1
|
Augaitis N, Vaitkus S, Kairytė A, Vėjelis S, Šeputytė-Jucikė J, Balčiūnas G, Kremensas A. Research on Thermal Stability and Flammability of Wood Scob-Based Loose-Fill Thermal Insulation Impregnated with Multicomponent Suspensions. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2809. [PMID: 38930179 PMCID: PMC11204699 DOI: 10.3390/ma17122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Loose-fill thermal composite insulation produced from surface-modified wood scobs has been explored as a potential fire-resistant material for building envelopes. This work involves fire resistance behavior comparisons between four coating systems consisting of liquid glass, liquid glass-tung oil, liquid glass-expandable graphite, and liquid glass-tung oil-expandable graphite. The techniques of thermogravimetric and differential thermogravimetric analyses, gross heat combustion via a calorimetric bomb, cone calorimetry, SEM imaging of char residues, and energy dispersive spectrometry for elemental analysis, as well as propensity to undergo continuous smoldering, were implemented. The coating technique resulted in greater thermal stability at a higher temperature range (500-650 °C) of the resulting loose-fill thermal composite insulation, reduced flame-damaged area heights after the exposure of samples at 45° for 15 s and 30 s, with a maximum of 49% decreased gross heat combustion, reduced heat release and total smoke release rates, improved char residue layer formation during combustion and changed smoldering behavior due to the formation of homogeneous and dense carbon layers. The results showed that the highest positive impact was obtained using the liquid glass and liquid glass-expandable graphite system because of the ability of the liquid glass to cover the wood scob particle surface and form a stable and strong expanding carbon layer.
Collapse
Affiliation(s)
- Nerijus Augaitis
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų St. 28, 08217 Vilnius, Lithuania; (S.V.); (A.K.); (S.V.); (J.Š.-J.); (G.B.); (A.K.)
| | | | | | | | | | | | | |
Collapse
|
2
|
Kosmela P, Sałasińska K, Kowalkowska-Zedler D, Barczewski M, Piasecki A, Saeb MR, Hejna A. Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles. Polymers (Basel) 2024; 16:656. [PMID: 38475340 DOI: 10.3390/polym16050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Inadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and known for their environmental consequences, rubber wastes are desired from a circularity standpoint, which can also improve the mechanical properties of PU foams. In this work, melamine cyanurate (MC), melamine polyphosphate (MPP), and ammonium polyphosphate (APP) are used as well-known flame retardants (FRs) to develop highly fire-retardant ground tire rubber (GTR) particles for flexible PU foams. Analysis of the burning behavior of the resulting PU/GTR composites revealed that the armed GTR particles endowed PU with reduced flammability expressed by over 30% increase in limiting oxygen index, 50% drop in peak heat release rate, as well as reduced smoke generation. The Flame Retardancy Index (FRI) was used to classify and label PU/GTR composites such that the amount of GTR was found to be more important than that of FR type. The wide range of FRI (0.94-7.56), taking Poor to Good performance labels, was indicative of the sensitivity of flame retardancy to the hybridization of FR with GTR components, a feature of practicality. The results are promising for fire protection requirements in buildings; however, the flammability reduction was achieved at the expense of mechanical and thermal insulation performance.
Collapse
Affiliation(s)
- Paulina Kosmela
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kamila Sałasińska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
| | - Daria Kowalkowska-Zedler
- Department of Inorganic Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Adam Piasecki
- Institute of Materials Engineering, Poznan University of Technology, Jana Pawła II 24, 60-965 Poznan, Poland
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| |
Collapse
|
3
|
Głowacki A, Rybiński P, Żelezik M, Mirkhodjaev UZ. Cage Nanofillers' Influence on Fire Hazard and Toxic Gases Emitted during Thermal Decomposition of Polyurethane Foam. Polymers (Basel) 2024; 16:645. [PMID: 38475328 DOI: 10.3390/polym16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Polyurethane (PUR), as an engineering polymer, is widely used in many sectors of industries. However, the high fire risks associated with PUR, including the smoke density, a high heat release rate, and the toxicity of combustion products limit its applications in many fields. This paper presents the influence of silsesquioxane fillers, alone and in a synergistic system with halogen-free flame-retardant compounds, on reducing the fire hazard of polyurethane foams. The flammability of PUR composites was determined with the use of a pyrolysis combustion flow calorimeter (PCFC) and a cone calorimeter. The flammability results were supplemented with smoke emission values obtained with the use of a smoke density chamber (SDC) and toxicometric indexes. Toxicometric indexes were determined with the use of an innovative method consisting of a thermo-balance connected to a gas analyzer with the use of a heated transfer line. The obtained test results clearly indicate that the used silsesquioxane compounds, especially in combination with organic phosphorus compounds, reduced the fire risk, as expressed by parameters such as the maximum heat release rate (HRRmax), the total heat release rate (THR), and the maximum smoke density (SDmax). The flame-retardant non-halogen system also reduced the amounts of toxic gases emitted during the decomposition of PUR, especially NOx, HCN, NH3, CO and CO2. According to the literature review, complex studies on the fire hazard of a system of POSS-phosphorus compounds in the PUR matrix have not been published yet. This article presents the complex results of studies, indicating that the POSS-phosphorous compound system can be treated as an alternative to toxic halogen flame-retardant compounds in order to decrease the fire hazard of PUR foam.
Collapse
Affiliation(s)
- Arkadiusz Głowacki
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | - Przemysław Rybiński
- Institute of Chemistry, The Jan Kochanowski University, 25-406 Kielce, Poland
| | - Monika Żelezik
- Institute of Geography and Environmental Sciences, Jan Kochanowski University, 25-406 Kielce, Poland
| | | |
Collapse
|
4
|
Hwang J, Park D, Rie D. Manufacture and Combustion Characteristics of Cellulose Flame-Retardant Plate through the Hot-Press Method. Polymers (Basel) 2023; 15:4736. [PMID: 38139987 PMCID: PMC10748063 DOI: 10.3390/polym15244736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
This study focuses on the increased risk of high heat release and asphyxiation (toxic gas poisoning) in the event of a fire involving polyurethane (PU)- and MDF-based building materials, which are commonly used in buildings. Among them, polyurethane (PU) building materials are very commonly used in buildings, except in Europe and some other countries, due to their excellent thermal insulation performance. Still, problems of short-term heat release and the spread of toxic gases in the event of a fire continue to occur. To overcome these problems, researchers are actively working on introducing various flame retardants into building materials. Therefore, in this study, we produced a laboratory-sized (500 mm × 500 mm) plate-like flame-retardant board that can be utilized as a building material with a lower heat release rate and a lower toxicity index. The material was made by mixing expanded graphite and ceramic binder as flame retardants in a material that is formulated based on the cellulose of waste paper, replacing the existing building materials with a hot-press method. According to the ISO-5660-1 test on the heat release rate of the plate-like flame-retardant board, the Total Heat Release (THR) value was 2.9 (MJ/m2) for 10 min, showing an effect of reducing the THR value by 36.3 (MJ/m2) compared to the THR value of 39.2 (MJ/m2) of the specimen made using only paper. In addition, the toxicity index of the flame-retardant board was checked through the NES (Naval Engineering Standards)-713 test. As a result, the test specimen showed a toxicity index of 0.7, which is 2.4 lower than the toxicity index of 3.1 of MDF, which is utilized as a conventional building material. Based on the results of this study, the cellulose fire-retardant board showed the effect of reducing the heat release rate and toxicity index of building materials in a building fire, which reduces the risk of rapid heat spread and smoke toxicity. This has the potential to improve the evacuation time (A-SET) of evacuees in fires. It is also important to show that recycling waste paper and utilizing it as the main material for building materials can be an alternative in terms of sustainable development.
Collapse
Affiliation(s)
- Jeo Hwang
- Graduate School of Safety Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Dongin Park
- Department of Safety Engineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Dongho Rie
- Fire Disaster Prevention Research Center, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
5
|
Vasiliauskienė D, Lukša J, Servienė E, Urbonavičius J. Changes in the Bacterial Communities of Biocomposites with Different Flame Retardants. Life (Basel) 2023; 13:2306. [PMID: 38137906 PMCID: PMC10744946 DOI: 10.3390/life13122306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
In today's world, the use of environmentally friendly materials is strongly encouraged. These materials derive from primary raw materials of plant origin, like fibrous hemp, flax, and bamboo, or recycled materials, such as textiles or residual paper, making them suitable for the growth of microorganisms. Here, we investigate changes in bacterial communities in biocomposites made of hemp shives, corn starch, and either expandable graphite or a Flovan compound as flame retardants. Using Next Generation Sequencing (NGS), we found that after 12 months of incubation at 22 °C with a relative humidity of 65%, Proteobacteria accounted for >99.7% of the microbiome in composites with either flame retardant. By contrast, in the absence of flame retardants, the abundance of Proteobacteria decreased to 32.1%, while Bacteroidetes (36.6%), Actinobacteria (8.4%), and Saccharobacteria (TM7, 14.51%) appeared. Using the increasing concentrations of either expandable graphite or a Flovan compound in an LB medium, we were able to achieve up to a 5-log reduction in the viability of Bacillus subtilis, Pseudomonas aeruginosa, representatives of the Bacillus and Pseudomonas genera, the abundance of which varied in the biocomposites tested. Our results demonstrate that flame retardants act on both Gram-positive and Gram-negative bacteria and suggest that their antimicrobial activities also have to be tested when producing new compounds.
Collapse
Affiliation(s)
| | | | | | - Jaunius Urbonavičius
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Saulėtekio al. 11, 10223 Vilnius, Lithuania; (D.V.); (J.L.); (E.S.)
| |
Collapse
|
6
|
Cherednichenko K, Kopitsyn D, Smirnov E, Nikolaev N, Fakhrullin R. Fireproof Nanocomposite Polyurethane Foams: A Review. Polymers (Basel) 2023; 15:polym15102314. [PMID: 37242889 DOI: 10.3390/polym15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
First introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability. Fire retardant additives can be introduced into polyurethane foams to enhance their fireproof properties. Nanoscale materials employed as fire-retardant components of polyurethane foams have the potential to overcome this problem. Here, we review the recent (last 5 years) progress that has been made in polyurethane foam modification using nanomaterials to enhance its flame retardance. Different groups of nanomaterials and approaches for incorporating them into foam structures are covered. Special attention is given to the synergetic effects of nanomaterials with other flame-retardant additives.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Egor Smirnov
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Nikita Nikolaev
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, Kazan 420008, Russia
| |
Collapse
|
7
|
Asare MA, de Souza FM, Gupta RK. Waste to Resource: Synthesis of Polyurethanes from Waste Cooking Oil. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Magdalene A. Asare
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Felipe M. de Souza
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
- National Institute for Materials Advancement, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas 66762, United States
| |
Collapse
|
8
|
Sunflower Oil as a Renewable Resource for Polyurethane Foams: Effects of Flame-Retardants. Polymers (Basel) 2022; 14:polym14235282. [PMID: 36501676 PMCID: PMC9737309 DOI: 10.3390/polym14235282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Currently, polyurethane (PU) manufacturers seek green alternatives for sustainable production. In this work, sunflower oil is studied as a replacement and converted to a reactive form through epoxidation and oxirane opening to produce rigid PU foams. Confirmatory tests such as Fourier-transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), and hydroxyl value among others were performed to characterize the synthesized polyol. Despite the versatility of rigid PU foams, they are highly flammable, which makes eco-friendly flame retardants (FRs) desired. Herein, expandable graphite (EG) and dimethyl methyl phosphonate (DMMP), both non-halogenated FR, were incorporated under different concentrations to prepare rigid PU foams. Their effects on the physio-mechanical and fire-quenching properties of the sunflower oil-based PU foams were elucidated. Thermogravimetric and compression analysis showed that these foams presented appreciable compressive strength along with good thermal stability. The closed-cell contents (CCC) were around 90% for the EG-containing foams and suffered a decrease at higher concentrations of DMMP to 72%. The burning test showed a decrease in the foam's flammability as the neat foam had a burning time of 80 s whereas after the addition of 13.6 wt.% of EG and DMMP, separately, there was a decrease to 6 and 2 s, respectively. Hence, our research suggested that EG and DMMP could be a more viable alternative to halogen-based FR for PU foams. Additionally, the adoption of sunflower polyol yielded foams with results comparable to commercial ones.
Collapse
|
9
|
Xu X, Bai Z, Guo X, Chen Y, Chen X, Lu Z, Wu H. Effect of blowing agent content on the structure and flame‐retardant properties of rigid polyurethane foam/expanded graphite composites. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaoyu Xu
- Key Laboratory of Advanced Materials Technology Ministry of Education School of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Zhuyu Bai
- Key Laboratory of Advanced Materials Technology Ministry of Education School of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Xincheng Guo
- Key Laboratory of Advanced Materials Technology Ministry of Education School of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Yao Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education School of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education School of Materials Science and Engineering, Southwest Jiaotong University Chengdu China
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
- Engineering Research Center of Eco‐friendly Polymeric Materials Ministry of Education, Sichuan University Chengdu China
| | - Zongcheng Lu
- Sichuan Jiahe Copoly Technology Co. Ltd. Chengdu China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering Polymer Research Institute of Sichuan University Chengdu China
- Engineering Research Center of Eco‐friendly Polymeric Materials Ministry of Education, Sichuan University Chengdu China
| |
Collapse
|
10
|
A Systematic Review and Bibliometric Analysis of Flame-Retardant Rigid Polyurethane Foam from 1963 to 2021. Polymers (Basel) 2022; 14:polym14153011. [PMID: 35893975 PMCID: PMC9332328 DOI: 10.3390/polym14153011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/17/2022] Open
Abstract
Flame-retardant science and technology are sciences developed to prevent the occurrence of fire, meet the needs of social safety production, and protect people's lives and property. Rigid polyurethane (PU) is a polymer formed by the additional polymerization reaction of a molecule with two or more isocyanate functional groups with a polyol containing two or more reactive hydroxyl groups under a suitable catalyst and in an appropriate ratio. Rigid polyurethane foam (RPUF) is a foam-like material with a large contact area with oxygen when burning, resulting in rapid combustion. At the same time, RPUF produces a lot of toxic gases when burning and endangers human health. Improving the flame-retardant properties of RPUF is an important theme in flame-retardant science and technology. This review discusses the development of flame-retardant RPUF through the lens of bibliometrics. A total of 194 articles are analyzed, spanning from 1963 to 2021. We describe the development and focus of this theme at different stages. The various directions of this theme are discussed through keyword co-occurrence and clustering analysis. Finally, we provide reasonable perspectives about the future research direction of this theme based on the bibliometric results.
Collapse
|
11
|
Chan YY, Schartel B. It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers (Basel) 2022; 14:polym14132562. [PMID: 35808608 PMCID: PMC9269610 DOI: 10.3390/polym14132562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/20/2022] Open
Abstract
Due to the high flammability and smoke toxicity of polyurethane foams (PUFs) during burning, distinct efficient combinations of flame retardants are demanded to improve the fire safety of PUFs in practical applications. This feature article focuses on one of the most impressive halogen-free combinations in PUFs: expandable graphite (EG) and phosphorus-based flame retardants (P-FRs). The synergistic effect of EG and P-FRs mainly superimposes the two modes of action, charring and maintaining a thermally insulating residue morphology, to bring effective flame retardancy to PUFs. Specific interactions between EG and P-FRs, including the agglutination of the fire residue consisting of expanded-graphite worms, yields an outstanding synergistic effect, making this approach the latest champion to fulfill the demanding requirements for flame-retarded PUFs. Current and future topics such as the increasing use of renewable feedstock are also discussed in this article.
Collapse
|
12
|
Zhang H, Feng M, Fang Y, Wu Y, Liu Y, Zhao Y, Xu J. Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry. Crit Rev Food Sci Nutr 2022; 63:11044-11062. [PMID: 35694766 DOI: 10.1080/10408398.2022.2086851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Enzymes are readily inactivated in harsh micro-environment due to changes in pH, temperature, and ionic strength. Developing suitable and feasible techniques for stabilizing enzymes in food sector is critical for preventing them from degradation. This review provides an overview on chitosan (CS)-based enzymes encapsulation techniques, enzyme release mechanisms, and their applications in food industry. The challenges and future prospects of CS-based enzymes encapsulation were also discussed. CS-based encapsulation techniques including ionotropic gelation, emulsification, spray drying, layer-by-layer self-assembly, hydrogels, and films have been studied to improve the encapsulation efficacy (EE), heat, acid and base stability of enzymes for their applications in food, agricultural, and medical industries. The smart delivery design, new delivery system development, and in vivo releasing mechanisms of enzymes using CS-based encapsulation techniques have also been evaluated in laboratory level studies. The CS-based encapsulation techniques in commercial products should be further improved for broadening their application fields. In conclusion, CS-based encapsulation techniques may provide a promising approach to improve EE and bioavailability of enzymes applied in food industry.HighlightsEnzymes play a critical role in food industries but susceptible to inactivation.Chitosan-based materials could be used to maintain the enzyme activity.Releasing mechanisms of enzymes from encapsulators were outlined.Applications of encapsulated enzymes in food fields was discussed.
Collapse
Affiliation(s)
- Hongcai Zhang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yapeng Fang
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Liu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanyun Zhao
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Jianxiong Xu
- College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Bio-tech Key Laboratory, Shanghai, China
| |
Collapse
|
13
|
Lee PS, Jung SM. Flame retardancy of polyurethane foams prepared from green polyols with flame retardants. J Appl Polym Sci 2022. [DOI: 10.1002/app.52010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pyung Soo Lee
- Department of Chemical Engineering and Material Science Chung‐Ang University Seoul South Korea
- Department of Intelligent Energy and Industry Chung‐Ang University Seoul South Korea
| | - Simon MoonGeun Jung
- Green Carbon Research Center Korea Research Institute of Chemical Technology Daejeon South Korea
| |
Collapse
|
14
|
Thong YX, Li X, Yin XJ. Determining the best flame retardant for rigid polyurethane foam—Tris(2‐chloroisopropyl) phosphate, expandable graphite, or silica aerogel. J Appl Polym Sci 2022. [DOI: 10.1002/app.51888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ya Xuan Thong
- Advanced Materials Technology Centre Singapore Polytechnic Singapore Singapore
| | - Xiaodong Li
- Advanced Materials Technology Centre Singapore Polytechnic Singapore Singapore
| | - Xi Jiang Yin
- Advanced Materials Technology Centre Singapore Polytechnic Singapore Singapore
| |
Collapse
|
15
|
Cao CF, Yu B, Chen ZY, Qu YX, Li YT, Shi YQ, Ma ZW, Sun FN, Pan QH, Tang LC, Song P, Wang H. Fire Intumescent, High-Temperature Resistant, Mechanically Flexible Graphene Oxide Network for Exceptional Fire Shielding and Ultra-Fast Fire Warning. NANO-MICRO LETTERS 2022; 14:92. [PMID: 35384618 PMCID: PMC8986961 DOI: 10.1007/s40820-022-00837-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/03/2022] [Indexed: 05/28/2023]
Abstract
Smart fire alarm sensor (FAS) materials with mechanically robust, excellent flame retardancy as well as ultra-sensitive temperature-responsive capability are highly attractive platforms for fire safety application. However, most reported FAS materials can hardly provide sensitive, continuous and reliable alarm signal output due to their undesirable temperature-responsive, flame-resistant and mechanical performances. To overcome these hurdles, herein, we utilize the multi-amino molecule, named HCPA, that can serve as triple-roles including cross-linker, fire retardant and reducing agent for decorating graphene oxide (GO) sheets and obtaining the GO/HCPA hybrid networks. Benefiting from the formation of multi-interactions in hybrid network, the optimized GO/HCPA network exhibits significant increment in mechanical strength, e.g., tensile strength and toughness increase of ~ 2.3 and ~ 5.7 times, respectively, compared to the control one. More importantly, based on P and N doping and promoting thermal reduction effect on GO network, the excellent flame retardancy (withstanding ~ 1200 °C flame attack), ultra-fast fire alarm response time (~ 0.6 s) and ultra-long alarming period (> 600 s) are obtained, representing the best comprehensive performance of GO-based FAS counterparts. Furthermore, based on GO/HCPA network, the fireproof coating is constructed and applied in polymer foam and exhibited exceptional fire shielding performance. This work provides a new idea for designing and fabricating desirable FAS materials and fireproof coatings.
Collapse
Affiliation(s)
- Cheng-Fei Cao
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Zuan-Yu Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yong-Xiang Qu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu-Tong Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yong-Qian Shi
- College of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
| | - Zhe-Wen Ma
- School of Engineering, Zhejiang A & F University, Hangzhou, 311300, China
| | - Feng-Na Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qing-Hua Pan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Long-Cheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Hangzhou Normal University, Hangzhou, 311121, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia.
| |
Collapse
|
16
|
Formation of an Ammonium Nitrate Fuel Oil Similar Type of Explosive under Fire Conditions: Materials Based on Selected Polymers (PUR). ENERGIES 2022. [DOI: 10.3390/en15051674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyurethanes (PURs) are a group of polymers with the most versatile properties and the broadest spectrum of application. Their name comes from the urethane group. PURs were introduced to the market on a large-scale basis by Bayer in 1942, in the form of Perlon U and Igamid U fibers produced by gradual polyaddition of diisocyanates and polyols. The development of PURs-production technology and the multitude of applications resulted in their widespread use. This group is so extensive that polyurethanes alone accounted for about 6% of the global production of polymers (2019)—most of them in the form of foam. Therefore, polyurethane can be found in a huge number of products—some of them stored in the vicinity of ammonium nitrate (AN). In the previous two articles, we showed that polymers and AN—stored within the same building—in fire conditions may, under certain circumstances, spontaneously transform into a material of explosive properties. The aim of this article is to check whether PUR, when in contact with AN, creates additional hazards, similarly to the previously tested polymers.
Collapse
|
17
|
Characterization and Properties of Water-Blown Rigid Polyurethane Foams Reinforced with Silane-Modified Nanosepiolites Functionalized with Graphite. MATERIALS 2022; 15:ma15010381. [PMID: 35009524 PMCID: PMC8746287 DOI: 10.3390/ma15010381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023]
Abstract
In the present study, a promising flame retardant consisting of 80 wt% silane-modified nanosepiolites functionalized with 20 wt% graphite (SFG) is used to obtain a synergistic effect principally focussed on the thermal stability of water-blown rigid polyurethane (RPU) foams. Density, microcellular structure, thermal stability and thermal conductivity are examined for RPU foams reinforced with different contents of SFG (0, as reference material, 2, 4 and 6 wt%). The sample with 6 wt% SFG presents a slightly thermal stability improvement, although its cellular structure is deteriorated in comparison with the reference material. Furthermore, the influence of SFG particles on chemical reactions during the foaming process is studied by FTIR spectroscopy. The information obtained from the chemical reactions and from isocyanate consumption is used to optimize the formulation of the foam with 6 wt% SFG. Additionally, in order to determine the effects of functionalization on SFG, foams containing only silane-modified nanosepiolites, only graphite, or silane-modified nanosepiolites and graphite added separately are studied here as well. In conclusion, the inclusion of SFG in RPU foams allows the best performance to be achieved.
Collapse
|
18
|
Wang XC, Sun YP, Sheng J, Geng T, Turng LS, Guo YG, Liu XH, Liu CT. Effects of expandable graphite on the flame-retardant and mechanical performances of rigid polyurethane foams. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:084002. [PMID: 34794133 DOI: 10.1088/1361-648x/ac3b27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Polyurethane foams (PUFs) are found everywhere in our daily life, but they suffer from poor fire resistance. In this study, expansible graphite (EG) as flame retardant was incorporated into PUFs to improve material fire resistance. With the presence of EGs in the PU matrix, bubble size in PUF became smaller as confirmed by the scanning electron microscopy. The mass density of PUFs is directly proportional to the content of EG additive. The compression strengths of EG0/PUF and EG30/PUF decrease from 0.51 MPa to 0.29 MPa. The Fourier transform infrared spectroscopy (FTIR) analysis of RPUFs showed that the addition of EGs did not change the functional group structures of RPUFs. Thermo-gravimetric analysis (TGA) testing results showed that the carbon residue weight of EG30/PUF is higher than other PU composite foams. The combination of TGA and FTIR indicated that the EG addition did not change the thermal decomposition products of EG0/PUF, but effectively inhibited its thermal decomposition rate. Cone calorimeter combustion tests indicated that the peak of the heat release rate of EG30/PUF significantly decreased to 100.5 kW m-2compared to 390.6 kW m-2for EG0/PUF. The ignition time of EG/PUF composites also increased from 2 s to 11 s with incorporation of 30 wt% EGs. The limiting oxygen index (LOI) and UL-94 standard tests show that the LOI of EG30/PUF can reach 55 vol%, and go through V-0 level. This study showed that adding EG into PU foams could significantly improve the thermal stability and flame retardancy properties of EG/PUF composites without significantly sacrificing material compression strength. The research results provide useful guidelines on industrial production and applications of PUFs.
Collapse
Affiliation(s)
- Xin-Chao Wang
- School of Mechanical & Electrical Engineering, and Henan Provincial Engineering Laboratory of Automotive Composite Materials, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Ya-Peng Sun
- School of Mechanical & Electrical Engineering, and Henan Provincial Engineering Laboratory of Automotive Composite Materials, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Jie Sheng
- School of Mechanical & Electrical Engineering, and Henan Provincial Engineering Laboratory of Automotive Composite Materials, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Tie Geng
- School of Mechanical & Electrical Engineering, and Henan Provincial Engineering Laboratory of Automotive Composite Materials, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yong-Gang Guo
- School of Mechanical & Electrical Engineering, and Henan Provincial Engineering Laboratory of Automotive Composite Materials, Henan University of Technology, Zhengzhou, People's Republic of China
| | - Xian-Hu Liu
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chun-Tai Liu
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
19
|
Morones PG, Cabrera Álvarez EN, Nieves IS, Neira Velázquez MG, Hernández EH, Sánchez Martínez DI, Florido HAF, Gordillo CC, Rivera JG, Gámez JFH. Graphite effect on the mechanical and fire‐retardant performance of low‐density polyethylene and ethylene‐vinyl‐acetate foam composites. J Appl Polym Sci 2021. [DOI: 10.1002/app.50892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pablo González Morones
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | - Edgar Nazareo Cabrera Álvarez
- Departamento de Procesos de Transformación CONACYT, Centro de Investigación en Química Aplicada unidad Monterrey Apodaca Mexico
| | - Israel Sifuentes Nieves
- Departamento de Materiales Avanzados Centro de Investigación en Química Aplicada Saltillo Mexico
| | | | | | | | - Heidi Andrea Fonseca Florido
- Departamento de Procesos de Transformación CONACYT, Centro de Investigación en Química Aplicada unidad Monterrey Apodaca Mexico
| | | | - Javier Gudiño Rivera
- Departamento de Procesos de Transformación Centro de Investigación en Química Aplicada Saltillo Mexico
| | | |
Collapse
|
20
|
Tang G, Liu M, Deng D, Zhao R, Liu X, Yang Y, Yang S, Liu X. Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109701] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
21
|
Hejna A. Clays as Inhibitors of Polyurethane Foams' Flammability. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4826. [PMID: 34500914 PMCID: PMC8432671 DOI: 10.3390/ma14174826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Polyurethanes are a very important group of polymers with an extensive range of applications in different branches of industry. In the form of foams, they are mainly used in bedding, furniture, building, construction, and automotive sectors. Due to human safety reasons, these applications require an appropriate level of flame retardance, often required by various law regulations. Nevertheless, without the proper modifications, polyurethane foams are easily ignitable, highly flammable, and generate an enormous amount of smoke during combustion. Therefore, proper modifications or additives should be introduced to reduce their flammability. Except for the most popular phosphorus-, halogen-, or nitrogen-containing flame retardants, promising results were noted for the application of clays. Due to their small particle size and flake-like shape, they induce a "labyrinth effect" inside the foam, resulting in the delay of decomposition onset, reduction of smoke generation, and inhibition of heat, gas, and mass transfer. Moreover, clays can be easily modified with different organic compounds or used along with conventional flame retardants. Such an approach may often result in the synergy effect, which provides the exceptional reduction of foams' flammability. This paper summarizes the literature reports related to the applications of clays in the reduction of polyurethane foams' flammability, either by their incorporation as a nanofiller or by preparation of coatings.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
22
|
Ma Z, Liu X, Xu X, Liu L, Yu B, Maluk C, Huang G, Wang H, Song P. Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam. ACS NANO 2021; 15:11667-11680. [PMID: 34170679 DOI: 10.1021/acsnano.1c02254] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lightweight polymeric foam is highly attractive as thermal insulation materials for energy-saving buildings but is plagued by its inherent flammability. Fire-retardant coatings are suggested as an effective means to solve this problem. However, most of the existing fire-retardant coatings suffer from poor interfacial adhesion to polymeric foam during use. In nature, snails and tree frogs exhibit strong adhesion to a variety of surfaces by interfacial hydrogen-bonding and mechanical interlocking, respectively. Inspired by their adhesion mechanisms, we herein rationally design fire-retardant polymeric coatings with phase-separated micro/nanostructures via a facile radical copolymerization of hydroxyethyl acrylate (HEA) and sodium vinylsulfonate (VS). The resultant waterborne poly(VS-co-HEA) copolymers exhibit strong interfacial adhesion to rigid polyurethane (PU) foam and other substrates, better than most of the current adhesives because of the combination of interfacial hydrogen-bonding and mechanical interlocking. Besides a superhydrophobic feature, the poly(VS-co-HEA)-coated PU foam can self-extinguish a flame, exhibiting a desired V-0 rating during vertical burning and low heat and smoke release due to its high charring capability, which is superior to its previous counterparts. Moreover, the foam thermal insulation is well-preserved and agrees well with theoretical calculations. This work offers a facile biomimetic strategy for creating advanced adhesive fire-retardant polymeric coatings for many flammable substrates.
Collapse
Affiliation(s)
- Zhewen Ma
- School of Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Xiaochen Liu
- College of Physics, Henan Normal University, Xinxiang 453007, China
| | - Xiaodong Xu
- School of Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Lei Liu
- School of Engineering, Zhejiang A & F University, Hangzhou 311300, China
| | - Bin Yu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Cristian Maluk
- School of Civil Engineering, The University of Queensland, Brisbane, 4072, Australia
| | - Guobo Huang
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, China
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| |
Collapse
|
23
|
Strąkowska A, Członka S, Miedzińska K, Strzelec K. Chlorine-Functional Silsesquioxanes (POSS-Cl) as Effective Flame Retardants and Reinforcing Additives for Rigid Polyurethane Foams. Molecules 2021; 26:3979. [PMID: 34210013 PMCID: PMC8271702 DOI: 10.3390/molecules26133979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022] Open
Abstract
The subject of the research was the production of silsesquioxane modified rigid polyurethane (PUR) foams (POSS-Cl) with chlorine functional groups (chlorobenzyl, chloropropyl, chlorobenzylethyl) characterized by reduced flammability. The foams were prepared in a one-step additive polymerization reaction of isocyanates with polyols, and the POSS modifier was added to the reaction system in an amount of 2 wt.% polyol. The influence of POSS was analyzed by performing a series of tests, such as determination of the kinetics of foam growth, determination of apparent density, and structure analysis. Compressive strength, three-point bending strength, hardness, and shape stability at reduced and elevated temperatures were tested, and the hydrophobicity of the surface was determined. The most important measurement was the determination of the thermal stability (TGA) and the flammability of the modified systems using a cone calorimeter. The obtained results, after comparing with the results for unmodified foam, showed a large influence of POSS modifiers on the functional properties, especially thermal and fire-retardant, of the obtained PUR-POSS-Cl systems.
Collapse
Affiliation(s)
- Anna Strąkowska
- Institute of Polymer and Dye Technology, Lodz University of Technology, 90-537 Lodz, Poland; (S.C.); (K.M.); (K.S.)
| | | | | | | |
Collapse
|
24
|
Bo G, Xu X, Tian X, Wu J, Yan Y. Enhancing the Fire Safety and Smoke Safety of Bio-Based Rigid Polyurethane Foam via Inserting a Reactive Flame Retardant Containing P@N and Blending Silica Aerogel Powder. Polymers (Basel) 2021; 13:2140. [PMID: 34209838 PMCID: PMC8271911 DOI: 10.3390/polym13132140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
Rigid polyurethane foams (RPUFs) are widely used in many fields, but they are easy to burn and produce a lot of smoke, which seriously endangers the safety of people's lives and property. In this study, tetraethyl(1,5-bis(bis(2-hydroxypropyl)amino)pentane-1,5-diyl)bis(phosphonate) (TBPBP), as a phosphorus-nitrogen-containing reactive-type flame retardant, was successfully synthesized and employed to enhance the flame retardancy of RPUFs, and silica aerogel (SA) powder was utilized to reduce harmful fumes. Castor oil-based rigid polyurethane foam containing SA powder and TBPBP was named RPUF-T45@SA20. Compared with neat RPUF, the obtained RPUF-T45@SA20 greatly improved with the compressive strength properties and the LOI value increased by 93.64% and 44.27%, respectively, and reached the V-0 rank of UL-94 testing. The total heat release (THR) and total smoke production (TSP) of RPUF-T45@SA20 were, respectively, reduced by 44.66% and 51.89% compared to those of the neat RPUF. A possible flame-retardant mechanism of RPUF-T45@SA20 was also proposed. This study suggested that RPUF incorporated with TBPBP and SA powder is a prosperous potential composite for fire and smoke safety as a building insulation material.
Collapse
Affiliation(s)
| | | | | | | | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (G.B.); (X.X.); (X.T.); (J.W.)
| |
Collapse
|
25
|
Strąkowska A, Członka S, Kairytė A, Strzelec K. Effects of Physical and Chemical Modification of Sunflower Cake on Polyurethane Composite Foam Properties. MATERIALS 2021; 14:ma14061414. [PMID: 33803963 PMCID: PMC7999528 DOI: 10.3390/ma14061414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 01/20/2023]
Abstract
Sunflower cake (SC), which is waste during the production of sunflower oil, was selected as a modifier of properties in polyurethane (PUR) foams. The SC was chemically modified with triphenylsilanol (SC_S) and physically modified with rapeseed oil (SC_O). The influence of SC on the rheological properties of the polyol and the kinetics of foam growth were investigated. PUR foams were characterized by morphological, mechanical, and thermal analysis. The results show that the physical and chemical modification of SC contributes to the changes in the properties of the foams in different ways. Too high hydrophobicity of SC_O affects the structure deterioration, and thus the mechanical properties, and in turn, reduces the affinity for water. In turn, chemical modification with silane allows for obtaining foams with the best mechanical properties.
Collapse
Affiliation(s)
- Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (S.C.); (K.S.)
- Correspondence:
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (S.C.); (K.S.)
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, LT-08217 Vilnius, Lithuania;
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (S.C.); (K.S.)
| |
Collapse
|
26
|
Melillo JMA, Pereira IM, Mottin AC, Araujo FGDS. Modification of poly(lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Acuña P, Lin X, Calvo MS, Shao Z, Pérez N, Villafañe F, Rodríguez-Pérez MÁ, Wang DY. Synergistic effect of expandable graphite and phenylphosphonic-aniline salt on flame retardancy of rigid polyurethane foam. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109274] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
New Flame Retardant Systems Based on Expanded Graphite for Rigid Polyurethane Foams. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10175817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of the addition of new flame retardant systems on the properties of rigid polyurethane (RPUF) foams, in particular, reduction in flammability, was investigated. The modification included the introduction of a flame retardant system containing five parts by weight of expanded graphite (EG) (based on the total weight of polyol), one part by weight of pyrogenic silica (SiO2) and an ionic liquid (IL): 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim] [BF4]), in an amount of 3:1 with respect to the weight of added silica. The kinetics of the synthesis of modified foams—including the growth rate and the maximum temperature—were determined and the physicochemical properties, such as the determination of apparent density and structure by optical microscopy, mechanical properties such as impact strength, compressive strength and, three-point bending test were determined. An important aspect was also to examine the thermal properties such as thermal stability or flammability. It has been shown that for rigid polyurethane foams, the addition of expanded graphite in the presence of silica and ionic liquid has a great influence on the general use properties. All composites were characterized by reduced flammability as well as better mechanical properties, which may contribute to a wider use of rigid polyurethane foams as construction materials.
Collapse
|
29
|
Chen Y, Li L, Wu X. Construction of an efficient ternary flame retardant system for rigid polyurethane foam based on bi‐phase flame retardant effect. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yajun Chen
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing China
| | - Linshan Li
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing China
| | - Xingde Wu
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing China
- Engineering Laboratory of Non‐halogen Flame Retardants for Polymers Beijing China
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics Beijing China
| |
Collapse
|
30
|
Excellent Fireproof Characteristics and High Thermal Stability of Rice Husk-Filled Polyurethane with Halogen-Free Flame Retardant. Polymers (Basel) 2019; 11:polym11101587. [PMID: 31569369 PMCID: PMC6835888 DOI: 10.3390/polym11101587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
The thermal stabilities, flame retardancies, and physico-mechanical properties of rice husk-reinforced polyurethane (PU–RH) foams with and without flame retardants (FRs) were evaluated. Their flammability performances were studied by UL94, LOI, and cone calorimetry tests. The obtained results combined with FTIR, TGA, SEM, and XPS characterizations were used to evaluate the fire behaviors of the PU–RH samples. The PU–RH samples with a quite low loading (7 wt%) of aluminum diethylphosphinate (OP) and 32 wt% loading of aluminum hydroxide (ATH) had high thermal stabilities, excellent flame retardancies, UL94 V-0 ratings, and LOIs of 22%–23%. PU–RH did not pass the UL94 HB standard test and completely burned to the holder clamp with a low LOI (19%). The cone calorimetry results indicated that the fireproof characteristics of the PU foam composites were considerably improved by the addition of the FRs. The proposed flame retardancy mechanism and cone calorimetry results are consistent. The comprehensive FTIR spectroscopy, TG, SEM, and XPS analyses revealed that the addition of ATH generated white solid particles, which dispersed and covered the residue surface. The pyrolysis products of OP would self-condense or react with other volatiles generated by the decomposition of PU–RH to form stable, continuous, and thick phosphorus/aluminum-rich residual chars inhibiting the transfer of heat and oxygen. The PU–RH samples with and without the FRs exhibited the normal isothermal sorption hysteresis effect at relative humidities higher than 20%. At lower values, during the desorption, this effect was not observed, probably because of the biodegradation of organic components in the RH. The findings of this study not only contribute to the improvement in combustibility of PU–RH composites and reduce the smoke or toxic fume generation, but also solve the problem of RHs, which are abundant waste resources of agriculture materials leading to the waste disposal management problems.
Collapse
|
31
|
Influence of Organoclay on the Flame Retardancy and Thermal Insulation Property of Expandable Graphite/Polyurethane Foam. J CHEM-NY 2019. [DOI: 10.1155/2019/4794106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The rigid polyurethane foams (RPUFs) filled with organoclay cloisite 20A and expandable graphite (EG) were prepared by the one-step expanding foam method. Flame behavior, mechanical properties, and thermal conductivity of the composites were investigated. The vertical burning test (UL-94V) and limiting oxygen index (LOI) showed that the flame retardancy was increased proportionally with the content of EG in PU composite. However, the presence of EG filler impaired the thermal insulation and the compressive strength of the composite. In this report, we proved that organoclay could improve the compressive strength, thermal insulation, and flame retardancy of EG/polyurethane composites. This work can contribute to the development of environment-friendly flame-retardant products for green growth.
Collapse
|