1
|
Singhal P, Diksha D, Baranwal VK, Singh N, Ghosh A. Evidence of true seed transmissible nature of turnip mosaic virus in mustard species. BMC Genomics 2024; 25:966. [PMID: 39407096 PMCID: PMC11481740 DOI: 10.1186/s12864-024-10866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Mustard is a commercial oilseed crop worldwide infected by a highly infectious turnip mosaic virus (TuMV). In the experimental field at ICAR-IARI, New Delhi, in 2022, a 100% incidence of TuMV infection was observed in brown, black and yellow mustard. A very low aphid population suggested the possibility of seed transmission. Earlier, the virus genome was characterized by high throughput sequencing and it was a recombinant of World-B and Asian-BR isolates. The presence of TuMV in immature seeds was confirmed in eight field-grown genotypes via RT-PCR using CP-specific primers designed from the same genome sequence. TuMV was found to be localized in embryo and cotyledon, indicating its true seed-borne nature. Presence of TuMV was also confirmed by RT-PCR in the grow out plants from seeds of field grown eight infected genotypes and 9 genotypes collected from seed stock, that were grown in an aphid-free growth chamber. Further, out of 24 seedlings of Pusa Gold (seed stock) and Pusa Karishma (seeds from field grown plants), 20 and 17 seedlings were found infected with TuMV, respectively. The internally seed-borne nature of the virus leads to its early establishment at the seedling stage, leading to stunting and leaf-puckering symptoms in the progeny plants. This study is the first evidence of seed embryo infection and seedling transmission of TuMV of all the three species of mustard plants (brown, black and yellow mustard). Seed transmission of TuMV in mustard genotypes have implications for the seed exchange programme of mustard seeds.
Collapse
Affiliation(s)
- Pankhuri Singhal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Damini Diksha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Virendra Kumar Baranwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Naveen Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Sandra N, Mandal B. Emerging evidence of seed transmission of begomoviruses: implications in global circulation and disease outbreak. FRONTIERS IN PLANT SCIENCE 2024; 15:1376284. [PMID: 38807782 PMCID: PMC11130427 DOI: 10.3389/fpls.2024.1376284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
Begomoviruses (family Geminiviridae) are known for causing devastating diseases in fruit, fibre, pulse, and vegetable crops throughout the world. Begomoviruses are transmitted in the field exclusively through insect vector whitefly (Bemisia tabaci), and the frequent outbreaks of begomoviruses are attributed largely due to the abundance of whitefly in the agri-ecosystem. Begomoviruses being phloem-borne were known not be transmitted through seeds of the infected plants. The recent findings of seed transmission of begomoviruses brought out a new dimension of begomovirus perpetuation and dissemination. The first convincing evidence of seed transmission of begomoviruses was known in 2015 for sweet potato leaf curl virus followed by several begomoviruses, like bhendi yellow vein mosaic virus, bitter gourd yellow mosaic virus, dolichos yellow mosaic virus, mungbean yellow mosaic virus, mungbean yellow mosaic India virus, pepper yellow leaf curl Indonesia virus, tomato leaf curl New Delhi virus, tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus, and okra yellow mosaic Mexico virus. These studies brought out two perspectives of seed-borne nature of begomoviruses: (i) the presence of begomovirus in the seed tissues derived from the infected plants but no expression of disease symptoms in the progeny seedlings and (ii) the seed infection successfully transmitted the virus to cause disease to the progeny seedlings. It seems that the seed transmission of begomovirus is a feature of a specific combination of host-genotype and virus strain, rather than a universal phenomenon. This review comprehensively describes the seed transmitted begomoviruses reported in the last 9 years and the possible mechanism of seed transmission. An emphasis is placed on the experimental results that proved the seed transmission of various begomoviruses, factors affecting seed transmission and impact of begomovirus seed transmission on virus circulation, outbreak of the disease, and management strategies.
Collapse
Affiliation(s)
- Nagamani Sandra
- Seed Pathology Laboratory, Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, India
| | - Bikash Mandal
- Advanced Centre for Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Shang J, Zhang S, Du J, Wang W, Li K, Yang W. Red and Blue Light Induce Soybean Resistance to Soybean Mosaic Virus Infection through the Coordination of Salicylic Acid and Jasmonic Acid Defense Pathways. Viruses 2023; 15:2389. [PMID: 38140630 PMCID: PMC10747522 DOI: 10.3390/v15122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Soybean mosaic virus (SMV) seriously harms soybean quality and yield. In order to understand the effect of a heterogeneous light environment on the disease resistance of intercropped soybeans, we simulated three kinds of light environments to learn the effects of white light, blue light, and far-red light on the SMV resistance of soybeans. The results showed that compared with the control, SMV-infected soybeans showed dwarfing and enhanced defense. The symptoms of leaves under red and blue light were less severe than those under white light, the virus content of infected plants was about 90% lower than under white light, the activity of antioxidant enzymes increased, and the accumulation of reactive oxygen species decreased. The oxidation damage in SMV-infected soybeans was serious under far-red light. Transcriptome data showed that the biostimulatory response, plant-pathogen interaction, and plant hormone signaling pathway gene expression of SMV-infected soybeans were significantly up-regulated under red light compared with the control. Compared with the control, the genes in the biostimulatory response, calcium ion binding, carbohydrate-binding, mitogen-activated protein kinase (MAPK) signaling, and plant-pathogen interaction pathways, were significantly up-regulated in SMV-infected soybeans under blue light. In far-red light, only 39 genes were differentially expressed in SMV-infected soybeans compared with the control, and most of the genes were down-regulated. Compared with the control, the up-regulation of the salicylic acid (SA) pathway defense gene in SMV-infected soybeans under red light was higher than under other light treatments. Compared with the control, the up-regulation of the jasmonic acid (JA) and ethylene (ET) pathway defense genes in SMV-infected soybeans under blue light was higher than under other light treatments. Compared with the control, most defense-related genes in the SA and JA pathways were inhibited in SMV-infected soybeans under far-red light, while genes in the ET pathway were significantly up-regulated. These results will advance our understanding of the disease resistance mechanism of intercropping soybeans in a heterogeneous light environment and provide new ideas for the prevention and control of viral diseases.
Collapse
Affiliation(s)
- Jing Shang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.D.); (W.Y.)
| | - Siqi Zhang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.D.); (W.Y.)
| | - Junbo Du
- Sichuan Engineering Research Center for Crop Strip Intercropping System and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.D.); (W.Y.)
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu 611130, China;
| | - Kai Li
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System and College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.D.); (W.Y.)
| |
Collapse
|
4
|
Sáez C, Kheireddine A, García A, Sifres A, Moreno A, Font-San-Ambrosio MI, Picó B, López C. Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3773. [PMID: 37960129 PMCID: PMC10650430 DOI: 10.3390/plants12213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny.
Collapse
Affiliation(s)
- Cristina Sáez
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28031 Madrid, Spain
| | - Amina Kheireddine
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Arcadio García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Alicia Sifres
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | | | - María Isabel Font-San-Ambrosio
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València (IAM-UPV), Camino de Vera s/n, 46022 Valencia, Spain;
| | - Belén Picó
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| | - Carmelo López
- Institute for the Conservation and Breeding of Valencian Agro-Diversity, Universitat Politècnica de València (COMAV-UPV), Camino de Vera s/n, 46022 Valencia, Spain; (A.K.); (A.S.); (B.P.)
| |
Collapse
|
5
|
Gutiérrez-Sánchez Á, Cobos A, López-Herranz M, Canto T, Pagán I. Environmental Conditions Modulate Plant Virus Vertical Transmission and Survival of Infected Seeds. PHYTOPATHOLOGY 2023; 113:1773-1787. [PMID: 36880795 DOI: 10.1094/phyto-11-22-0448-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seed transmission is a major mode for plant virus persistence and dispersal, as it allows for virus survival within the seed in unfavorable conditions and facilitates spread when they become more favorable. To access these benefits, viruses require infected seeds to remain viable and germinate in altered environmental conditions, which may also be advantageous for the plant. However, how environmental conditions and virus infection affect seed viability, and whether these effects modulate seed transmission rate and plant fitness, is unknown. To address these questions, we utilized turnip mosaic virus, cucumber mosaic virus, and Arabidopsis thaliana as model systems. Using seeds from plants infected by these viruses, we analyzed seed germination rates, as a proxy of seed viability, and virus seed transmission rate under standard and altered temperature, CO2, and light intensity. With these data, we developed and parameterized a mathematical epidemiological model to explore the consequences of the observed alterations on virus prevalence and persistence. Altered conditions generally reduced overall seed viability and increased virus transmission rate compared with standard conditions, which indicated that under environmental stress, infected seeds are more viable. Hence, virus presence may be beneficial for the host. Subsequent simulations predicted that enhanced viability of infected seeds and higher virus transmission rate may increase virus prevalence and persistence in the host population under altered conditions. This work provides novel information on the influence of the environment in plant virus epidemics. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Sánchez
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Marisa López-Herranz
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| | - Tomás Canto
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Madrid, 28040, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28223, Spain
| |
Collapse
|
6
|
Jeger M, Hamelin F, Cunniffe N. Emerging Themes and Approaches in Plant Virus Epidemiology. PHYTOPATHOLOGY 2023; 113:1630-1646. [PMID: 36647183 DOI: 10.1094/phyto-10-22-0378-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant diseases caused by viruses share many common features with those caused by other pathogen taxa in terms of the host-pathogen interaction, but there are also distinctive features in epidemiology, most apparent where transmission is by vectors. Consequently, the host-virus-vector-environment interaction presents a continuing challenge in attempts to understand and predict the course of plant virus epidemics. Theoretical concepts, based on the underlying biology, can be expressed in mathematical models and tested through quantitative assessments of epidemics in the field; this remains a goal in understanding why plant virus epidemics occur and how they can be controlled. To this end, this review identifies recent emerging themes and approaches to fill in knowledge gaps in plant virus epidemiology. We review quantitative work on the impact of climatic fluctuations and change on plants, viruses, and vectors under different scenarios where impacts on the individual components of the plant-virus-vector interaction may vary disproportionately; there is a continuing, sometimes discordant, debate on host resistance and tolerance as plant defense mechanisms, including aspects of farmer behavior and attitudes toward disease management that may affect deployment in crops; disentangling host-virus-vector-environment interactions, as these contribute to temporal and spatial disease progress in field populations; computational techniques for estimating epidemiological parameters from field observations; and the use of optimal control analysis to assess disease control options. We end by proposing new challenges and questions in plant virus epidemiology.
Collapse
Affiliation(s)
- Mike Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, U.K
| | - Fred Hamelin
- IGEPP INRAE, University of Rennes, Rennes, France
| | - Nik Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, U.K
| |
Collapse
|
7
|
Jeger MJ. Tolerance of plant virus disease: Its genetic, physiological, and epidemiological significance. Food Energy Secur 2022. [DOI: 10.1002/fes3.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Michael John Jeger
- Department of Life Sciences, Silwood Park Imperial College London Ascot UK
| |
Collapse
|
8
|
Montes N, Pagán I. Challenges and opportunities for plant viruses under a climate change scenario. Adv Virus Res 2022; 114:1-66. [PMID: 39492212 DOI: 10.1016/bs.aivir.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There is an increasing societal awareness on the enormous threat that climate change may pose for human, animal and plant welfare. Although direct effects due to exposure to heat, drought or elevated greenhouse gasses seem to be progressively more obvious, indirect effects remain debatable. A relevant aspect to be clarified relates to the relationship between altered environmental conditions and pathogen-induced diseases. In the particular case of plant viruses, it is still unclear whether climate change will primarily represent an opportunity for the emergence of new infections in previously uncolonized areas and hosts, or if it will mostly be a strong constrain reducing the impact of plant virus diseases and challenging the pathogen's adaptive capacity. This review focuses on current knowledge on the relationship between climate change and the outcome plant-virus interactions. We summarize work done on how this relationship modulates plant virus pathogenicity, between-host transmission (which include the triple interaction plant-virus-vector), ecology, evolution and management of the epidemics they cause. Considering these studies, we propose avenues for future research on this subject.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Madrid, Spain; Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
9
|
Moreno M, Ojeda B, Hernández-Walias FJ, Sanz-García E, Canto T, Tenllado F. Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1240. [PMID: 35567241 PMCID: PMC9105947 DOI: 10.3390/plants11091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses and drought. Combined stresses result in plant responses that are different from those observed for each individual stress. We investigated compensatory effects induced by virus infection on the fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance, estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive fitness following withdrawal of water, as determined by measuring the number of individuals producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought compared to watered, virus-infected plants. However, no such conditional phenotype was found in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants to transmit CMV through seeds. These findings highlight a conditional improvement in biological efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction that plants can exhibit increased tolerance to specific viruses under some of the projected climate change scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.M.); (B.O.); (F.J.H.-W.); (E.S.-G.); (T.C.)
| |
Collapse
|
10
|
Wang D, Dawadi B, Qu J, Ye J. Light-Engineering Technology for Enhancing Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 12:805614. [PMID: 35251062 PMCID: PMC8891579 DOI: 10.3389/fpls.2021.805614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Insect vector-borne diseases are a major constraint to a wide variety of crops. Plants integrate environmental light and internal signalings to defend dual stresses both from the vector insects and vector-transmitted pathogens. In this review, we highlight a studies that demonstrate how light regulates plants deploying mechanisms against vector-borne diseases. Four major host defensive pathways involved in the host defense network against multiple biotic stresses are reviewed: innate immunity, phytohormone signaling, RNA interference, and protein degradation. The potential with light-engineering technology with light emitting diodes (LEDs) and genome engineering technology for fine-tuning crop defense and yield are also discussed.
Collapse
Affiliation(s)
- Duan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Bishnu Dawadi
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Qu
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Montes N, Vijayan V, Pagán I. Host population structure for tolerance determines the evolution of plant-virus interactions. THE NEW PHYTOLOGIST 2021; 231:1570-1585. [PMID: 33997993 PMCID: PMC8362011 DOI: 10.1111/nph.17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.
Collapse
Affiliation(s)
- Nuria Montes
- Fisiología VegetalDepartamento Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEU UniversitiesBoadilla del Monte (Madrid)28668Spain
- Servicio de ReumatologíaHospital Universitario de la PrincesaInstituto de Investigación Sanitaria (IIS‐IP)Madrid28008Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA and ETS Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de MadridMadrid28223Spain
| |
Collapse
|
12
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
13
|
Abstract
Increasing evidence indicates that tolerance is a host defense strategy against pathogens as widespread and successful as resistance. Since the concept of tolerance was proposed more than a century ago, it has been in continuous evolution. In parallel, our understanding of its mechanistic bases and its consequences for host and pathogen interactions, ecology, and evolution has grown. This review aims at summarizing the conceptual changes in the meaning of tolerance inside and outside the field of phytopathology, emphasizing difficulties in demonstrating and quantifying this trait. We also discuss evidence of tolerance and current knowledge on its genetic regulation, mechanisms, and role in host-pathogen coevolution, highlighting common patterns across hosts and pathogens. We hope that this comprehensive review attracts more plant pathologists to the study of this key plant defense response.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223 Pozuelo de Alarcón, Madrid, Spain;
| |
Collapse
|
14
|
Montes N, Vijayan V, Pagán I. Trade-offs between host tolerances to different pathogens in plant-virus interactions. Virus Evol 2020; 6:veaa019. [PMID: 32211198 PMCID: PMC7079720 DOI: 10.1093/ve/veaa019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain
| |
Collapse
|