1
|
Zubair A, Jamal A, Kallel M, He S. Empowering agriculture: The promise of zinc biofortification in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109085. [PMID: 39260264 DOI: 10.1016/j.plaphy.2024.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Zinc (Zn) plays a crucial role in metabolism in both plant and animal life. Zn deficiency is a worldwide problem that has recently gotten worse. This micronutrient shortage can be largely attributed to eating foods that are poor in zinc. If biofortification methods were widely used, Zn enrichment of the organ or tissue of interest would increase dramatically. However, Zn absorption mechanisms in rice plants must be understood on a fundamental level before these methods can be used effectively. Plant systems' Zn transporters and metal chelators play a major role in regulating this intricate physiological characteristic. The Zn efficiency of specific species is affected by a variety of factors, including the plant's growth stage, edaphic conditions, the time of year, and more. Both old and new ways of breeding plants can be used for biofortification. We have highlighted the significance of recombinant and genetic approaches to biofortifying in rice. In this review, we have the metabolic role of zinc in rice, and the different transporter families involved in the transportation of zinc in rice. We have also discussed the combined approaches of agronomic and genetic in zinc biofortification in rice and potential outcomes and future predictions.
Collapse
Affiliation(s)
- Akmal Zubair
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, Zhejiang Province, China; Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan.
| | - Adil Jamal
- Faculty of Science, The University of Faisalabad, Faisalabad, Punjab, Pakistan; Sciences and Research, College of Nursing Umm Al Qura University, Makkah 715 Saudi Arabia.
| | - Mohamed Kallel
- Department of Physics, Faculty of Sciences and arts, Northern Border University, Rafha 91911, Saudi Arabia.
| | - Shan He
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan City, Zhejiang Province, China; Faculty of Science and Technology, Charles Darwin University, Casuarina, NT, Australia.
| |
Collapse
|
2
|
Nazari L, Zinati Z. Transcriptional survey of abiotic stress response in maize ( Zea mays) in the level of gene co-expression network and differential gene correlation analysis. AOB PLANTS 2024; 16:plad087. [PMID: 38162049 PMCID: PMC10753923 DOI: 10.1093/aobpla/plad087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Abstract. Maize may be exposed to several abiotic stresses in the field. Therefore, identifying the tolerance mechanisms of natural field stress is mandatory. Gene expression data of maize upon abiotic stress were collected, and 560 differentially expressed genes (DEGs) were identified through meta-analysis. The most significant gene ontology terms in up-regulated genes were 'response to abiotic stress' and 'chitinase activity'. 'Phosphorelay signal transduction system' was the most significant enriched biological process in down-regulated DEGs. The co-expression analysis unveiled seven modules of DEGs, with a notable positive correlation between the modules and abiotic stress. Furthermore, the statistical significance was strikingly high for the turquoise, green and yellow modules. The turquoise group played a central role in orchestrating crucial adaptations in metabolic and stress response pathways in maize when exposed to abiotic stress. Within three up-regulated modules, Zm.7361.1.A1_at, Zm.10386.1.A1_a_at and Zm.10151.1.A1_at emerged as hub genes. These genes might introduce novel candidates implicated in stress tolerance mechanisms, warranting further comprehensive investigation and research. In parallel, the R package glmnet was applied to fit a logistic LASSO regression model on the DEGs profile to select candidate genes associated with abiotic responses in maize. The identified hub genes and LASSO regression genes were validated on an independent microarray dataset. Additionally, Differential Gene Correlation Analysis (DGCA) was performed on LASSO and hub genes to investigate the gene-gene regulatory relationship. The P value of DGCA of 16 pairwise gene comparisons was lower than 0.01, indicating a gene-gene significant change in correlation between control and abiotic stress. Integrated weighted gene correlation network analysis and logistic LASSO analysis revealed Zm.11185.1.S1_at, Zm.2331.1.S1_x_at and Zm.17003.1.S1_at. Notably, these 3 genes were identified in the 16 gene-pair comparisons. This finding highlights the notable significance of these genes in the abiotic stress response. Additional research into maize stress tolerance may focus on these three genes.
Collapse
Affiliation(s)
- Leyla Nazari
- Crop and Horticultural Science Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, 7155863511, Iran
| | - Zahra Zinati
- Department of Agroecology, College of Agriculture and Natural Resources of Darab, Shiraz University, Shiraz, 7459117666, Iran
| |
Collapse
|
3
|
Singh B, Singh S, Mahato AK, Dikshit HK, Tripathi K, Bhatia S. Delineation of novel genomic loci and putative candidate genes associated with seed iron and zinc content in lentil (Lens culinaris Medik.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111787. [PMID: 37419329 DOI: 10.1016/j.plantsci.2023.111787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The use of molecular breeding approaches for development of lentil genotypes biofortified with essential micro-nutrients such as iron and zinc, could serve as a promising solution to address the problem of global malnutrition. Thus, genome-wide association study (GWAS) strategy was adopted in this study to identify the genomic regions associated with seed iron and zinc content in lentil. A panel of 95 diverse lentil genotypes, grown across three different geographical locations and evaluated for seed iron and zinc content, exhibited a wide range of variation. Genotyping-by-sequencing (GBS) analysis of the panel identified 33,745 significant single nucleotide polymorphisms (SNPs) that were distributed across all the 7 lentil chromosomes. Association mapping revealed 23 SNPs associated with seed iron content that were distributed across all the chromosomes except chromosome 3. Similarly, 14 SNPs associated with seed zinc content were also identified that were distributed across chromosomes 1, 2, 4, 5 and 6. Further, 80 genes were identified in the proximity of iron associated markers and 36 genes were identified in the proximity of zinc associated markers. Functional annotation of these genes revealed their putative involvement in iron and zinc metabolism. For seed iron content, two highly significant SNPs were found to be located within two putative candidate genes namely iron-sulfur cluster assembly (ISCA) and flavin binding monooxygenase (FMO) respectively. For zinc content, a highly significant SNP was detected in a gene encoding UPF0678 fatty acid-binding protein. Expression analysis of these genes and their putative interacting partners suggests their involvement in iron and zinc metabolism in lentil. Overall, in this study we have identified markers, putative candidate genes and predicted putative interacting protein partners significantly associated with iron and zinc metabolism that could be utilized in future breeding studies of lentil for nutrient biofortification.
Collapse
Affiliation(s)
- Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Sangeeta Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Ajay Kumar Mahato
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India
| | - Harsh Kumar Dikshit
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi 110067, India.
| |
Collapse
|
4
|
Maharajan T, Krishna TPA, Shilpha J, Ceasar SA. Effects of Individual or Combined Deficiency of Phosphorous and Zinc on Phenotypic, Nutrient Uptake, and Molecular Responses of Finger Millet ( Eleusine coracana): A Nutri-Rich Cereal Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:3378. [PMID: 37836117 PMCID: PMC10574462 DOI: 10.3390/plants12193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Deficiencies of either phosphorus (P) or zinc (Zn) or both are one of the major abiotic constraints influencing agricultural production. Research on the effects of individual or combined P and Zn deficiency is limited in cereals. This study reports the effects of the individual or combined deficiency of inorganic phosphate (Pi) and Zn on the phenotypic, root hair modification, nutrient uptake, and molecular responses of finger millet (Eleusine coracana), a nutri-rich cereal crop. Finger millet seedlings were grown hydroponically under control (+Pi+Zn), individual Pi deficiency (-Pi), individual Zn deficiency (-Zn), and combined Pi and Zn deficiency (-Pi-Zn) conditions for 30 days to find the phenotypic, root hair modification, nutrient uptake, and molecular responses. Compared to the individual -Zn condition, the individual -Pi condition had more of an effect in terms of biomass reduction. The combined -Pi-Zn condition increased the root hair length and density compared to the other three conditions. The individual -Zn condition increased the Pi uptake, while the individual -Pi condition favored the Zn uptake. EcZIP2 was highly upregulated in shoot tissues under the individual -Zn condition, and EcPHT1;2 was highly expressed in root tissues under the individual -Pi condition. This is the first study to report the effects of the individual or combined deficiency of Pi and Zn in finger millet and may lead to future studies to better manage P and Zn deficiency.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| | | | - Jayabalan Shilpha
- Department of Horticulture, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, India; (T.M.); (T.P.A.K.)
| |
Collapse
|
5
|
Mallikarjuna MG, Pandey MK, Sharma R, Clevenger J, Bhattacharya S. Editorial: Application of network-theoretic approaches in biology. Front Genet 2023; 14:1250548. [PMID: 37547469 PMCID: PMC10401834 DOI: 10.3389/fgene.2023.1250548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Affiliation(s)
| | - Manish Kumar Pandey
- The International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Rinku Sharma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Josh Clevenger
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | |
Collapse
|
6
|
Seregin IV, Kozhevnikova AD. Nicotianamine: A Key Player in Metal Homeostasis and Hyperaccumulation in Plants. Int J Mol Sci 2023; 24:10822. [PMID: 37446000 DOI: 10.3390/ijms241310822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Nicotianamine (NA) is a low-molecular-weight N-containing metal-binding ligand, whose accumulation in plant organs changes under metal deficiency or excess. Although NA biosynthesis can be induced in vivo by various metals, this non-proteinogenic amino acid is mainly involved in the detoxification and transport of iron, zinc, nickel, copper and manganese. This review summarizes the current knowledge on NA biosynthesis and its regulation, considers the mechanisms of NA secretion by plant roots, as well as the mechanisms of intracellular transport of NA and its complexes with metals, and its role in radial and long-distance metal transport. Its role in metal tolerance is also discussed. The NA contents in excluders, storing metals primarily in roots, and in hyperaccumulators, accumulating metals mainly in shoots, are compared. The available data suggest that NA plays an important role in maintaining metal homeostasis and hyperaccumulation mechanisms. The study of metal-binding compounds is of interdisciplinary significance, not only regarding their effects on metal toxicity in plants, but also in connection with the development of biofortification approaches to increase the metal contents, primarily of iron and zinc, in agricultural plants, since the deficiency of these elements in food crops seriously affects human health.
Collapse
Affiliation(s)
- Ilya V Seregin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| | - Anna D Kozhevnikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St., 35, 127276 Moscow, Russia
| |
Collapse
|
7
|
Noda Y, Furukawa J, Suzui N, Yin YG, Matsuoka K, Kawachi N, Satoh S. Characterization of zinc uptake and translocation visualized with positron-emitting 65Zn tracer and analysis of transport-related gene expression in two Lotus japonicus accessions. ANNALS OF BOTANY 2022; 130:799-810. [PMID: 35948001 PMCID: PMC9758300 DOI: 10.1093/aob/mcac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Zinc (Zn) is an essential element for humans and plants. However, Zn deficiency is widespread and 25 % of the world's population is at risk of Zn deficiency. To overcome the deficiency of Zn intake, crops with high Zn content are required. However, most crop-producing areas have Zn-deficient soils, therefore crops with excellent Zn uptake/transport characteristics (i.e. high Zn efficiency) are needed. Our objective was to identify the crucial factors responsible for high Zn efficiency in the legume Lotus japonicus. METHODS We evaluated Zn efficiency by static and real-time visualization of radioactive Zn (65Zn) uptake/transport in two L. japonicus accessions, MG-20 and B-129, that differ in Zn efficiency. The combination of visualization methods verified the dynamics of Zn accumulation and transport within the plant. We compared gene expression under a normal Zn concentration (control) and Zn deficiency to evaluate genetic factors that may determine the differential Zn efficiency of the accessions. KEY RESULTS The accession B-129 accumulated almost twice the amount of Zn as MG-20. In the static 65Zn images, 65Zn accumulated in meristematic tissues, such as root tips and the shoot apex, in both accessions. The positron-emitting tracer imaging system (PETIS), which follows the transport process in real time, revealed that 65Zn transport to the shoot was more rapid in B-129 than in MG-20. Many genes associated with Zn uptake and transport were more highly expressed in B-129 than in MG-20 under the control condition. These gene expression patterns under Zn deficiency differed from those under the control Zn condition. CONCLUSIONS PETIS confirmed that the real-time transport of 65Zn to the shoot was faster in B-129 than in MG-20. The high Zn efficiency of B-129 may be due to the elevated expression of a suite of Zn uptake- and transport-related genes.
Collapse
Affiliation(s)
- Yusaku Noda
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Jun Furukawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| | - Nobuo Suzui
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Yong-Gen Yin
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Keita Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| | - Naoki Kawachi
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology (QST), Gunma, 370-1292Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8572Japan
| |
Collapse
|
8
|
Goud CA, Satturu V, Malipatil R, Viswanath A, Semalaiyappan J, Kudapa H, Rathod S, Rathore A, Govindaraj M, Thirunavukkarasu N. Identification of iron and zinc responsive genes in pearl millet using genome-wide RNA-sequencing approach. Front Nutr 2022; 9:884381. [PMID: 36438771 PMCID: PMC9682069 DOI: 10.3389/fnut.2022.884381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 10/14/2022] [Indexed: 06/30/2024] Open
Abstract
Pearl millet (Pennisetum glaucum L.), an important source of iron (Fe) and zinc (Zn) for millions of families in dryland tropics, helps in eradicating micronutrient malnutrition. The crop is rich in Fe and Zn, therefore, identification of the key genes operating the mineral pathways is an important step to accelerate the development of biofortified cultivars. In a first-of-its-kind experiment, leaf and root samples of a pearl millet inbred ICMB 1505 were exposed to combinations of Fe and Zn stress conditions using the hydroponics method, and a whole-genome transcriptome assay was carried out to characterize the differentially expressed genes (DEGs) and pathways. A total of 37,093 DEGs under different combinations of stress conditions were identified, of which, 7,023 and 9,996 DEGs were reported in the leaf and root stress treatments, respectively. Among the 10,194 unique DEGs, 8,605 were annotated to cellular, biological, and molecular functions and 458 DEGs were assigned to 39 pathways. The results revealed the expression of major genes related to the mugineic acid pathway, phytohormones, chlorophyll biosynthesis, photosynthesis, and carbohydrate metabolism during Fe and Zn stress. The cross-talks between the Fe and Zn provided information on their dual and opposite regulation of key uptake and transporter genes under Fe and Zn deficiency. SNP haplotypes in rice, maize, sorghum, and foxtail millet as well as in Arabidopsis using pearl millet Fe and Zn responsive genes could be used for designing the markers in staple crops. Our results will assist in developing Fe and Zn-efficient pearl millet varieties in biofortification breeding programs and precision delivery mechanisms to ameliorate malnutrition in South Asia and Sub-Saharan Africa.
Collapse
Affiliation(s)
- Chengeshpur Anjali Goud
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Janani Semalaiyappan
- Genomics and Molecular Breeding Lab, ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Santosha Rathod
- Agricultural Statistics, ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Excellence in Breeding Platform, The International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- HarvestPlus, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | |
Collapse
|
9
|
Mishra J, Mishra I, Arora NK. 2,4-Diacetylphloroglucinol producing Pseudomonas fluorescens JM-1 for management of ear rot disease caused by Fusarium moniliforme in Zea mays L. 3 Biotech 2022; 12:138. [PMID: 35646503 DOI: 10.1007/s13205-022-03201-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Maize (Zea mays L.) is a major cereal crop grown in a large number of countries. Loss in maize yield due to biotic stresses including fungal phytopathogens is a matter of immense concern. Control measures applied for eradication of fungal phytopathogens in maize are not up to the mark and more often involve harsh chemical(s)/pesticide(s) that cause deleterious effects both in humans and soil biota. Greener alternatives, such as the use of rhizosphere microbes in the form of bioinoculants, have proven to be very successful in terms of enhancing crop yield and suppressing fungal phytopathogens. In the present study, fluorescent pseudomonads were isolated from the maize rhizosphere and monitored for their plant growth-promoting (PGP) and biocontrol activities against Fusarium moniliforme. Based on various PGP traits and biocontrol potential, isolate JM-1 was found to be most effective and as per 16S rRNA gene sequencing analysis was identified as Pseudomonas fluorescens. Further experiments showed that the biocontrol potential of JM-1 against ear rot fungus involved the production of antifungal compound 2,4-diacetylphloroglucinol (DAPG). When examined for antagonistic interaction under scanning electron microscopy (SEM), structural abnormality, hyphal lysis, and deformity in fungal mycelium were observed. In the pot experiment, application of talc-based JM-1 containing bioformulation (in pot trials) showed significant enhancement in maize growth parameters (including the seed number and weight) in comparison to control even in presence of the phytopathogen. Ear fresh weight, dry weight, number of seeds per plant, and 100-grain weight were found to increase significantly by 34, 34, 52, and 18% respectively, in comparison to control. P. fluorescens JM-1 can therefore be used as a bioinoculant for ear rot disease control and sustainably enhancing maize yield. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03201-7.
Collapse
Affiliation(s)
- Jitendra Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| | - Isha Mishra
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| | - Naveen Kumar Arora
- Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025 India
| |
Collapse
|
10
|
Banerjee A, Roychoudhury A. Dissecting the phytohormonal, genomic and proteomic regulation of micronutrient deficiency during abiotic stresses in plants. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Amini S, Arsova B, Hanikenne M. The molecular basis of zinc homeostasis in cereals. PLANT, CELL & ENVIRONMENT 2022; 45:1339-1361. [PMID: 35037265 DOI: 10.1111/pce.14257] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Plants require zinc (Zn) as an essential cofactor for diverse molecular, cellular and physiological functions. Zn is crucial for crop yield, but is one of the most limiting micronutrients in soils. Grasses like rice, wheat, maize and barley are crucial sources of food and nutrients for humans. Zn deficiency in these species therefore not only reduces annual yield but also directly results in Zn malnutrition of more than two billion people in the world. There has been good progress in understanding Zn homeostasis and Zn deficiency mechanisms in plants. However, our current knowledge of monocots, including grasses, remains insufficient. In this review, we provide a summary of our knowledge of molecular Zn homeostasis mechanisms in monocots, with a focus on important cereal crops. We additionally highlight divergences in Zn homeostasis of monocots and the dicot model Arabidopsis thaliana, as well as important gaps in our knowledge that need to be addressed in future research on Zn homeostasis in cereal monocots.
Collapse
Affiliation(s)
- Sahand Amini
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| | - Borjana Arsova
- Root Dynamics Group, IBG-2 - Plant Sciences, Institut für Bio- und Geowissenschaften (IBG), Forschungszentrum, Jülich, Germany
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Hacisalihoglu G. Unraveling the Mechanisms of Zinc Efficiency in Crop Plants: From Lab to Field Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:177. [PMID: 35050065 PMCID: PMC8779913 DOI: 10.3390/plants11020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Global food security and sustainability in the time of pandemics (COVID-19) and a growing world population are important challenges that will require optimized crop productivity under the anticipated effects of climate change [...].
Collapse
Affiliation(s)
- Gokhan Hacisalihoglu
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
13
|
Xu J, Zhu X, Yan F, Zhu H, Zhou X, Yu F. Identification of Quantitative Trait Loci Associated With Iron Deficiency Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:805247. [PMID: 35498718 PMCID: PMC9048261 DOI: 10.3389/fpls.2022.805247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Iron (Fe) is a limiting factor in crop growth and nutritional quality because of its low solubility. However, the current understanding of how major crops respond to Fe deficiency and the genetic basis remains limited. In the present study, Fe-efficient inbred line Ye478 and Fe-inefficient inbred line Wu312 and their recombinant inbred line (RIL) population were utilized to reveal the physiological and genetic responses of maize to low Fe stress. Compared with the Fe-sufficient conditions (+Fe: 200 μM), Fe-deficient supply (-Fe: 30 μM) significantly reduced shoot and root dry weights, leaf SPAD of Fe-efficient inbred line Ye478 by 31.4, 31.8, and 46.0%, respectively; decreased Fe-inefficient inbred line Wu312 by 72.0, 45.1, and 84.1%, respectively. Under Fe deficiency, compared with the supply of calcium nitrate (N1), supplying ammonium nitrate (N2) significantly increased the shoot and root dry weights of Wu312 by 37.5 and 51.6%, respectively; and enhanced Ye478 by 23.9 and 45.1%, respectively. Compared with N1, N2 resulted in a 70.0% decrease of the root Fe concentration for Wu312 in the -Fe treatment, N2 treatment reduced the root Fe concentration of Ye478 by 55.8% in the -Fe treatment. These findings indicated that, compared with only supplying nitrate nitrogen, combined supply of ammonium nitrogen and nitrate nitrogen not only contributed to better growth in maize but also significantly reduced Fe concentration in roots. In linkage analysis, ten quantitative trait loci (QTLs) associated with Fe deficiency tolerance were detected, explaining 6.2-12.0% of phenotypic variation. Candidate genes considered to be associated with the mechanisms underlying Fe deficiency tolerance were identified within a single locus or QTL co-localization, including ZmYS3, ZmPYE, ZmEIL3, ZmMYB153, ZmILR3 and ZmNAS4, which may form a sophisticated network to regulate the uptake, transport and redistribution of Fe. Furthermore, ZmYS3 was highly induced by Fe deficiency in the roots; ZmPYE and ZmEIL3, which may be involved in Fe homeostasis in strategy I plants, were significantly upregulated in the shoots and roots under low Fe stress; ZmMYB153 was Fe-deficiency inducible in the shoots. Our findings will provide a comprehensive insight into the physiological and genetic basis of Fe deficiency tolerance.
Collapse
Affiliation(s)
- Jianqin Xu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiaoyang Zhu
- Key Lab of Crop Heterosis and Utilization of Ministry of Education, Beijing Key Lab of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fang Yan
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Huaqing Zhu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Xiuyu Zhou
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Futong Yu
- Key Laboratory of Plant-Soil Interaction (MOE), Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- *Correspondence: Futong Yu,
| |
Collapse
|
14
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Genome-wide understanding of evolutionary and functional relationships of rice Yellow Stripe-Like (YSL) transporter family in comparison with other plant species. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00924-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Gupta OP, Pandey V, Saini R, Khandale T, Singh A, Malik VK, Narwal S, Ram S, Singh GP. Comparative physiological, biochemical and transcriptomic analysis of hexaploid wheat (T. aestivum L.) roots and shoots identifies potential pathways and their molecular regulatory network during Fe and Zn starvation. Genomics 2021; 113:3357-3372. [PMID: 34339815 DOI: 10.1016/j.ygeno.2021.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Abstract
The combined effect of iron (Fe) and zinc (Zn) starvation on their uptake and transportation and the molecular regulatory networks is poorly understood in wheat. To fill this gap, we performed a comprehensive physiological, biochemical and transcriptome analysis in two bread wheat genotypes, i.e. Narmada 195 and PBW 502, differing in inherent Fe and Zn content. Compared to PBW 502, Narmada 195 exhibited increased tolerance to Fe and Zn withdrawal by significantly modulating the critical physiological and biochemical parameters. We identified 25 core genes associated with four key pathways, i.e. methionine cycle, phytosiderophore biosynthesis, antioxidant and transport system, that exhibited significant up-regulation in both the genotypes with a maximum in Narmada 195. We also identified 26 microRNAs targeting 14 core genes across the four pathways. Together, core genes identified can serve as valuable resources for further functional research for genetic improvement of Fe and Zn content in wheat grain.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ritu Saini
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Tushar Khandale
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Vipin Kumar Malik
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| | - Sneh Narwal
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India; Division of Biochemistry, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India.
| | - Gyanendra Pratap Singh
- ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, 132001, Haryana, India
| |
Collapse
|
17
|
Effects of Seed Priming with Zinc Sulfate on Nutritional Enrichment and Biochemical Fingerprints of Momordica charantia. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5553278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Zinc is an essential element for plant growth and development as it plays an important role in various metabolic processes with nutritional enrichment. The treatment with zinc sulfate is also economic. Momordica charantia is an economically important medicinal plant reported for a range of pharmaceutical and pharmacological properties. In this study, nutripriming with zinc sulfate (0.1%, 0.2%, and 0.3% solution) was applied to M. charantia seeds to optimize better dose. Based upon seedling establishment, 0.3% zinc sulfate was selected for final field experiment with randomized complete block design (RCBD) with five replications. Improved germination percentage, vigor, total soluble sugars, chlorophyll-a, chlorophyll-b, total chlorophyll content, and peroxidase activity were observed variably in leaves, fruit, and peel. Other nutritive components showed maintenance in fruits of treated plants indicating that the treatment did not cause any nutritive loss. Antimicrobial activity of leaves (in terms of the minimum inhibitory concentration) against Staphylococcus aureus and Pseudomonas aeruginosa was positively correlated with sinapic acid, vanillic acid, cinnamic acid, syringic acid, chlorogenic acid, benzoic acid, and ferulic acid. It has been concluded from this study that seed priming with zinc sulfate can improve seedling establishment, photosynthetic pigments, and stable nutritive value. Therefore, zinc from zinc sulfate priming has been proved as a beneficial fertilizer for M. charantia plant growth, yield, and nutraceutical potential.
Collapse
|