfur Deficiency Increases Phosphate Accumulation, Uptake, and Transport in Arabidopsis thaliana. Int J Mol Sci 2020; 21:ijms21082971. [PMID: 32340187 PMCID: PMC7215917 DOI: 10.3390/ijms21082971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023] Open
Abstract
Recent studies have shown various metabolic and transcriptomic interactions between sulfur (S) and phosphorus (P) in plants. However, most studies have focused on the effects of phosphate (Pi) availability and P signaling pathways on S homeostasis, whereas the effects of S availability on P homeostasis remain largely unknown. In this study, we investigated the interactions between S and P from the perspective of S availability. We investigated the effects of S availability on Pi uptake, transport, and accumulation in Arabidopsis thaliana grown under sulfur sufficiency (+S) and deficiency (-S). Total P in shoots was significantly increased under -S owing to higher Pi accumulation. This accumulation was facilitated by increased Pi uptake under -S. In addition, -S increased root-to-shoot Pi transport, which was indicated by the increased Pi levels in xylem sap under -S. The -S-increased Pi level in the xylem sap was diminished in the disruption lines of PHT1;9 and PHO1, which are involved in root-to-shoot Pi transport. Our findings indicate a new aspect of the interaction between S and P by listing the increased Pi accumulation as part of -S responses and by highlighting the effects of -S on Pi uptake, transport, and homeostasis.
Collapse
Affiliation(s)
- Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Satomi Kanno
- Institute for Advanced Research, NAIAS, Nagoya University, Frocho, Chikusa, Nagoya 464-8601, Japan;
| | - Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (A.A.); (L.Z.)
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|
17
|
Kusajima M, Fujita M, Yamakawa H, Ushiwatari T, Mori T, Tsukamoto K, Hayashi H, Maruyama-Nakashita A, Che FS, Nakashita H. Characterization of plant immunity-activating mechanism by a pyrazole derivative. Biosci Biotechnol Biochem 2020; 84:1427-1435. [PMID: 32281486 DOI: 10.1080/09168451.2020.1750341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A newly identified chemical, 4-{3-[(3,5-dichloro-2-hydroxybenzylidene)amino]propyl}-4,5-dihydro-1H-pyrazol-5-one (BAPP) was characterized as a plant immunity activator. BAPP enhanced disease resistance in rice against rice blast disease and expression of a defense-related gene without growth inhibition. Moreover, BAPP was able to enhance disease resistance in dicotyledonous tomato and Arabidopsis plants against bacterial pathogen without growth inhibition, suggesting that BAPP could be a candidate as an effective plant activator. Analysis using Arabidopsis sid2-1 and npr1-2 mutants suggested that BAPP induced systemic acquired resistance (SAR) by stimulating between salicylic acid biosynthesis and NPR1, the SA receptor protein, in the SAR signaling pathway.
Collapse
Affiliation(s)
- Miyuki Kusajima
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| | - Moeka Fujita
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| | - Hiromoto Yamakawa
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO) , Ibaraki, Japan
| | - Tsukasa Ushiwatari
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Takamasa Mori
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| | - Kazuki Tsukamoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| | - Hiroshi Hayashi
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University , Fukuoka, Japan
| | - Fang-Sik Che
- Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology , Shiga, Japan
| | - Hideo Nakashita
- Department of Bioscience and Biotechnology, Fukui Prefectural University , Fukui, Japan
| |
Collapse
|
18
|
Zhang L, Kawaguchi R, Morikawa-Ichinose T, Allahham A, Kim SJ, Maruyama-Nakashita A. Sulfur Deficiency-Induced Glucosinolate Catabolism Attributed to Two β-Glucosidases, BGLU28 and BGLU30, is Required for Plant Growth Maintenance under Sulfur Deficiency. PLANT & CELL PHYSIOLOGY 2020; 61:803-813. [PMID: 32049325 DOI: 10.1093/pcp/pcaa006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Sulfur (S) is an essential element for plants, and S deficiency causes severe growth retardation. Although the catabolic process of glucosinolates (GSLs), the major S-containing metabolites specific to Brassicales including Arabidopsis, has been recognized as one of the S deficiency (-S) responses in plants, the physiological function of this metabolic process is not clear. Two β-glucosidases (BGLUs), BGLU28 and BGLU30, are assumed to be responsible for this catabolic process as their transcript levels were highly upregulated by -S. To clarify the physiological function of BGLU28 and BGLU30 and their roles in GSL catabolism, we analyzed the accumulation of GSLs and other S-containing compounds in the single and double mutant lines of BGLU28 and BGLU30 and in wild-type plants under different S conditions. GSL levels were highly increased, while the levels of sulfate, cysteine, glutathione and protein were decreased in the double mutant line of BGLU28 and BGLU30 (bglu28/30) under -S. Furthermore, transcript level of Sulfate Transporter1;2, the main contributor of sulfate uptake from the environment, was increased in bglu28/30 mutants under -S. With these metabolic and transcriptional changes, bglu28/30 mutants displayed obvious growth retardation under -S. Overall, our results indicate that BGLU28 and BGLU30 are required for -S-induced GSL catabolism and contribute to sustained plant growth under -S by recycling sulfate to primary S metabolism.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Tomomi Morikawa-Ichinose
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Alaa Allahham
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| | - Sun-Ju Kim
- Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, South Korea
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
| |
Collapse
|
19
|
Bouranis DL, Malagoli M, Avice JC, Bloem E. Advances in Plant Sulfur Research. PLANTS 2020; 9:plants9020256. [PMID: 32079303 PMCID: PMC7076400 DOI: 10.3390/plants9020256] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
As an essential nutrient required for plant growth and development, sulfur (S) deficiency in productive systems limits yield and quality. This special issue hosts a collection of original research articles, mainly based on contributions from the 11th International Plant Sulfur Workshop held on 16-20 September 2018 in Conegliano, Italy, focusing on the following topics: (1) The germinative and post-germinative behaviour of Brassica napus seeds when severe S limitation is applied to the parent plants; (2) the independence of S deficiency from the mRNA degradation initiation enzyme PARN in Arabidopsis; (3) the glucosinolate distribution in the aerial parts of sel1-10, a disruption mutant of the sulfate transporter SULTR1;2, in mature Arabidopsis thaliana plants; (4) the accumulation of S-methylcysteine as its γ-glutamyl dipeptide in Phaseolus vulgaris; and (5) the role of ferric iron chelation-strategy components in the leaves and roots of maize, have provided new insights into the effect of S availability on plant functionality. Moreover, the role of S deficiency in root system functionality has been highlighted, focusing on (6) the contribution of root hair development to sulfate uptake in Arabidopsis, and (7) the modulation of lateral root development by the CLE-CLAVATA1 signaling pathway under S deficiency. The role of S in plants grown under drought conditions has been investigated in more detail focusing (8) on the relationship between S-induced stomata closure and the canonical ABA signal transduction machinery. Furthermore, (9) the assessment of S deficiency under field conditions by single measurements of sulfur, chloride, and phosphorus in mature leaves, (10) the effect of fertilizers enriched with elemental S on durum wheat yield, and (11,12) the impact of elemental S on the rhizospheric bacteria of durum wheat contributed to enhance the scientific knowledge on S nutrition under field conditions.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence:
| | - Mario Malagoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Agripolis, 35020 Legnaro Pd, Italy;
| | - Jean-Christophe Avice
- UMR INRA-UCN 950 Ecophysiologie Végétale, Agronomie & Nutritions N.C.S., Normandie Université, UFR des Sciences, FED 4277 Normandie Végétal, Université de Caen Normandie, F-14032 Caen, France;
| | - Elke Bloem
- Institute for Crop and Soil Science, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Bundesallee 69 (Gebäude 250), D-38116 Braunschweig, Germany;
| |
Collapse
|
20
|
Yamaguchi C, Khamsalath S, Takimoto Y, Suyama A, Mori Y, Ohkama-Ohtsu N, Maruyama-Nakashita A. SLIM1 Transcription Factor Promotes Sulfate Uptake and Distribution to Shoot, Along with Phytochelatin Accumulation, Under Cadmium Stress in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9020163. [PMID: 32013219 PMCID: PMC7076661 DOI: 10.3390/plants9020163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/31/2023]
Abstract
Sulfur (S) assimilation, which is initiated by sulfate uptake, generates cysteine, the substrate for glutathione (GSH) and phytochelatin (PC) synthesis. GSH and PC contribute to cadmium (Cd) detoxification by capturing it for sequestration. Although Cd exposure is known to induce the expression of S-assimilating enzyme genes, including sulfate transporters (SULTRs), mechanisms of their transcriptional regulation are not well understood. Transcription factor SLIM1 controls transcriptional changes during S deficiency (-S) in Arabidopsis thaliana. We examined the potential involvement of SLIM1 in inducing the S assimilation pathway and PC accumulation. Cd treatment reduced the shoot fresh weight in the sulfur limitation1 (slim1) mutant but not in the parental line (1;2PGN). Cd-induced increases of sulfate uptake and SULTR1;2 expressions were diminished in the slim1 mutant, suggesting that SLIM1 is involved in inducing sulfate uptake during Cd exposure. The GSH and PC levels were lower in slim1 than in the parental line, indicating that SLIM1 was required for increasing PC during Cd treatment. Hence, SLIM1 indirectly contributes to Cd tolerance of plants by inducing -S responses in the cell caused by depleting the GSH pool, which is consumed by enhanced PC synthesis and sequestration to the vacuole.
Collapse
Affiliation(s)
- Chisato Yamaguchi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- NARO Tohoku Agricultural Research Center, 4 Akahira, Shimo-Kuriyagawa, Morioka 020-0198, Japan
| | - Soudthedlath Khamsalath
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Ministry of Science and Technology, Biotechnology and Ecology Institute, Genetic Resources Division, Don Teaw village, KM 14 office, Tha Ngon Road, Xaythany district, Vientiane 01170, Laos
| | - Yuki Takimoto
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan;
| | - Akiko Suyama
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, 82 Kita-Ishigaki, Beppu, Oita 874-8501, Japan
| | - Yuki Mori
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
| | - Naoko Ohkama-Ohtsu
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (C.Y.); (S.K.); (A.S.); (Y.M.)
- Faculty of Bioscience, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-town, Fukui 910-1195, Japan;
- Correspondence: ; Tel.: +81-92-802-4712
| |
Collapse
|