1
|
Osibe DA, Hojo Y, Shinya T, Mitani-Ueno N, Galis I. Comprehensive analysis of silicon impact on defense and metabolic responses in rice exposed to herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1399562. [PMID: 38872888 PMCID: PMC11169889 DOI: 10.3389/fpls.2024.1399562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
Silicon (Si) uptake is generally beneficial for plants that need protection from insect herbivores. In pursue of mechanisms involved in Si-mediated defense, we comprehensively explored the impact of Si on several defensive and metabolic traits in rice exposed to simulated and real herbivory of Mythimna loreyi Duponchel larvae. Hydroponic experiments showed that Si-deprived rice supplemented with Si 72 h prior to insect infestation were similarly resistant to larvae as plants continuously grown in Si-containing media. Both Si and herbivory altered primary metabolism in rice, including the levels of several sugars, amino acids, and organic acids. While the accumulation of sugars was generally positively correlated with Si presence, multiple amino acids showed a negative correlation trend with Si supplementation. The levels of secondary metabolites, including isopentylamine, p-coumaroylputrescine and feruloylputrescine, were typically higher in the leaves of Si-supplemented plants exposed to herbivory stress compared to Si-deprived plants. In addition, simulated herbivory treatment in Si-supplemented plants induced more volatile emissions relative to Si-deprived plants, which was consistent with the increased transcripts of key genes involved in volatile biosynthesis. In ecological interactions, Si alone did not affect the oviposition choice of M. loreyi but gravid females showed a significant preference for simulated herbivory-treated/Si-deprived compared to Si-supplemented plants. Our data suggest that apart from mechanical defense, Si may affect rice metabolism in multiple ways that might enhance/modulate defense responses of rice under herbivory stress.
Collapse
Affiliation(s)
- Dandy Ahamefula Osibe
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
2
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
3
|
Ratnadass A, Llandres AL, Goebel FR, Husson O, Jean J, Napoli A, Sester M, Joseph S. Potential of silicon-rich biochar (Sichar) amendment to control crop pests and pathogens in agroecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168545. [PMID: 37984651 DOI: 10.1016/j.scitotenv.2023.168545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/09/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023]
Abstract
We reviewed the potential of silicon (Si)-rich biochars (sichars) as crop amendments for pest and pathogen control. The main pathosystems that emerged from our systematic literature search were bacterial wilt on solanaceous crops (mainly tomato, pepper, tobacco and eggplant), piercing-sucking hemipteran pests and soil-borne fungi on gramineous crops (mainly rice and wheat), and parasitic nematodes on other crops. The major pest and pathogen mitigation pathways identified were: i) Si-based physical barriers; ii) Induction of plant defenses; iii) Enhancement of plant-beneficial/pathogen-antagonistic soil microflora in the case of root nematodes; iv) Alteration of soil physical-chemical properties resulting in Eh-pH conditions unfavorable to root nematodes; v) Alteration of soil physical-chemical properties resulting in Eh-pH, bulk density and/or water holding capacity favorable to plant growth and resulting tolerance to necrotrophic pathogens; vi) Increased Si uptake resulting in reduced plant quality, owing to reduced nitrogen intake towards some hemi-biotrophic pests or pathogens. Our review highlighted synergies between pathways and tradeoffs between others, depending, inter alia, on: i) crop type (notably whether Si-accumulating or not); ii) pest/pathogen type (e.g. below-ground/root-damaging vs above-ground/aerial part-damaging; "biotrophic" vs "necrotrophic" sensu lato, and corresponding systemic resistance pathways; thriving Eh-pH spectrum; etc.); iii) soil type. Our review also stressed the need for further research on: i) the contribution of Si and other physical-chemical characteristics of biochars (including potential antagonistic effects); ii) the pyrolysis process to a) optimize Si availability in the soil and its uptake by the crop and b) to minimize formation of harmful compounds e.g. cristobalite; iii) on the optimal form of biochar, e.g. Si-nano particles on the surface of the biochar, micron-sized biochar-based compound fertilizer vs larger biochar porous matrices.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR AIDA, 97410 Saint-Pierre, Réunion, France; AIDA, Univ Montpellier, CIRAD, Montpellier, France.
| | - Ana L Llandres
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, Institut de Recherche Coton (IRC), Cotonou, Benin; CIRAD, UPR AIDA, International Institute of Tropical Agriculture (IITA), Cotonou, Benin
| | - François-Régis Goebel
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Olivier Husson
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Janine Jean
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR AIDA, 34398 Montpellier, France
| | - Alfredo Napoli
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Mathilde Sester
- AIDA, Univ Montpellier, CIRAD, Montpellier, France; CIRAD, UPR Aïda, Phnom Penh, Cambodia; Institut Technologique du Cambodge, Phnom Penh, Cambodia
| | - Stephen Joseph
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; School of Materials Science and Engineering, University of NSW, Sydney, NSW 2052, Australia; Institute for Superconducting and Electronic Materials, School of Physics, University of Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Kennedy JF. Chitosan/silica: A hybrid formulation to mitigate phytopathogens. Int J Biol Macromol 2023; 239:124192. [PMID: 36996949 DOI: 10.1016/j.ijbiomac.2023.124192] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Long-term and indiscriminate use of synthetic pesticides to mitigate plant pathogens have created serious issues of water health, soil contamination, non-target organisms, resistant species, and unpredictable environmental and human health hazards. These constraints have forced scientists to develop alternative plant disease management strategies to reduce synthetic chemical' dependency. During the last 20 years, biological agents and resistance elicitors have been the most important used alternatives. Silica-based materials/chitosan with a dual mode of action have been proposed as promising alternatives to prevent plant diseases through direct and indirect mechanisms. Moreover, the combined application of nano-silica and chitosan, due to their controllable morphology, high loading capacity, low toxicity, and efficient encapsulation, act as suitable carriers for biological agents, pesticides, and essential oils, making them proper candidates for mitigation of phytopathogens. Based on this potential, this literature study reviewed the silica and chitosan properties and their function in the plant. It also assessed their role in the fighting against soil and aerial phytopathogens, directly and indirectly, as novel hybrid formulations in future managing platforms.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 771897111, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
5
|
Leroy N, Martin C, Arguelles Arias A, Cornélis JT, Verheggen FJ. If All Else Fails: Impact of Silicon Accumulation in Maize Leaves on Volatile Emissions and Oviposition Site Selection of Spodoptera exigua Hübner. J Chem Ecol 2022; 48:841-849. [PMID: 36302913 DOI: 10.1007/s10886-022-01386-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Silicon (Si) fertilization alleviates biotic stresses in plants. Si enhances plant resistance against phytophagous insects through physical and biochemical mechanisms. In particular, Si modifies jasmonic acid levels and the emissions of herbivore-induced plant volatiles (HIPVs). Here, we investigated whether Si accumulation in the tissues of maize leaves modifies the emissions of constitutive and herbivore-induced plant volatiles, with cascade deterrent effects on oviposition site selection by Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Maize plants were cultivated in a hydroponic system under three Si concentrations, resulting in three groups of plants expressing different Si concentrations in their tissues (0.31 ± 0.04, 4.69 ± 0.49, and 9.56 ± 0.30 g Si. Kg- 1 DW). We collected volatiles from undamaged and caterpillar-infested plants, and found that Si concentration in plant tissues had no significant impact. Jasmonic acid content was high in insect-infested plants, but was similar across all Si treatments. Oviposition site selection bioassays using fertilized S. exigua females showed that Si concentration in plant tissues did not affect the number of eggs laid on Si-treated plants. In conclusion, our study shows that the Si content in maize tissues does not impact the semiochemical interactions with S. exigua.
Collapse
Affiliation(s)
- Nicolas Leroy
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Clément Martin
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Anthony Arguelles Arias
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium
| | - Jean-Thomas Cornélis
- Water-Soil-Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - François J Verheggen
- Chemical and behavioral ecology, Gembloux Agro-Bio Tech, TERRA, University of Liège, Avenue de la Faculté d'Agronomie 2, 5030, Gembloux, Belgium.
| |
Collapse
|
6
|
Sivakumar Indhumathi V, Chandramani P, Mahendran PP, Jayaraj J. Basal application of different sources of silicon fertilizers to enhance biochemical factors in sugarcane ( Saccharum officinarum L.). PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2145607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Veeran Sivakumar Indhumathi
- Department of Entomology, Krishna College of Agricultural and Technology, Tamil Nadu Agricultural University, Madurai, India
| | - Periyakaman Chandramani
- Department of Entomology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Peyandi Paraman Mahendran
- Department of Soil Science and Agricultural Chemistry, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jayachandran Jayaraj
- Department of Entomology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
7
|
Vu Q, Dossa GS, Mundaca EA, Settele J, Crisol-Martínez E, Horgan FG. Combined Effects of Soil Silicon and Host Plant Resistance on Planthoppers, Blast and Bacterial Blight in Tropical Rice. INSECTS 2022; 13:insects13070604. [PMID: 35886780 PMCID: PMC9318006 DOI: 10.3390/insects13070604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Rice is often attacked by several herbivores and plant pathogens at the same time. Public research has mainly focused on enhancing rice resistance against these biotic stresses by selecting rice lines with resistance genes during breeding programs. However, rice resistance to biotic stresses is also affected by soil nutrients, including available nitrogen and silicon. Nitrogen tends to reduce resistance, but silicon can increase resistance. We assessed the effects of combining soil silicon with host plant resistance against rice planthoppers, blast disease, and bacterial blight disease. We used pure silicon (SiO2) to avoid the confounding effects of nutrients associated with silicates. We also assessed the effects of nitrogenous fertilizer on silicon-augmented resistance to planthoppers. We found that high nitrogen diminishes the capacity of soil silicon and host resistance to reduce planthopper fitness (i.e., nitrogen was antagonistic); but that silicon counters nitrogen-related reductions in rice antixenosis defenses (e.g., repellency) against gravid female planthoppers (i.e., an additive effect of silicon and resistance). Silicon augmented resistance against blast and bacterial blight, but the effects were most apparent on susceptible varieties. Plants infected with bacterial blight generally grew larger in silicon amended soils. We discuss how silicon improves seedling quality by augmenting broad-spectrum resistance. Abstract Soil silicon enhances rice defenses against a range of biotic stresses. However, the magnitude of these effects can depend on the nature of the rice variety. We conducted a series of greenhouse experiments to examine the effects of silicon on planthoppers (Nilaparvata lugens [BPH] and Sogatella furcifera [WBPH]), a leafhopper (Nephotettix virescens [GLH]), blast disease (Magnaporthe grisea) and bacterial blight (Xanthomonas oryzae) in susceptible and resistant rice. We added powdered silica gel (SiO2) to paddy soil at equivalent to 0.25, 1.0, and 4.0 t ha−1. Added silicon reduced BPH nymph settling, but the effect was negligible under high nitrogen. In a choice experiment, BPH egg-laying was lower than untreated controls under all silicon treatments regardless of nitrogen or variety, whereas, in a no-choice experiment, silicon reduced egg-laying on the susceptible but not the resistant (BPH32 gene) variety. Stronger effects in choice experiments suggest that silicon mainly enhanced antixenosis defenses. We found no effects of silicon on WBPH or GLH. Silicon reduced blast damage to susceptible and resistant (Piz, Piz-5 and Pi9 genes) rice. Silicon reduced damage from a virulent strain of bacterial blight but had little effect on a less virulent strain in susceptible and resistant (Xa4, Xa7 and Xa4 + Xa7 genes) varieties. When combined with resistance, silicon had an additive effect in reducing biomass losses to plants infested with bacterial blight (resistance up to 50%; silicon 20%). We discuss how silicon-containing soil amendments can be combined with host resistance to reduce biotic stresses in rice.
Collapse
Affiliation(s)
- Quynh Vu
- Cuulong Delta Rice Research Institute, Tan Thanh, Thoi Lai District, Can Tho 905660, Vietnam;
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- International Rice Research Institute, Makati 1226, Philippines;
| | | | - Enrique A. Mundaca
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
| | - Josef Settele
- Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, 06120 Halle, Germany;
- German Centre for Integrative Biodiversity Research, Puschstrasse 4, 04103 Leipzig, Germany
- Institute of Biological Sciences, University of the Philippines (UPLB), Los Baños 4031, Philippines
| | - Eduardo Crisol-Martínez
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Association of Fruit and Vegetable Growers of Almeria (COEXPHAL), Carretera de Ronda 11, 04004 Almeria, Spain
| | - Finbarr G. Horgan
- Escuela de Agronomía, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Casilla 7-D, Curicó 3349001, Chile; (E.A.M.); (E.C.-M.)
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland
- Centre for Pesticide Suicide Prevention, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Correspondence:
| |
Collapse
|
8
|
Kovács S, Kutasy E, Csajbók J. The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:1223. [PMID: 35567224 PMCID: PMC9104186 DOI: 10.3390/plants11091223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 05/25/2023]
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research.
Collapse
|
9
|
Dynamics, phylogeny and phyto-stimulating potential of chitinase synthesizing bacterial root endosymbiosiome of North Western Himalayan Brassica rapa L. Sci Rep 2022; 12:6742. [PMID: 35468936 PMCID: PMC9038727 DOI: 10.1038/s41598-022-11030-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The less phytopathogen susceptibility in Himalayan Brassica rapa L. has made it an exceptional crop eluding synthetic pesticide inputs, thereby guarantying economically well-founded and ecologically sustainable agriculture. The relevance of niche microflora of this crop has not been deliberated in this context, as endosymbiosiome is more stable than their rhizosphere counterparts on account of their restricted acquaintance with altering environment; therefore, the present investigation was carried out to study the endophytic microfloral dynamics across the B. rapa germplasm in context to their ability to produce chitinase and to characterize the screened microflora for functional and biochemical comportments in relevance to plant growth stimulation. A total of 200 colonies of bacterial endophytes were isolated from the roots of B. rapa across the J&K UT, comprising 66 locations. After morphological, ARDRA, and sequence analysis, eighty-one isolates were selected for the study, among the isolated microflora Pseudomonas sp. Bacillus sp. dominated. Likewise, class γ-proteobacteria dominated, followed by Firmicutes. The diversity studies have exposed changing fallouts on all the critical diversity indices, and while screening the isolated microflora for chitinase production, twenty-two strains pertaining to different genera produced chitinase. After carbon source supplementation to the chitinase production media, the average chitinase activity was significantly highest in glycerol supplementation. These 22 strains were further studied, and upon screening them for their fungistatic behavior against six fungal species, wide diversity was observed in this context. The antibiotic sensitivity pattern of the isolated strains against chloramphenicol, rifampicin, amikacin, erythromycin, and polymyxin-B showed that the strains were primarily sensitive to chloramphenicol and erythromycin. Among all the strains, only eleven produced indole acetic acid, ten were able to solubilize tricalcium phosphate and eight produced siderophores. The hydrocyanic acid and ammonia production was observed in seven strains each. Thus, the present investigation revealed that these strains could be used as potential plant growth promoters in sustainable agriculture systems besides putative biocontrol agents.
Collapse
|
10
|
Drenched Silicon Suppresses Disease and Insect Pests in Coffee Plant Grown in Controlled Environment by Improving Physiology and Upregulating Defense Genes. Int J Mol Sci 2022; 23:ijms23073543. [PMID: 35408899 PMCID: PMC8998747 DOI: 10.3390/ijms23073543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Plant disease and insect pests are major limiting factors that reduce crop production worldwide. The ornamental indoor cultivation cash crop dwarf coffee Punica arabica ‘Pacas’ is also troubled by these issues. Silicon (Si) is one of the most abundant elements in the lithosphere and positively impacts plant health by effectively mitigating biotic and abiotic stresses. Several studies have shown that Si activates plant defense systems, although the specific nature of the involvement of Si in biochemical processes that lead to resistance is unclear. In our study, Si significantly promoted the growth and development of dwarf coffee seedlings grown in plant growth chambers. More than that, through natural infection, Si suppressed disease and insect pests by improving physiology (e.g., the strong development of the internal structures of roots, stems, and leaves; higher photosynthetic efficiency; more abundant organic matter accumulation; the promotion of root activity; the efficient absorption and transfer of mineral elements; and various activated enzymes) and up-regulating defense genes (CaERFTF11 and CaERF13). Overall, in agriculture, Si may potentially contribute to global food security and safety by assisting in the creation of enhanced crop types with optimal production as well by mitigating plant disease and insect pests. In this sense, Si is a sustainable alternative in agricultural production.
Collapse
|
11
|
Waterman JM, Cibils-Stewart X, Cazzonelli CI, Hartley SE, Johnson SN. Short-term exposure to silicon rapidly enhances plant resistance to herbivory. Ecology 2021; 102:e03438. [PMID: 34139023 DOI: 10.1002/ecy.3438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 01/17/2023]
Abstract
Silicon (Si) can adversely affect insect herbivores, particularly in plants that evolved the ability to accumulate large quantities of Si. Very rapid herbivore-induced accumulation of Si has recently been demonstrated, but the level of protection against herbivory this affords plants remains unknown. Brachypodium distachyon, a model Si hyperaccumulating grass, was exposed to the chewing herbivore, Helicoverpa armigera, and grown under three conditions: supplied Si over 34 d (+Si), not supplied Si (-Si), or supplied Si once herbivory began (-Si → +Si). We evaluated the effectiveness of each Si treatment at reducing herbivore performance and measured Si-based defenses and phenolics (another form of defense often reduced by Si). Although Si concentrations remained lower, within 72 h of exposure to Si, -Si → +Si plants were as resistant to herbivory as +Si plants. Both +Si and -Si → +Si treatments reduced herbivore damage and growth, and increased mandible wear compared to -Si. After 6 h, herbivory increased filled Si cell density in -Si → +Si plants, and within 24 h, -Si → +Si plants reached similar filled Si cell densities to +Si plants, although decreased phenolics only occurred in +Si plants. We demonstrate that plants with short-term Si exposure can rapidly accumulate Si-based antiherbivore defenses as effectively as plants with long-term exposure.
Collapse
Affiliation(s)
- Jamie M Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia.,Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela Research Station, Ruta 50, Km. 11, Colonia, Uruguay
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Susan E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
12
|
Thabet AF, Boraei HA, Galal OA, El-Samahy MFM, Mousa KM, Zhang YZ, Tuda M, Helmy EA, Wen J, Nozaki T. Silica nanoparticles as pesticide against insects of different feeding types and their non-target attraction of predators. Sci Rep 2021; 11:14484. [PMID: 34262071 PMCID: PMC8280210 DOI: 10.1038/s41598-021-93518-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
The agricultural use of silica (SiO2) nanoparticles (NPs) has the potential to control insect pests while the safety and tritrophic effects on plants and beneficial natural enemies remains unknown. Here, we evaluate the effects of silica NPs on insect pests with different feeding niches, natural enemies, and a plant. Silica NPs were applied at different concentrations (75-425 mg/L) on field-cultivated faba bean and soybean for two growing seasons. The faba bean pests, the cowpea aphid Aphis craccivora and the American serpentine leafminer Liriomyza trifolii, and the soybean pest, the cotton leafworm Spodoptera littoralis, were monitored along with their associated predators. Additional laboratory experiments were performed to test the effects of silica NPs on the growth of faba bean seedlings and to determine whether the rove beetle Paederus fuscipes is attracted to cotton leafworm-infested soybean treated with silica NPs. In the field experiments, silica NPs reduced the populations of all three insect pests and their associated predators, including rove beetles, as the concentration of silica NPs increased. In soybean fields, however, the total number of predators initially increased after applying the lowest concentration. An olfactometer-based choice test found that rove beetles were more likely to move towards an herbivore-infested plant treated with silica NPs than to a water-treated control, suggesting that silica NPs enhance the attraction of natural enemies via herbivore-induced plant volatiles. In the laboratory, while silica NPs inhibited the development of faba bean roots at 400 mg/L, they did not affect germination percentage, germination time, shoot length, or vigor index compared to the control.
Collapse
Affiliation(s)
- Ahmed F Thabet
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt.
- Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt.
- Field Crop Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-sheikh, Egypt.
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Hessien A Boraei
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Ola A Galal
- Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
| | - Magdy F M El-Samahy
- Field Crop Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-sheikh, Egypt
| | - Kareem M Mousa
- Economic Entomology Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-sheikh, Egypt
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yao Z Zhang
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Midori Tuda
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Eman A Helmy
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
- Regional Centre for Mycology and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt
| | - Jian Wen
- Laboratory of Insect Natural Enemies, Institute of Biological Control, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tsubasa Nozaki
- Entomological Laboratory, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
- The Kyushu University Museum, Fukuoka, Japan
| |
Collapse
|
13
|
Cheng B, Chen F, Wang C, Liu X, Yue L, Cao X, Wang Z, Xing B. The molecular mechanisms of silica nanomaterials enhancing the rice (Oryza sativa L.) resistance to planthoppers (Nilaparvata lugens Stal). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144967. [PMID: 33636776 DOI: 10.1016/j.scitotenv.2021.144967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Herein, fluorescent silica (F-SiO2) ENMs (50 nm) were synthesized, which could be taken up and translocated from rice root to shoot, promoting the plant growth and resistance to planthopper compared with Si ion fertilizers under hydroponic conditions. Particularly, upon exposure F-SiO2 ENMs (5 mg‧L-1) suspension for 9 days, the fresh and dry weight (FW and DW) of shoot, the root length, surface area, and tip number were increased by 33.58%, 65.22%, 15.26%, 20.26% and 29.01%, respectively. Notably, in the presence of planthopper, the shoot FW and DW still increased by 61.88% and 114.75%, respectively. The increased lignin content (by 30.13%) and formation of silica cells in stem after F-SiO2 ENMs exposure (5 mg‧L-1) could be mechanical barriers against planthoppers. The transcriptome data revealed that F-SiO2 ENMs could upregulate the expression of genes involved in plant-pathogen interactions, plant hormone signal transduction, glucose metabolism and carbon fixation pathway, promoting the growth and resistance of rice seedlings. Our findings provide first evidence for the underlying molecular mechanisms of SiO2 ENMs enhancing the rice resistance to planthopper.
Collapse
Affiliation(s)
- Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofei Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Hall CR, Rowe RC, Mikhael M, Read E, Hartley SE, Johnson SN. Plant silicon application alters leaf alkaloid concentrations and impacts parasitoids more adversely than their aphid hosts. Oecologia 2021; 196:145-154. [PMID: 33929604 DOI: 10.1007/s00442-021-04902-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Grasses accumulate large amounts of silicon (Si) which acts as a highly effective physical defence against insect herbivory, however recent evidence shows that Si supplementation also modifies plant secondary metabolite concetrations. Changes in plant secondary metabolites concentrations can have cascading effects on higher trophic levels, such as parasitoids, as they are dependent on the host herbivore for growth and development. However, relatively little is known about how Si application affects higher trophic levels. We examined the effects of Si addition on alkaloid content in leaves of Phalaris aquatica (Poaceae) and the effect on interactions between an aphid (Rhopalosiphum padi) and its parasitoid (Aphidius colemani). Si supplementation had no effect on aphid abundance or parasitism rate. Adult aphids, aphid mummies (parasitised aphids) and the emergent parasitoids were, however, significantly smaller on Si+ plants. Parasitoid traits (size and emergence) were correlated with aphid mummy size. Si addition reduced parasitoid emergence rate and size due to reduced host mummy size, in addition, significantly fewer females emerged from mummies on Si+ plants. Aphid infestation significantly altered alkaloids concentrations, reducing gramine by 80% while increasing tryptamine by 91% in Si- plants. Si addition reduced aphid-induced tryptamine concentrations by 64% and increased 5-MeO-tryptamine by over 800% in control and 142% in aphid infested plants. Our results show that while Si addition has modest impacts on the herbivore, it significantly alters secondary metabolites and has stronger effects on the higher trophic level through changes in the quality of the parasitised host.
Collapse
Affiliation(s)
- Casey R Hall
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia.
| | - Rhiannon C Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Meena Mikhael
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
| | - Elizabeth Read
- Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, VIC, 3083, Australia
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
15
|
Katz O, Puppe D, Kaczorek D, Prakash NB, Schaller J. Silicon in the Soil-Plant Continuum: Intricate Feedback Mechanisms within Ecosystems. PLANTS (BASEL, SWITZERLAND) 2021; 10:652. [PMID: 33808069 PMCID: PMC8066056 DOI: 10.3390/plants10040652] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/28/2022]
Abstract
Plants' ability to take up silicon from the soil, accumulate it within their tissues and then reincorporate it into the soil through litter creates an intricate network of feedback mechanisms in ecosystems. Here, we provide a concise review of silicon's roles in soil chemistry and physics and in plant physiology and ecology, focusing on the processes that form these feedback mechanisms. Through this review and analysis, we demonstrate how this feedback network drives ecosystem processes and affects ecosystem functioning. Consequently, we show that Si uptake and accumulation by plants is involved in several ecosystem services like soil appropriation, biomass supply, and carbon sequestration. Considering the demand for food of an increasing global population and the challenges of climate change, a detailed understanding of the underlying processes of these ecosystem services is of prime importance. Silicon and its role in ecosystem functioning and services thus should be the main focus of future research.
Collapse
Affiliation(s)
- Ofir Katz
- Dead Sea and Arava Science Center, Mt. Masada, Tamar Regional Council, 86910 Tamar, Israel
- Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, 8855630 Eilat, Israel
| | - Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
- Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02776 Warsaw, Poland
| | - Nagabovanalli B. Prakash
- Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India;
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; (D.P.); (D.K.); (J.S.)
| |
Collapse
|
16
|
Tombeur F, Laliberté E, Lambers H, Faucon M, Zemunik G, Turner BL, Cornelis J, Mahy G. A shift from phenol to silica‐based leaf defences during long‐term soil and ecosystem development. Ecol Lett 2021; 24:984-995. [DOI: 10.1111/ele.13713] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/07/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Affiliation(s)
- Felix Tombeur
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| | - Etienne Laliberté
- Institut de Recherche en Biologie Végétale Université de Montréal 4101 Sherbrooke Est Montréal QC H1X 2B2 Canada
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Hans Lambers
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Michel‐Pierre Faucon
- AGHYLE SFR Condorcet FR CNRS 3417 UniLaSalle 19 rue Pierre Waguet Beauvais 60026 France
| | - Graham Zemunik
- School of Biological Sciences The University of Western Australia Crawley (Perth) WA 6009 Australia
| | - Benjamin L. Turner
- Smithsonian Tropical Research Institute Apartado 0843‐03092 Balboa Ancon Panama
- Soil and Water Science Department University of Florida Gainesville FL 32611 USA
| | - Jean‐Thomas Cornelis
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
- Faculty of Land and Food Systems The University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Grégory Mahy
- TERRA Teaching and Research Centre Gembloux Agro‐Bio Tech University of Liege Gembloux Belgium
| |
Collapse
|
17
|
Acevedo FE, Peiffer M, Ray S, Tan CW, Felton GW. Silicon-Mediated Enhancement of Herbivore Resistance in Agricultural Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:631824. [PMID: 33679847 PMCID: PMC7928372 DOI: 10.3389/fpls.2021.631824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/18/2021] [Indexed: 06/06/2023]
Abstract
Silicon (Si) is a beneficial mineral that enhances plant protection against abiotic and biotic stresses, including insect herbivores. Si increases mechanical and biochemical defenses in a variety of plant species. However, the use of Si in agriculture remains poorly adopted despite its widely documented benefits in plant health. In this study, we tested the effect of Si supplementation on the induction of plant resistance against a chewing herbivore in crops with differential ability to accumulate this element. Our model system comprised the generalist herbivore fall armyworm (FAW) Spodoptera frugiperda and three economically important plant species with differential ability to uptake silicon: tomato (non-Si accumulator), soybean, and maize (Si-accumulators). We investigated the effects of Si supply and insect herbivory on the induction of physical and biochemical plant defenses, and herbivore growth using potted plants in greenhouse conditions. Herbivory and Si supply increased peroxidase (POX) activity and trichome density in tomato, and the concentration of phenolics in soybean. Si supplementation increased leaf Si concentration in all plants. Previous herbivory affected FAW larval weight gain in all plants tested, and the Si treatment further reduced weight gain of larvae fed on Si accumulator plants. Notably, our results strongly suggest that non-glandular trichomes are important reservoirs of Si in maize and may increase plant resistance to chewing herbivores. We conclude that Si offers transient resistance to FAW in soybean, and a more lasting resistance in maize. Si supply is a promising strategy in management programs of chewing herbivores in Si-accumulator plants.
Collapse
|
18
|
Murali-Baskaran RK, Senthil-Nathan S, Hunter WB. Anti-herbivore activity of soluble silicon for crop protection in agriculture: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2626-2637. [PMID: 33150504 DOI: 10.1007/s11356-020-11453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si) is considered an important component for plant growth, development, and yield in many crop species. Silicon is also known to reduce plant pests. Although Si, the major component of soil next to oxygen, it is not used as a major nutrient by crop plants. However, extensive literature demonstrate the beneficial effects of soluble silicates, like silicon [orthosilicic acid (Si(H4SiO4)], on reducing biotic stress in crop ecosystems. In general, monocots tend to accumulate substantially more Si in plant tissues than dicots. Si accumulates in plant cell walls, providing protection by increasing the synthesis of lignin and phenolic compounds and activating the endogenous chemical defenses of plants including volatile and non-volatile compounds and other physical structures like trichomes. This review provides an overview of the history of silicon use in agriculture in India, for the management of insect pests. The future research needs in this field of study are also presented.
Collapse
Affiliation(s)
| | - Sengottayan Senthil-Nathan
- Division of Biopesticide and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Science, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, 627412, India
| | - Wayne Brian Hunter
- Agricultural Research Service, U.S. Horticultural Research Laboratory, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL, 34945, USA
| |
Collapse
|
19
|
Singh A, Kumar A, Hartley S, Singh IK. Silicon: its ameliorative effect on plant defense against herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6730-6743. [PMID: 32591824 DOI: 10.1093/jxb/eraa300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 05/06/2023]
Abstract
Plants protect themselves against pest attack utilizing both direct and indirect modes of defense. The direct mode of defense includes morphological, biochemical, and molecular barriers that affect feeding, growth, and survival of herbivores whereas the indirect mode of defense includes release of a blend of volatiles that attract natural enemies of the pests. Both of these strategies adopted by plants are reinforced if the plants are supplied with one of the most abundant metalloids, silicon (Si). Plants absorb Si as silicic acid (Si(OH)4) and accumulate it as phytoliths, which strengthens their physical defense. This deposition of Si in plant tissue is up-regulated upon pest attack. Further, Si deposited in the apoplast, suppresses pest effector molecules. Additionally, Si up-regulates the expression of defense-related genes and proteins and their activity and enhances the accumulation of secondary metabolites, boosting induced molecular and biochemical defenses. Moreover, Si plays a crucial role in phytohormone-mediated direct and indirect defense mechanisms. It is also involved in the reduction of harmful effects of oxidative stress resulting from herbivory by accelerating the scavenging process. Despite increasing evidence of its multiple roles in defense against pests, the practical implications of Si for crop protection have received less attention. Here, we highlight recent developments in Si-mediated improved plant resistance against pests and its significance for future use in crop improvement.
Collapse
Affiliation(s)
- Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Amit Kumar
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Susan Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, India
| |
Collapse
|
20
|
Islam W, Tayyab M, Khalil F, Hua Z, Huang Z, Chen HYH. Silicon-mediated plant defense against pathogens and insect pests. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104641. [PMID: 32711774 DOI: 10.1016/j.pestbp.2020.104641] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 05/20/2023]
Abstract
Plant diseases and insect pests are one of the major limiting factors that reduce crop production worldwide. Silicon (Si) is one of the most abundant elements in the lithosphere and has a positive impact on plant health by effectively mitigating biotic and abiotic stresses. It also enhances plant resistance against insect pests and fungal, bacterial, and viral diseases. Therefore, this review critically converges its focus upon Si-mediated physical, biochemical, and molecular mechanisms in plant defense against pathogens and insect pests. It further explains Si-modulated interactive phytohormone signaling and enzymatic production and their involvement in inducing resistance against biotic stresses. Furthermore, this review highlights the recent research accomplishments which have successfully revealed the active role of Si in protecting plants against insect herbivory and various viral, bacterial, and fungal diseases. The article explores the potential in enhancing Si-mediated plant resistance against various economically important diseases and insect pests, further shedding light upon future issues regarding the role of Si in defense against pathogens and insect pests.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Farghama Khalil
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhang Hua
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China; Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.
| |
Collapse
|
21
|
Johnson SN, Rowe RC, Hall CR. Aphid Feeding Induces Phytohormonal Cross-Talk without Affecting Silicon Defense against Subsequent Chewing Herbivores. PLANTS 2020; 9:plants9081009. [PMID: 32784988 PMCID: PMC7464791 DOI: 10.3390/plants9081009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/26/2022]
Abstract
Prior feeding by insect herbivores frequently affects plant quality for herbivores that subsequently feed on the plant. Facilitation occurs when one herbivore improves plant quality for other herbivores, including when the former compromises plant defenses. Silicon (Si) is an important defense in grasses that increases following activation of the jasmonic acid (JA) pathway. Given that aphids often stimulate the salicylic acid (SA) pathway, we hypothesized that this could reduce Si defense because of the well documented antagonistic cross-talk between SA and JA. We tested this in the model grass Brachypodium distachyon with and without Si (+Si and −Si, respectively); half of the plants were exposed to aphids (Rhopalosiphum padi) and half remained aphid-free. Aphid-free and aphid-exposed plants were then fed to chewing herbivores (Helicoverpa armigera). Aphids triggered higher SA concentrations which suppressed JA concentrations but this did not affect foliar Si. Chewing herbivores triggered higher JA concentrations and induced Si uptake, regardless of previous feeding by aphids. Chewer growth rates were not impacted by prior aphid herbivory but were reduced by 75% when feeding on +Si plants. We concluded that aphids caused phytohormonal cross-talk but this was overridden by chewing herbivory that also induced Si uptake.
Collapse
|
22
|
de Tombeur F, Turner BL, Laliberté E, Lambers H, Cornelis JT. Silicon Dynamics During 2 Million Years of Soil Development in a Coastal Dune Chronosequence Under a Mediterranean Climate. Ecosystems 2020. [DOI: 10.1007/s10021-020-00493-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|