1
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
2
|
Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2799. [PMID: 37049093 PMCID: PMC10095723 DOI: 10.3390/ma16072799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bone tissue engineering integrates biomaterials, cells, and bioactive agents to propose sophisticated treatment options over conventional choices. Scaffolds have central roles in this scenario, and precisely designed and fabricated structures with the highest similarity to bone tissue have shown promising outcomes. On the other hand, using nanotechnology and nanomaterials as the enabling options confers fascinating properties to the scaffolds, such as precisely tailoring the physicochemical features and better interactions with cells and surrounding tissues. Among different nanomaterials, polymeric nanofibers and carbon nanofibers have attracted significant attention due to their similarity to bone extracellular matrix (ECM) and high surface-to-volume ratio. Moreover, bone ECM is a biocomposite of collagen fibers and hydroxyapatite crystals; accordingly, researchers have tried to mimic this biocomposite using the mineralization of various polymeric and carbon nanofibers and have shown that the mineralized nanofibers are promising structures to augment the bone healing process in the tissue engineering scenario. In this paper, we reviewed the bone structure, bone defects/fracture healing process, and various structures/cells/growth factors applicable to bone tissue engineering applications. Then, we highlighted the mineralized polymeric and carbon nanofibers and their fabrication methods.
Collapse
Affiliation(s)
- Zahra Ebrahimvand Dibazar
- Department of Oral and Maxillo Facial Medicine, Faculty of Dentistry, Tabriz Azad University of Medical Sciences, Tabriz 5165687386, Iran
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Masoud Hamidi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Cédric Delattre
- Clermont Auvergne INP, CNRS, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
| |
Collapse
|
3
|
Oprea M, Pandele AM, Nicoara AI, Nicolescu A, Deleanu C, Voicu SI. Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration. Int J Biol Macromol 2023; 230:123162. [PMID: 36623620 DOI: 10.1016/j.ijbiomac.2023.123162] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Due to its inherent properties and wide availability, cellulose acetate is an extremely competitive candidate for the production of polymeric membranes. However, for best results in particular applications, membrane modification is required in order to minimize unwanted interactions and introduce novel characteristics to the pristine polymer. In this study, the surface of commercial cellulose acetate membranes was functionalized with 4'-aminobenzo-15-crown-5 ether, using a covalent bonding approach. The main goal was the improvement of the membranes biomineralization ability, thus making them prospective materials for bone regeneration applications. The proposed reaction mechanism was confirmed by XPS and NMR analysis while the presence of the functionalization agents in the membranes structure was showed by ATR FT-IR and Raman spectra. The effects of the functionalization process on the morphology, thermal and mechanical properties of the membranes were studied by SEM, TGA and tensile tests. The obtained results revealed that the cellulose acetate membranes were successfully functionalized with crown ether and provided a good understanding of the interactions that took place between the polymer and the functionalization agents. Moreover, promising results were obtained during the Taguchi biomineralization studies. SEM images, EDX mapping and XRD spectra indicating that the CA-AB15C5 membranes have a superior Ca2+ ions retention ability, this causing an accentuated calcium phosphate deposition on the modified polymeric fibers, compared to the neat CA membrane.
Collapse
Affiliation(s)
- Madalina Oprea
- University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Department of Analytical Chemistry and Environmental Engineering, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Andreea Madalina Pandele
- University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Department of Analytical Chemistry and Environmental Engineering, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
| | - Adrian Ionut Nicoara
- University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Department of Science and Engineering of Oxide Materials and Nanomaterials, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Alina Nicolescu
- NMR Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
| | - Calin Deleanu
- NMR Laboratory, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania; "C.D. Nenitescu" Centre of Organic Chemistry, Romanian Academy, 060023 Bucharest, Romania
| | - Stefan Ioan Voicu
- University Politehnica of Bucharest, Faculty of Chemical Engineering and Biotechnologies, Department of Analytical Chemistry and Environmental Engineering, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania; Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania.
| |
Collapse
|
4
|
Janmohammadi M, Nazemi Z, Salehi AOM, Seyfoori A, John JV, Nourbakhsh MS, Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioact Mater 2023; 20:137-163. [PMID: 35663339 PMCID: PMC9142858 DOI: 10.1016/j.bioactmat.2022.05.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mahsa Janmohammadi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | | | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
| | - Mohammad Sadegh Nourbakhsh
- Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, P.O.Box: 19111-35131, Iran
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA, 90050, USA
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Anjum S, Rahman F, Pandey P, Arya DK, Alam M, Rajinikanth PS, Ao Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23169206. [PMID: 36012473 PMCID: PMC9408902 DOI: 10.3390/ijms23169206] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal-related disorders such as arthritis, bone cancer, osteosarcoma, and osteoarthritis are among the most common reasons for mortality in humans at present. Nanostructured scaffolds have been discovered to be more efficient for bone regeneration than macro/micro-sized scaffolds because they sufficiently permit cell adhesion, proliferation, and chemical transformation. Nanofibrous scaffolds mimicking artificial extracellular matrices provide a natural environment for tissue regeneration owing to their large surface area, high porosity, and appreciable drug loading capacity. Here, we review recent progress and possible future prospective electrospun nanofibrous scaffolds for bone tissue engineering. Electrospun nanofibrous scaffolds have demonstrated promising potential in bone tissue regeneration using a variety of nanomaterials. This review focused on the crucial role of electrospun nanofibrous scaffolds in biological applications, including drug/growth factor delivery to bone tissue regeneration. Natural and synthetic polymeric nanofibrous scaffolds are extensively inspected to regenerate bone tissue. We focused mainly on the significant impact of nanofibrous composite scaffolds on cell adhesion and function, and different composites of organic/inorganic nanoparticles with nanofiber scaffolds. This analysis provides an overview of nanofibrous scaffold-based bone regeneration strategies; however, the same concepts can be applied to other organ and tissue regeneration tactics.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Farheen Rahman
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Mahmood Alam
- Department of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Paruvathanahalli Siddalingam Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
- Correspondence: (P.S.R.); (Q.A.)
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
- Correspondence: (P.S.R.); (Q.A.)
| |
Collapse
|
6
|
Hasan MT, Gonzalez R, Munoz AA, Materon L, Parsons JG, Alcoutlabi M. Forcespun polyvinylpyrrolidone/copper and polyethylene oxide/copper composite fibers and their use as antibacterial agents. J Appl Polym Sci 2022. [DOI: 10.1002/app.51773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Md Toukir Hasan
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| | - Ramiro Gonzalez
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| | - Ari Alexis Munoz
- Department of Biology University of Texas Rio Grande Valley Edinburg Texas USA
| | - Luis Materon
- Department of Biology University of Texas Rio Grande Valley Edinburg Texas USA
| | - Jason G. Parsons
- Department of Chemistry University of Texas Rio Grande Valley Brownsville Texas USA
| | - Mataz Alcoutlabi
- Mechanical Engineering Department University of Texas Rio Grande Valley Edinburg Texas USA
| |
Collapse
|
7
|
Sabareeswari K, Valarmathi N, Arunai Nambiraj NS, Sumathi S. Synthesis, characterization, mechanical property and antimicrobial activity of cerium/silver substituted HAP/PVA/CMC composite. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sharma D, Saha S, Satapathy BK. Recent advances in polymer scaffolds for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:342-408. [PMID: 34606739 DOI: 10.1080/09205063.2021.1989569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The review provides insights into current advancements in electrospinning-assisted manufacturing for optimally designing biomedical devices for their prospective applications in tissue engineering, wound healing, drug delivery, sensing, and enzyme immobilization, and others. Further, the evolution of electrospinning-based hybrid biomedical devices using a combined approach of 3 D printing and/or film casting/molding, to design dimensionally stable membranes/micro-nanofibrous assemblies/patches/porous surfaces, etc. is reported. The influence of various electrospinning parameters, polymeric material, testing environment, and other allied factors on the morphological and physico-mechanical properties of electrospun (nano-/micro-fibrous) mats (EMs) and fibrous assemblies have been compiled and critically discussed. The spectrum of operational research and statistical approaches that are now being adopted for efficient optimization of electrospinning process parameters so as to obtain the desired response (physical and structural attributes) has prospectively been looked into. Further, the present review summarizes some current limitations and future perspectives for modeling architecturally novel hybrid 3 D/selectively textured structural assemblies, such as biocompatible, non-toxic, and bioresorbable mats/scaffolds/membranes/patches with apt mechanical stability, as biological substrates for various regenerative and non-regenerative therapeutic devices.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
9
|
Xu J, Du X, Xin B, Kan C, Xiao Y, Chen Z, Zhou M, Yan Q. Moisture-Wicking and Solar-Heated Coaxial Fibers with a Bark-like Appearance for Fabric Comfort Management. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26590-26600. [PMID: 34047185 DOI: 10.1021/acsami.1c03837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Maintaining the human body's comfort is a predominant requirement of functional textiles, but there are still considerable drawbacks to design an intelligent textile with proper moisture absorption and evaporation properties. Herein, we develop moisture-wicking and solar-heated coaxial fibers with a bark-like appearance for fabric comfort management. The cortex layer of coaxial fibers can absorb moisture via the synergistic effect of the hierarchical roughness and the hydrophilic polymeric matrix. The core layer containing zirconium carbide nanoparticles can assimilate energy from the body and sunlight, which raises the surface temperature of the material and accelerates moisture evaporation. The resulting coaxial fiber-based membrane exhibits an excellent droplet diffusion radius of 2.73 cm, an excellent wicking height of 6.97 cm, and a high surface temperature of 61.7 °C which is radiated by simulated sunlight. Moreover, the designed fabric also exhibits a significant UV protection factor of 2000. Overall, the successful synthesis of such fascinating fibrous membranes enables the rapid removal of sweat from the human body textile, providing a suitable and comfortable microenvironment for the human body.
Collapse
Affiliation(s)
- Jinhao Xu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Laboratory of Polymer Physics and Chemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xuanxuan Du
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Binjie Xin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chiwai Kan
- Institute of Textiles and Clothing, The Hongkong Polytechnic University, Hongkong 999077, China
| | - Yaqian Xiao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
- Institute of Textiles and Clothing, The Hongkong Polytechnic University, Hongkong 999077, China
| | - Zhuoming Chen
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mengjuan Zhou
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Qingshuai Yan
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
10
|
Ko SW, Lee JY, Rezk AI, Park CH, Kim CS. In-situ cellulose-framework templates mediated monodispersed silver nanoparticles via facile UV-light photocatalytic activity for anti-microbial functionalization. Carbohydr Polym 2021; 269:118255. [PMID: 34294292 DOI: 10.1016/j.carbpol.2021.118255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022]
Abstract
Cellulose is well known as a biocompatible material or natural reducing material. In this study, As an eco-friendly and facile method, we prepared monodispersed silver nanoparticles (AgNPs) in cellulose-framework through photocatalytic reaction. and we fabricated electrospun fiber scaffolds with excellent antibacterial properties and biocompatibility. UV-irradiation causes the electrical change of the cellulose-framework, thereby converting Ag ions into Ag particles. We applied a three-electrode system to confirm the phenomenon. Through STEM and EDS, it was found that the synthesized AgNPs were monodisperse in the nanofibers, and antibacterial activity was confirmed using gram-negative and gram-positive bacteria. In addition, it was suggested that the gradual release of simvastatin contained in the nanofibers and excellent mineralization would be easy to apply to bone regeneration. Therefore, the manufactured composite electrospun fiber mat can be used not only in biomedical fields but also in various applications that need to prevent the accumulation of microorganisms.
Collapse
Affiliation(s)
- Sung Won Ko
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ji Yeon Lee
- Department of Mechanical Design Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Abdelrahman I Rezk
- Department of Bionanosystem Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju, Republic of Korea; Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
11
|
Sharma D, Satapathy BK. Optimally controlled morphology and physico-mechanical properties of inclusion complex loaded electrospun polyvinyl alcohol based nanofibrous mats for therapeutic applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1182-1202. [PMID: 33765899 DOI: 10.1080/09205063.2021.1909414] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hydrophilic polyvinyl alcohol (PVA) based electrospun nanofibrous mats (ENMs) are recently being used for the designing and fabrication of active wound dressing materials. Thus, in this study an inclusion complex (IC) of curcumin (CUR) and β-cyclodextrin (β-CD) was optimally incorporated in electrospun PVA nanofibers, to obtain uniform bead-free nanofibers with minimum average diameter and variation using Taguchi's design of experiments (DOE). The optimum level parameters were ascertained using Taguchi's methodology, to obtain IC loaded PVA based bead-free ENMs, by varying IC (∼20, ∼40, and ∼60 wt.%) loading, applied voltage, solution concentration, and N, N-dimethylformamide (DMF) content in the electrospinning solution mixture. Validation experiments revealed a good agreement between the predicted and experimental values of fiber diameter, diameter-variation, and bead-numbers. Analysis of variance (ANOVA) showed a major influence of IC loading on the average fiber diameter and the number of bead defects, for IC-loaded PVA based ENMs. However, the DMF content of the solvent mixture significantly influenced the diameter variations of ENMs. The surface morphologies of ENMs were analyzed using Scanning Electron Microscopy (SEM) whereas the microstructural aspects were studied by Wide-Angle X-ray Diffraction (WAXD) and Fourier transform infrared (FT-IR) spectroscopy. The thermal properties were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) whereas the mechanical properties were measured by using uniaxial tensile testing and dynamic mechanical analysis (DMA). The variation in properties of IC loaded PVA based ENMs were correlated with neat PVA based ENMs fabricated using a similar set of optimized electrospinning process parameters. The study conceptually demonstrated the optimal designing of structurally-engineered hydrophilic IC loaded PVA based ENMs by using the Taguchi approach based on orthogonal DOE as potential drug release substrates.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
12
|
Wang Y, Cheng L, Wen S, Zhou S, Wang Z, Deng L, Mao HQ, Cui W, Zhang H. Ice-Inspired Superlubricated Electrospun Nanofibrous Membrane for Preventing Tissue Adhesion. NANO LETTERS 2020; 20:6420-6428. [PMID: 32813534 DOI: 10.1021/acs.nanolett.0c01990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by the superlubricated surface (SLS) of ice, which consists of an ultrathin and contiguous layer of surface-bound water, we built a SLS on the polycaprolactone (PCL)/poly(2-methacryloxyethylphosphorylcholine) (PMPC) composite nanofibrous membrane via electrospinning under controlled relative humidity (RH). The zwitterionic PMPC on the nanofiber provided a surface layer of bound water, thus generating a hydration lubrication surface. Prepared under 20% RH, electrospun PCL/PMPC nanofibers reached a minimum coefficient of friction (COF) of about 0.12 when the weight ratio of PMPC to PCL was 0.1. At a higher RH, a SLS with an ultralow COF of less than 0.05 was formed on the composite nanofibers. The high stability of the SLS hydration layer on the engineered nanofibrous membrane effectively inhibited fibroblast adhesion and markedly reduced tissue adhesion during tendon repair in vivo. This work demonstrates the great potential of this ice-inspired SLS approach in tissue adhesion-prevention applications.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Liang Cheng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Shizhu Wen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hai-Quan Mao
- Institute for NanoBioTechnology, Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Hongyu Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Kurakula M, Koteswara Rao G. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109919] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Oprea M, Voicu SI. Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2481. [PMID: 32486050 PMCID: PMC7321373 DOI: 10.3390/ma13112481] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
The development of novel polymeric composites based on cellulose derivatives and hydroxyapatite represents a fascinating and challenging research topic in membranes science and technology. Cellulose-based materials are a viable alternative to synthetic polymers due to their favorable physico-chemical and biological characteristics. They are also an appropriate organic matrix for the incorporation of hydroxyapatite particles, inter and intramolecular hydrogen bonds, as well as electrostatic interactions being formed between the functional groups on the polymeric chains surface and the inorganic filler. The current review presents an overview on the main application fields of cellulose derivatives/hydroxyapatite composite membranes. Considering the versatility of hydroxyapatite particles, the hybrid materials offer favorable prospects for applications in water purification, tissue engineering, drug delivery, and hemodialysis. The preparation technique and the chemical composition have a big influence on the final membrane properties. The well-established membrane fabrication methods such as phase inversion, electrospinning, or gradual electrostatic assembly are discussed, together with the various strategies employed to obtain a homogenous dispersion of the inorganic particles in the polymeric matrix. Finally, the main conclusions and the future directions regarding the preparation and applications of cellulose derivatives/hydroxyapatite composite membranes are presented.
Collapse
Affiliation(s)
- Madalina Oprea
- National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Splaiul Independentei 202, 060021 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| | - Stefan Ioan Voicu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Material Science, University Polytehnica of Bucharest, Gheorghe Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
15
|
Sruthi R, Balagangadharan K, Selvamurugan N. Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 2020; 193:111110. [PMID: 32416516 DOI: 10.1016/j.colsurfb.2020.111110] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
Veratric acid (3,4-dimethoxy benzoic acid) (VA) is a hydrophobic phenolic phytocompound possessing therapeutic potential, but it has not been reported as actuating bone regeneration to date. Furthermore, delivery of hydrophobic compounds is often impeded in the body, thus depreciating their bioavailability. In this study, VA was found to have osteogenic potential and its sustained delivery was facilitated through a nanoparticle-embedded coaxial electrospinning technique. Polycaprolactone/polyvinylpyrrolidone (PCL/PVP) coaxial fibers were electrospun, encasing VA-loaded chitosan nanoparticles (CHS-NP). The fibers showed commendable physiochemical and material properties and were biocompatible with mouse mesenchymal stem cells (mMSCs). When mMSCs were grown on coaxial fibers, VA promoted these cells towards osteoblast differentiation as was reflected by calcium deposits. The mRNA expression of Runx2, an important bone transcriptional regulator, and other differentiation markers such as alkaline phosphatase, collagen type I, and osteocalcin were found to be upregulated in mMSCs grown on the PCL/PVP/CHS-NP-VA fibers. Overall, the study portrays the delivery of the phytocompound, VA, in a sustained manner to promote bone regeneration.
Collapse
Affiliation(s)
- R Sruthi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 203 Tamil Nadu, India.
| |
Collapse
|
16
|
Abdullah MF, Nuge T, Andriyana A, Ang BC, Muhamad F. Core-Shell Fibers: Design, Roles, and Controllable Release Strategies in Tissue Engineering and Drug Delivery. Polymers (Basel) 2019; 11:E2008. [PMID: 31817133 PMCID: PMC6960548 DOI: 10.3390/polym11122008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 01/04/2023] Open
Abstract
The key attributes of core-shell fibers are their ability to preserve bioactivity of incorporated-sensitive biomolecules (such as drug, protein, and growth factor) and subsequently control biomolecule release to the targeted microenvironments to achieve therapeutic effects. Such qualities are highly favorable for tissue engineering and drug delivery, and these features are not able to be offered by monolithic fibers. In this review, we begin with an overview on design requirement of core-shell fibers, followed by the summary of recent preparation methods of core-shell fibers, with focus on electrospinning-based techniques and other newly discovered fabrication approaches. We then highlight the importance and roles of core-shell fibers in tissue engineering and drug delivery, accompanied by thorough discussion on controllable release strategies of the incorporated bioactive molecules from the fibers. Ultimately, we touch on core-shell fibers-related challenges and offer perspectives on their future direction towards clinical applications.
Collapse
Affiliation(s)
- Muhammad Faiq Abdullah
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- School of Bioprocess Engineering, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, Arau, Perlis 02600, Malaysia
| | - Tamrin Nuge
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Andri Andriyana
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Bee Chin Ang
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Centre of Advanced Materials, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (T.N.); (A.A.)
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
17
|
Kandasamy S, Narayanan V, Sumathi S. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications. Int J Biol Macromol 2019; 145:1018-1030. [PMID: 31726129 DOI: 10.1016/j.ijbiomac.2019.09.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Zn-Mn HAP (Zinc and Manganese substituted Hydroxyapatite), CMC (Carboxymethyl cellulose)/PVP (Polyvinyl pyrrolidone) and (Zn-Mn HAP)/CMC/PVP (Zn = Mn = 0.05, 0.1 M) were prepared by hydrothermal and electrospinning methods respectively. The prepared composites were characterized using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDAX) to examine the phase formation, functional groups and surface morphology. FTIR spectra of the composite confirmed the funcitonal groups present in the composite. SEM images showed the fiber formation and the incorporation of Zn-Mn HAP into the fiber structures. The physical properties like porosity, swelling and tensile strength was studied for the prepared composites. 0.1 M of (Zn-Mn HAP)/CMC/PVP (20, 40, 60 wt% of Zn-Mn HAP composite) showed good physical properties, in which the 60 wt% showed 98% of porosity with least swelling and the tensile strength was measured to be 67 MPa. Highest zone of inhibition was observed against the microbial organisms using this 60 wt% of 0.1 M of (Zn-Mn HAP)/CMC/PVP composite and it was also found to be hemocompatible with hemolysis value less than 3% when compared to other composites. The biocompatibility of the composite was evaluated using human osteoblast cells (HOS).
Collapse
|
18
|
Elnabawy E, Hassanain AH, Shehata N, Popelka A, Nair R, Yousef S, Kandas I. Piezoelastic PVDF/TPU Nanofibrous Composite Membrane: Fabrication and Characterization. Polymers (Basel) 2019; 11:E1634. [PMID: 31658601 PMCID: PMC6836188 DOI: 10.3390/polym11101634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022] Open
Abstract
Poly (vinylidene fluoride) nanofibers (PVDF NFs) have been extensively used in energy harvesting applications due to their promising piezoresponse characteristics. However, the mechanical properties of the generated fibers are still lacking. Therefore, we are presenting in this work a promising improvement in the elasticity properties of PVDF nanofibrous membrane through thermoplastic polyurethane (TPU) additives. Morphological, physical, and mechanical analyses were performed for membranes developed from different blend ratios. Then, the impact of added weight ratio of TPU on the piezoelectric response of the formed nanofibrous composite membranes was studied. The piezoelectric characteristics were studied through impulse loading testing where the electric voltage had been detected under applied mass weights. Piezoelectric characteristics were investigated further through a pressure mode test the developed nanofibrous composite membranes were found to be mechanically deformed under applied electric potential. This work introduces promising high elastic piezoelectric materials that can be used in a wide variety of applications including energy harvesting, wearable electronics, self-cleaning filters, and motion/vibration sensors.
Collapse
Affiliation(s)
- Eman Elnabawy
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt.
| | - Ahmed H Hassanain
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt.
- Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.
| | - Nader Shehata
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt.
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.
- Department of Physics, Kuwait College of Science and Technology (KCST), Jahraa 13133, Kuwait.
- Faculty of Science, Utah State University, Logan, UT 84341, USA.
- The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Anton Popelka
- Center of Advanced Materials (CAM), Qatar University, Doha 2713, Qatar.
| | - Remya Nair
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.
| | - Saifallah Yousef
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt.
| | - Ishac Kandas
- Center of Smart Nanotechnology and Photonics (CSNP), SmartCI Research Center of Excellence, Alexandria University, Alexandria 21544, Egypt.
- Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt.
- Department of Physics, Kuwait College of Science and Technology (KCST), Jahraa 13133, Kuwait.
| |
Collapse
|
19
|
Wang M, Hai T, Feng Z, Yu DG, Yang Y, Bligh SA. The Relationships between the Working Fluids, Process Characteristics and Products from the Modified Coaxial Electrospinning of Zein. Polymers (Basel) 2019; 11:E1287. [PMID: 31374977 PMCID: PMC6723308 DOI: 10.3390/polym11081287] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
The accurate prediction and manipulation of nanoscale product sizes is a major challenge in material processing. In this investigation, two process characteristics were explored during the modified coaxial electrospinning of zein, with the aim of understanding how this impacts the products formed. The characteristics studied were the spreading angle at the unstable region (θ) and the length of the straight fluid jet (L). An electrospinnable zein core solution was prepared and processed with a sheath comprising ethanolic solutions of LiCl. The width of the zein nanoribbons formed (W) was found to be more closely correlated with the spreading angle and straight fluid jet length than with the experimental parameters (the electrolyte concentrations and conductivity of the shell fluids). Linear equations W = 546.44L - 666.04 and W = 2255.3θ - 22.7 could be developed with correlation coefficients of Rwl2 = 0.9845 and Rwθ2 = 0.9924, respectively. These highly linear relationships reveal that the process characteristics can be very useful tools for both predicting the quality of the electrospun products, and manipulating their sizes for functional applications. This arises because any changes in the experimental parameters would have an influence on both the process characteristics and the solid products' properties.
Collapse
Affiliation(s)
- Menglong Wang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Tao Hai
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Zhangbin Feng
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China.
| | - Yaoyao Yang
- School of Materials Science & Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Sw Annie Bligh
- Caritas Institute of Higher Education, 2 Chui Ling Lane, Tseung Kwan O, New Territories, Hong Kong 999077, China.
| |
Collapse
|
20
|
Multi-Functional Electrospun Nanofibers from Polymer Blends for Scaffold Tissue Engineering. FIBERS 2019. [DOI: 10.3390/fib7070066] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in detail and reviewed.
Collapse
|
21
|
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1308-1355. [DOI: 10.1080/09205063.2019.1630699] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sugandha Chahal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | | |
Collapse
|
22
|
Cao XY, Tian N, Dong X, Cheng CK. Polylactide Composite Pins Reinforced with Bioresorbable Continuous Glass Fibers Demonstrating Bone-like Apatite Formation and Spiral Delamination Degradation. Polymers (Basel) 2019; 11:E812. [PMID: 31064109 PMCID: PMC6572480 DOI: 10.3390/polym11050812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
The emergence of polylactide composites reinforced with bioresorbable silicate glass fibers has allowed for the long-term success of biodegradable polymers in load-bearing orthopedic applications. However, few studies have reported on the degradation behavior and bioactivity of such biocomposites. The aim of this work was to investigate the degradation behavior and in vitro bioactivity of a novel biocomposite pin composed of bioresorbable continuous glass fibers and poly-L-D-lactide in simulated body fluid for 78 weeks. As the materials degraded, periodic spiral delamination formed microtubes and funnel-shaped structures in the biocomposite pins. It was speculated that the direction of degradation, from both ends towards the middle of the fibers and from the surface through to the bulk of the polymer matrix, could facilitate bone healing. Following immersion in simulated body fluid, a bone-like apatite layer formed on the biocomposite pins which had a similar composition and structure to natural bone. The sheet- and needle-like apatite nanostructure was doped with sodium, magnesium, and carbonate ions, which acted to lower the Ca/P atomic ratio to less than the stoichiometric apatite and presented a calcium-deficient apatite with low crystallinity. These findings demonstrated the bioactivity of the new biocomposite pins in vitro and their excellent potential for load-bearing applications.
Collapse
Affiliation(s)
- Xiao-Yan Cao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Na Tian
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Naton Technology Group Co. LTD, Beijing 100094, China.
| | - Xiang Dong
- Beijing Engineering Laboratory of Functional Medical Materials and Devices, Beijing Naton Technology Group Co. LTD, Beijing 100094, China.
| | - Cheng-Kung Cheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|