1
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Noor M, Kiran A, Shahbaz M, Sanaullah M, Wakeel A. Root system architecture associated zinc variability in wheat (Triticum aestivum L.). Sci Rep 2024; 14:1781. [PMID: 38245570 PMCID: PMC10799890 DOI: 10.1038/s41598-024-52338-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
Root system architecture (RSA) plays a fundamental role in nutrient uptake, including zinc (Zn). Wheat grains are inheritably low in Zn. As Zn is an essential nutrient for plants, improving its uptake will not only improve their growth and yield but also the nutritional quality of staple grains. A rhizobox study followed by a pot study was conducted to evaluate Zn variability with respect to RSA and its impact on grain Zn concentration. The grain Zn content of one hundred wheat varieties was determined and grown in rhizoboxes with differential Zn (no Zn and 0.05 mg L-1 ZnSO4). Seedlings were harvested 12 days after sowing, and root images were taken and analyzed by SmartRoot software. Using principal component analysis, twelve varieties were screened out based on vigorous and weaker RSA with high and low grain Zn content. The screened varieties were grown in pots with (11 mg ZnSO4 kg-1 soil) and without Zn application to the soil. Zinc translocation, localization, and agronomic parameters were recorded after harvesting at maturity. In the rhizobox experiment, 4% and 8% varieties showed higher grain Zn content with vigorous and weaker RSA, respectively, while 45% and 43% varieties had lower grain Zn content with vigorous and weaker RSA. However, the pot experiment revealed that varieties with vigorous root system led to higher grain yield, though the grain Zn concentration were variable, while all varieties with weaker root system had lower yield as well as grain Zn concentration. Zincol-16 revealed the highest Zn concentration (28.07 mg kg-1) and grain weight (47.9 g). Comparatively higher level of Zn was localized in the aleurone layer than in the embryonic region and endosperm. It is concluded that genetic variability exists among wheat varieties for RSA and grain Zn content, with a significant correlation. Therefore, RSA attributes are promising targets for the Zn biofortification breeding program. However, Zn localization in endosperm needs to be further investigated to achieve the goal of reducing Zn malnutrition.
Collapse
Affiliation(s)
- Mehwish Noor
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aysha Kiran
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Sanaullah
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Wakeel
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
3
|
Liria-Domínguez R, Penny M, Kroon PA, Burgos G, Dainty J, Zeder C, Zimmermann MB, King J, Mithen R, Boy E, Al-Jaiballi O, Fairweather-Tait S. Biofortified Yellow-Fleshed Potatoes Provide More Absorbable Zinc than a Commonly Consumed Variety: A Randomized Trial Using Stable Isotopes in Women in the Peruvian Highlands. J Nutr 2023; 153:2893-2900. [PMID: 37648112 PMCID: PMC10613720 DOI: 10.1016/j.tjnut.2023.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Zinc-biofortified potatoes have considerable potential to reduce zinc deficiency because of their low levels of phytate, an inhibitor of zinc absorption, and their high consumption, especially in the Andean region of Peru. OBJECTIVES The purpose of this study was to measure fractional and total zinc absorption from a test meal of biofortified compared with regular potatoes. METHODS We undertook a single-blinded randomized crossover study (using 67Zn and 70Zn stable isotopes) in which 37 women consumed 500-g biofortified or regular potatoes twice a day. Urine samples were collected to determine fractional and total zinc absorption. RESULTS The zinc content of the biofortified potato and regular potato was 0.48 (standard deviation [SD]: 0.02) and 0.32 (SD: 0.03) mg/100 g fresh weight, respectively. Mean fractional zinc absorption (FZA) from the biofortified potatoes was lower than from the regular potatoes, 20.8% (SD: 5.4%) and 25.5% (SD: 7.0%), respectively (P < 0.01). However, total zinc absorbed was significantly higher (0.49; SD: 0.13 and 0.40; SD: 0.11 mg/500 g, P < 0.01, respectively). CONCLUSIONS The results of this study demonstrate that biofortified potatoes provide more absorbable zinc than regular potatoes. Zinc-biofortified potatoes could contribute toward reducing zinc deficiency in populations where potatoes are a staple food. This trial was registered at clinicaltrials.gov as NCT05154500.
Collapse
Affiliation(s)
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Paul Antony Kroon
- Food, Microbiome and Health Program, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Gabriela Burgos
- Genetics, Genomics, and Crop Improvement Division, International Potato Center, Lima, Peru
| | - Jack Dainty
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Christophe Zeder
- ETH Zürich, Laboratory of Human Nutrition, Department of Health Sciences and Technology, Institute of Food, Nutrition, and Health, Zurich, Switzerland
| | - Michael B Zimmermann
- ETH Zürich, Laboratory of Human Nutrition, Department of Health Sciences and Technology, Institute of Food, Nutrition, and Health, Zurich, Switzerland
| | - Janet King
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA, United States
| | - Richard Mithen
- Liggins Institute, Waipapa Taumata Rau - The University of Auckland, Auckland, New Zealand
| | - Erick Boy
- HarvestPlus Programme, Innovation, Policy and Scaling Unit, International Food Policy Research Institute, Washington, DC, USA
| | - Olla Al-Jaiballi
- Food, Microbiome and Health Program, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | | |
Collapse
|
4
|
Kudapa H, Barmukh R, Vemuri H, Gorthy S, Pinnamaneni R, Vetriventhan M, Srivastava RK, Joshi P, Habyarimana E, Gupta SK, Govindaraj M. Genetic and genomic interventions in crop biofortification: Examples in millets. FRONTIERS IN PLANT SCIENCE 2023; 14:1123655. [PMID: 36950360 PMCID: PMC10025513 DOI: 10.3389/fpls.2023.1123655] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Micronutrient malnutrition is a serious threat to the developing world's human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics. Considering the potential of millets in empowering smallholder farmers, adapting to changing climate, and transforming agrifood systems, the year 2023 has been declared by the United Nations as the International Year of Millets. In this review, we highlight recent genetic and genomic innovations that can be explored to enhance grain micronutrient density in millets. We summarize the advances made in high-throughput phenotyping to accurately measure grain micronutrient content in cereals. We shed light on genetic diversity in millet germplasm collections existing globally that can be exploited for developing nutrient-dense and high-yielding varieties to address food and nutritional security. Furthermore, we describe the progress made in the fields of genomics, proteomics, metabolomics, and phenomics with an emphasis on enhancing the grain nutritional content for designing competitive biofortified varieties for the future. Considering the close genetic-relatedness within cereals, upcoming research should focus on identifying the genetic and genomic basis of nutritional traits in millets and introgressing them into major cereals through integrated omics approaches. Recent breakthroughs in the genome editing toolbox would be crucial for mainstreaming biofortification in millets.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rutwik Barmukh
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Hindu Vemuri
- International Maize and Wheat Improvement Center (CIMMYT), Patancheru, Telangana, India
| | - Sunita Gorthy
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Priyanka Joshi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
5
|
Huertas R, Karpinska B, Ngala S, Mkandawire B, Maling'a J, Wajenkeche E, Kimani PM, Boesch C, Stewart D, Hancock RD, Foyer CH. Biofortification of common bean ( Phaseolus vulgaris L.) with iron and zinc: Achievements and challenges. Food Energy Secur 2023; 12:e406. [PMID: 38440694 PMCID: PMC10909572 DOI: 10.1002/fes3.406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 03/06/2024] Open
Abstract
Micronutrient deficiencies (hidden hunger), particularly in iron (Fe) and zinc (Zn), remain one of the most serious public health challenges, affecting more than three billion people globally. A number of strategies are used to ameliorate the problem of micronutrient deficiencies and to improve the nutritional profile of food products. These include (i) dietary diversification, (ii) industrial food fortification and supplements, (iii) agronomic approaches including soil mineral fertilisation, bioinoculants and crop rotations, and (iv) biofortification through the implementation of biotechnology including gene editing and plant breeding. These efforts must consider the dietary patterns and culinary preferences of the consumer and stakeholder acceptance of new biofortified varieties. Deficiencies in Zn and Fe are often linked to the poor nutritional status of agricultural soils, resulting in low amounts and/or poor availability of these nutrients in staple food crops such as common bean. This review describes the genes and processes associated with Fe and Zn accumulation in common bean, a significant food source in Africa that plays an important role in nutritional security. We discuss the conventional plant breeding, transgenic and gene editing approaches that are being deployed to improve Fe and Zn accumulation in beans. We also consider the requirements of successful bean biofortification programmes, highlighting gaps in current knowledge, possible solutions and future perspectives.
Collapse
Affiliation(s)
- Raul Huertas
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
| | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| | - Sophia Ngala
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | - Bertha Mkandawire
- The Food, Agriculture and Natural Resources Policy Analysis Network (FANRPAN)PretoriaSouth Africa
| | - Joyce Maling'a
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Elizabeth Wajenkeche
- Kenya Agriculture and Livestock Research Organization (KALRO)Food Crops Research InstituteKitaleKenya
| | - Paul M. Kimani
- Department of Plant Science and Crop Protection, College of Agriculture and Veterinary SciencesUniversity of NairobiNairobiKenya
| | | | - Derek Stewart
- Environmental and Biochemical SciencesThe James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | | | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonUK
| |
Collapse
|
6
|
Ofori KF, Antoniello S, English MM, Aryee ANA. Improving nutrition through biofortification-A systematic review. Front Nutr 2022; 9:1043655. [PMID: 36570169 PMCID: PMC9784929 DOI: 10.3389/fnut.2022.1043655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Nutritious foods are essential for human health and development. However, malnutrition and hidden hunger continue to be a challenge globally. In most developing countries, access to adequate and nutritious food continues to be a challenge. Although hidden hunger is less prevalent in developed countries compared to developing countries where iron (Fe) and zinc (Zn) deficiencies are common. The United Nations (UN) 2nd Sustainable Development Goal was set to eradicate malnutrition and hidden hunger. Hidden hunger has led to numerous cases of infant and maternal mortalities, and has greatly impacted growth, development, cognitive ability, and physical working capacity. This has influenced several countries to develop interventions that could help combat malnutrition and hidden hunger. Interventions such as dietary diversification and food supplementation are being adopted. However, fortification but mainly biofortification has been projected to be the most sustainable solution to malnutrition and hidden hunger. Plant-based foods (PBFs) form a greater proportion of diets in certain populations; hence, fortification of PBFs is relevant in combating malnutrition and hidden hunger. Agronomic biofortification, plant breeding, and transgenic approaches are some currently used strategies in food crops. Crops such as cereals, legumes, oilseeds, vegetables, and fruits have been biofortified through all these three strategies. The transgenic approach is sustainable, efficient, and rapid, making it suitable for biofortification programs. Omics technology has also been introduced to improve the efficiency of the transgenic approach.
Collapse
Affiliation(s)
- Kelvin F. Ofori
- Department of Human Ecology, Delaware State University, Dover, DE, United States
| | - Sophia Antoniello
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Marcia M. English
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, DE, United States,*Correspondence: Alberta N. A. Aryee,
| |
Collapse
|
7
|
Bakhite MAE, Sithole NJ, Magwaza LS, Odindo AO, Magwaza ST, Ncama K. Phosphorus application improves grain yield in low phytic acid maize synthetic populations. Heliyon 2021; 7:e07912. [PMID: 34527823 PMCID: PMC8429078 DOI: 10.1016/j.heliyon.2021.e07912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/10/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Maize mutants with low phytic acid have a compromised overall agronomic performance that results in low yields. This study was conducted to investigate the effect of P (18, 26 and 34 mg/kg) on the agronomic performance of low and high phytic acid (LPA and HPA) maize synthetic populations of tropical origin, compared to two commercial hybrids (SC701 and LS8520). Subsequently, a germination test was performed on the seeds produced from the different levels of P fertilizer application rates. The germination test was conducted in the laboratory, using a germination paper towel, while the agronomic study was conducted in a controlled environment. The measured parameters included days to 50% flowering, plant height, and grain yield, as well as the final germination and germination velocity index. The results found that the grain yield increased by 1.30, 0.51, 2.41 and 1.87 t/ha in LPA, HPA, SC701 and LS8520, from the application of 18–26 mg/kg of P, respectively. However, there were non-significant differences (p > 0.05) in the grain yields of all varieties at a P application of 26 and 34 mg/kg. The final germination increased by 4% and 2% in LPA and LS8520, respectively, with the increase in the P application rate being from 18 to 26 mg/kg. However, no significant differences (p > 0.05) were found in the final germination percentage of all varieties at 26 mg/kg of P. This study indicated that the optimum application of P at planting enhances the overall performance of the LPA maize synthetic population to a level that is comparable to commercially-grown varieties.
Collapse
Affiliation(s)
- Mohammed A E Bakhite
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Nkanyiso J Sithole
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Lembe S Magwaza
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa.,Discipline of Horticultural Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Alfred O Odindo
- Discipline of Crop Science, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Shirly T Magwaza
- Department of Agricultural Science, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Khayelihle Ncama
- Crop Science Department, Faculty of Natural and Agricultural Science, North-West University Private Bag X 2046, Mmabatho 2035, South Africa.,Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
8
|
An insight into phytic acid biosynthesis and its reduction strategies to improve mineral bioavailability. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00371-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
9
|
Sheraz S, Wan Y, Venter E, Verma SK, Xiong Q, Waites J, Connorton JM, Shewry PR, Moore KL, Balk J. Subcellular dynamics studies of iron reveal how tissue-specific distribution patterns are established in developing wheat grains. THE NEW PHYTOLOGIST 2021; 231:1644-1657. [PMID: 33914919 DOI: 10.1111/nph.17440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Understanding the mechanisms of iron trafficking in plants is key to enhancing the nutritional quality of crops. Because it is difficult to image iron in transit, we currently have an incomplete picture of the route(s) of iron translocation in developing seeds and how the tissue-specific distribution is established. We have used a novel approach, combining iron-57 (57 Fe) isotope labelling and nanoscale secondary ion mass spectrometry (NanoSIMS), to visualize iron translocation between tissues and within cells in immature wheat grain, Triticum aestivum. This enabled us to track the main route of iron transport from maternal tissues to the embryo through the different cell types. Further evidence for this route was provided by genetically diverting iron into storage vacuoles, with confirmation provided by histological staining and transmission electron microscopy energy dispersive X-ray spectroscopy (TEM-EDS). Almost all iron in both control and transgenic grains was found in intracellular bodies, indicating symplastic rather than apoplastic transport. Furthermore, a new type of iron body, highly enriched in 57 Fe, was observed in aleurone cells and may represent iron being delivered to phytate globoids. Correlation of the 57 Fe enrichment profiles obtained by NanoSIMS with tissue-specific gene expression provides an updated model of iron homeostasis in cereal grains with relevance for future biofortification strategies.
Collapse
Affiliation(s)
- Sadia Sheraz
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Yongfang Wan
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Eudri Venter
- Bioimaging facility, Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Shailender K Verma
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Qing Xiong
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Joshua Waites
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Peter R Shewry
- Department of Plant Sciences, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Katie L Moore
- School of Materials and Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Zeffa DM, Nogueira AF, Buratto JS, de Oliveira RBR, Neto JDS, Moda-Cirino V. Genetic Variability of Mineral Content in Different Grain Structures of Bean Cultivars from Mesoamerican and Andean Gene Pools. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10061246. [PMID: 34205241 PMCID: PMC8234366 DOI: 10.3390/plants10061246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 05/15/2023]
Abstract
Beans (Phaseolus vulgaris L.) are an important source of proteins, carbohydrates, and micronutrients in the diets of millions of people in Latin America and Africa. Studies related to genetic variability in the accumulation and distribution of nutrients are valuable for biofortification programs, as there is evidence that the seed coat and embryo differ in the bioavailability of essential nutrients. In this study, we sought to evaluate the genetic variability of total mineral content in the grain and its constituent parts (seed coat, cotyledon, and embryonic axis) of bean genotypes from Mesoamerican and Andean centers of origin. Grain samples of 10 bean cultivars were analyzed for the content of proteins and minerals (Mg, Ca, K, P, Mn, S, Cu, B, Fe, and Zn) in the whole grains and seed coat, cotyledons, and embryonic axis tissues. Genetic variability was observed among the cultivars for protein content and all evaluated minerals. Moreover, differential accumulation of minerals was observed in the seed coat, cotyledons, and embryonic axis. Except for Ca, which accumulated predominantly in the seed coat, higher percentages of minerals were detected in the cotyledons. Furthermore, 100-grain mass values showed negative correlations with the contents of Ca, Mg, P, Zn, Fe, and Mn in whole grains or in the different grain tissues. In general, the Mesoamerican cultivars showed a higher concentration of minerals in the grains, whereas Andean cultivars showed higher concentrations of protein.
Collapse
Affiliation(s)
- Douglas Mariani Zeffa
- Agronomy Department, State University of Maringá, Maringá 87020-900, Brazil
- Correspondence:
| | - Alison Fernando Nogueira
- Agronomy Department, State University of Londrina, Londrina 86057-970, Brazil; (A.F.N.); (R.B.R.d.O.)
| | - Juliana Sawada Buratto
- Plant Breeding and Propagation Area, Paraná Rural Development Institute-IAPAR-EMATER, Londrina 86047-902, Brazil; (J.S.B.); (J.d.S.N.); (V.M.-C.)
| | | | - José dos Santos Neto
- Plant Breeding and Propagation Area, Paraná Rural Development Institute-IAPAR-EMATER, Londrina 86047-902, Brazil; (J.S.B.); (J.d.S.N.); (V.M.-C.)
| | - Vânia Moda-Cirino
- Plant Breeding and Propagation Area, Paraná Rural Development Institute-IAPAR-EMATER, Londrina 86047-902, Brazil; (J.S.B.); (J.d.S.N.); (V.M.-C.)
| |
Collapse
|
11
|
Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK. Phytic acid: Blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 2021; 142:110193. [PMID: 33773669 DOI: 10.1016/j.foodres.2021.110193] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Phytic acid (PA), [myo-inositol 1,2,3,4,5,6-hexakisphosphate] is the principal storage compound of phosphorus (P) and account for 65%-85% of the seeds total P. The negative charge on PA attracts and chelates metal cations resulting in a mixed insoluble salt, phytate. Phytate contains six negatively charged ions, chelates divalent cations such as Fe2+, Zn2+, Mg2+, and Ca2+ rendering them unavailable for absorption by monogastric animals. This may lead to micronutrient deficiencies in humans since they lack the enzyme phytase that hydrolyzes phytate and releases the bound micronutrients. There are two main concerns about the presence of PA in human diet. The first is its negative impact on the bioavailability of several minerals and the second is the evidence of PA inhibiting various proteases essential for protein degradation and the subsequent digestion in stomach and small intestine. The beneficial role of PA has been underestimated due to its distinct negative consequences. PA is reported to be a potent natural plant antioxidant which plays a protective role against oxidative stress in seeds and preventive role in various human diseases. Recently beneficial roles of PA as an antidiabetic and antibacterial agent has been reported. Thus, the development of grains with low-PA and modified distribution pattern can be achieved through fine-tuning of its content in the seeds.
Collapse
Affiliation(s)
- Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR- National Rice Research Institute (ICAR-NRRI), Cuttack-753006, Odisha, India
| | - Brajesh Singh
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Pinky Raigond
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India
| | - Chandrasekhar Sahu
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Udit Nandan Mishra
- M.S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India
| | - Srigopal Sharma
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Milan Kumar Lal
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Insititute (ICAR-CPRI), Shimla-171001, Himachal Pradesh, India; Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|