1
|
Kłusak A, Gazińska MA. Recent progress of poly(glycerol adipate)-based network materials toward tissue engineering applications. Front Bioeng Biotechnol 2024; 12:1447340. [PMID: 39355275 PMCID: PMC11442387 DOI: 10.3389/fbioe.2024.1447340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/28/2024] [Indexed: 10/03/2024] Open
Abstract
Poly(glycerol adipate) (PGA) is one of the aliphatic polyesters of glycerol. The most studied biomedical application of poly(glycerol adipate) is the use of its nanoparticles as drug delivery carriers. The PGA prepolymer can be crosslinked to network materials. The biomedical application of PGA-based network materials has largely remained unexplored till recently. The PGA-based network materials, such as poly(glycerol sebacate) elastomers, can be used in soft tissue regeneration due to their mechanical properties. The modulus of elasticity of PGA elastomers is within the range of MPa, which corresponds to the mechanical properties of human soft tissues. This short review aims at briefly summarizing the possible applications of PGA-based elastomers in tissue engineering, as indicated in recent years in research publications.
Collapse
Affiliation(s)
| | - Małgorzata Anna Gazińska
- Department of Polymer Engineering and Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
2
|
Axioti E, Dixon EG, Reynolds-Green M, Alexander ECH, Brugnoli B, Keddie DJ, Couturaud B, Suksiriworapong J, Swainson SME, Francolini I, Howdle SM, Jacob PL, Cavanagh RJ, Chauhan VM, Taresco V. Glycerol- and diglycerol-based polyesters: Evaluation of backbone alterations upon nano-formulation performance. Colloids Surf B Biointerfaces 2024; 236:113828. [PMID: 38452625 DOI: 10.1016/j.colsurfb.2024.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Eleni Axioti
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Emily G Dixon
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | - Benedetta Brugnoli
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Daniel J Keddie
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est (ICMPE), CNRS, University Paris Est Créteil, UMR 7182, 2 Rue Henri Dunant, Thiais 94320, France
| | | | - Sadie M E Swainson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Iolanda Francolini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Steven M Howdle
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Philippa L Jacob
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Robert J Cavanagh
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Veeren M Chauhan
- School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Vincenzo Taresco
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
3
|
Mahmoud MH, El-Gogary RI, Soliman ME, Kamel AO. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int J Biol Macromol 2024; 264:130698. [PMID: 38458296 DOI: 10.1016/j.ijbiomac.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.
Collapse
Affiliation(s)
- Mariam H Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt; Egypt Japan University of Science and Technology, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Krumins E, Lentz JC, Sutcliffe B, Sohaib A, Jacob PL, Brugnoli B, Cuzzucoli Crucitti V, Cavanagh R, Owen R, Moloney C, Ruiz-Cantu L, Francolini I, Howdle SM, Shusteff M, Rose FRAJ, Wildman RD, He Y, Taresco V. Glycerol-based sustainably sourced resin for volumetric printing. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:1345-1355. [PMID: 38323306 PMCID: PMC10840650 DOI: 10.1039/d3gc03607c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative technique offers unparalleled design freedom and significantly reduces printing times. A current limitation of VAM is the availability of suitable resins with the required photoreactive chemistry and from sustainable sources. To support the application of this technology, we have developed a sustainable resin based on polyglycerol, a bioderived (e.g., vegetable origin), colourless, and easily functionisable oligomer produced from glycerol. To transform polyglycerol-6 into an acrylate photo-printable resin we adopted a simple, one-step, and scalable synthesis route. Polyglycerol-6-acrylate fulfils all the necessary criteria for volumetric printing (transparency, photo-reactivity, viscosity) and was successfully used to print a variety of models with intricate geometries and good resolution. The waste resin was found to be reusable with minimal performance issues, improving resin utilisation and minimising waste material. Furthermore, by incorporating dopants such as poly(glycerol) adipate acrylate (PGA-A) and 10,12-pentacosadyinoic acid (PCDA), we demonstrated the ability to print objects with a diverse range of functionalities, including temperature sensing probes and a polyester excipient, highlighting the potential applications of these new resins.
Collapse
Affiliation(s)
- Eduards Krumins
- School of Chemistry, University of Nottingham Nottingham NG7 2RD UK
| | - Joachim C Lentz
- School of Chemistry, University of Nottingham Nottingham NG7 2RD UK
| | - Ben Sutcliffe
- School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD Nottingham UK
| | - Ali Sohaib
- Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Philippa L Jacob
- School of Chemistry, University of Nottingham Nottingham NG7 2RD UK
| | - Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | | | - Robert Cavanagh
- School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD Nottingham UK
- School of Medicine, University of Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD UK
| | - Robert Owen
- School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD Nottingham UK
| | - Cara Moloney
- School of Medicine, University of Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD UK
| | - Laura Ruiz-Cantu
- Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome Piazzale A. Moro 5 00185 Rome Italy
| | - Steven M Howdle
- School of Chemistry, University of Nottingham Nottingham NG7 2RD UK
| | - Maxim Shusteff
- Lawrence Livermore National Laboratory Livermore CA 94550 USA
| | - Felicity R A J Rose
- School of Pharmacy, Nottingham Biodiscovery Institute, University of Nottingham NG7 2RD Nottingham UK
| | - Ricky D Wildman
- Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
| | - Yinfeng He
- Faculty of Engineering, University of Nottingham Nottingham NG7 2RD UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute University of Nottingham Ningbo China Ningbo 315100 China
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
5
|
Brugnoli B, Perna G, Alfano S, Piozzi A, Galantini L, Axioti E, Taresco V, Mariano A, Scotto d'Abusco A, Vecchio Ciprioti S, Francolini I. Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection. Polymers (Basel) 2024; 16:427. [PMID: 38337316 DOI: 10.3390/polym16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.
Collapse
Affiliation(s)
- Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Greta Perna
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Eleni Axioti
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| |
Collapse
|
6
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Jacob PL, Brugnoli B, Del Giudice A, Phan H, Chauhan VM, Beckett L, Gillis RB, Moloney C, Cavanagh RJ, Krumins E, Reynolds-Green M, Lentz JC, Conte C, Cuzzucoli Crucitti V, Couturaud B, Galantini L, Francolini I, Howdle SM, Taresco V. Poly (diglycerol adipate) variants as enhanced nanocarrier replacements in drug delivery applications. J Colloid Interface Sci 2023; 641:1043-1057. [PMID: 36996683 DOI: 10.1016/j.jcis.2023.03.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.
Collapse
Affiliation(s)
- Philippa L Jacob
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Benedetta Brugnoli
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | - Hien Phan
- Institut de Chimie et des Matériaux Paris-Est, Université de Paris-Est Créteil, CNRS UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Veeren M Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom
| | - Laura Beckett
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Sciences Building, University Park, Nottingham NG7 2RD, United Kingdom
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom; Biomaterials Group, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom; College of Business, Technology and Engineering, Sheffield Hallam University, Food and Nutrition Group, Sheffield S1 1WB, United Kingdom
| | - Cara Moloney
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, United Kingdom
| | - Robert J Cavanagh
- School of Medicine, BioDiscovery Institute-3, University Park, Nottingham NG7 2RD, United Kingdom
| | - Eduards Krumins
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | | | - Joachim C Lentz
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Benoit Couturaud
- Institut de Chimie et des Matériaux Paris-Est, Université de Paris-Est Créteil, CNRS UMR 7182, 2 rue Henri Dunant, 94320 Thiais, France
| | - Luciano Galantini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Iolanda Francolini
- Dept. of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Steven M Howdle
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom
| | - Vincenzo Taresco
- School of Chemistry, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
8
|
Taresco V, Tulini I, Francolini I, Piozzi A. Polyglycerol Adipate-Grafted Polycaprolactone Nanoparticles as Carriers for the Antimicrobial Compound Usnic Acid. Int J Mol Sci 2022; 23:ijms232214339. [PMID: 36430814 PMCID: PMC9693002 DOI: 10.3390/ijms232214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Nanoparticle (NP) drug delivery systems are known to potentially enhance the efficacy of therapeutic agents. As for antimicrobial drugs, therapeutic solutions against drug-resistant microbes are urgently needed due to the worldwide antimicrobial resistance issue. Usnic acid is a widely investigated antimicrobial agent suffering from poor water solubility. In this study, polymer nanoparticles based on polyglycerol adipate (PGA) grafted with polycaprolactone (PCL) were developed as carriers for usnic acid. We demonstrated the potential of the developed systems in ensuring prolonged bactericidal activity against a model bacterial species, Staphylococcus epidermidis. The macromolecular architecture changes produced by PCL grafted from PGA significantly influenced the drug release profile and mechanism. Specifically, by varying the length of PCL arms linked to the PGA backbone, it was possible to tune the drug release from a burst anomalous drug release (high PCL chain length) to a slow diffusion-controlled release (low PCL chain length). The developed nanosystems showed a prolonged antimicrobial activity (up to at least 7 days) which could be used in preventing/treating infections occurring at different body sites, including medical device-related infection and mucosal/skin surface, where Gram-positive bacteria are commonly involved.
Collapse
Affiliation(s)
- Vincenzo Taresco
- Department of Chemistry, The University of Nottingham, Nottingham NG7 2RD, UK
| | - Isotta Tulini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (I.F.); (A.P.)
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (I.F.); (A.P.)
| |
Collapse
|
9
|
Vaillard VA, Trentino AI, Navarro L, Vaillard SE.
Fumarate‐
co
‐PEG
‐
co
‐sebacate photopolymer and its evaluation as a drug release system. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Victoria A. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Alesandro I. Trentino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Lucila Navarro
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| | - Santiago E. Vaillard
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC). CONICET‐UNL. CCT Santa Fe Santa Fe Argentina
| |
Collapse
|
10
|
Glycerol-based enzymatically synthesized renewable polyesters: Control of molecular weight, degree of branching and functional endgroups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Recent advances and challenges on enzymatic synthesis of biobased polyesters via polycondensation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Pimenta IF, Figueiredo LRF, Santos AMC, Oliveira JE, Medeiros ES. Development of controlled release fertilizer systems for
KCl
using glycerol‐based polymers. J Appl Polym Sci 2021. [DOI: 10.1002/app.51747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Igor F. Pimenta
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT) Federal University of Paraíba (UFPB) João Pessoa Brazil
| | - Lucas R. F. Figueiredo
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT) Federal University of Paraíba (UFPB) João Pessoa Brazil
| | - Adillys M. C. Santos
- Center of Science and Technology in Energy and Sustainability (CETENS) Federal University of Recôncavo da Bahia (UFRB) Feira de Santana Brazil
| | - Juliano E. Oliveira
- Department of Engineering (DEG) Federal University of Lavras (UFLA) Lavras Brazil
| | - Eliton S. Medeiros
- Materials and Biosystems Laboratory (LAMAB), Department of Materials Engineering (DEMAT) Federal University of Paraíba (UFPB) João Pessoa Brazil
| |
Collapse
|
13
|
Enzymatic synthesis of glycerol, azido-glycerol and azido-triglycerol based amphiphilic copolymers and their relevance as nanocarriers: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Abdelghafour MM, Orbán Á, Deák Á, Lamch Ł, Frank É, Nagy R, Ádám A, Sipos P, Farkas E, Bari F, Janovák L. The Effect of Molecular Weight on the Solubility Properties of Biocompatible Poly(ethylene succinate) Polyester. Polymers (Basel) 2021; 13:2725. [PMID: 34451264 PMCID: PMC8398594 DOI: 10.3390/polym13162725] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Poly(ethylene succinate) (PES) is one of the most promising biodegradable and biocompatible polyesters and is widely used in different biomedical applications. However, little information is available on its solubility and precipitation properties, despite that these solution behavior properties affect its applicability. In order to systematically study these effects, biodegradable and biocompatible poly(ethylene succinate) (PES) was synthesized using ethylene glycol and succinic acid monomers with an equimolar ratio. Despite the optimized reaction temperature (T = 185 °C) of the direct condensation polymerization, relatively low molecular mass values were achieved without using a catalyst, and the Mn was adjustable with the reaction time (40-100 min) in the range of ~850 and ~1300 Da. The obtained crude products were purified by precipitation from THF ("good" solvent) with excess of methanol ("bad" solvent). The solvents for PES oligomers purification were chosen according to the calculated values of solubility parameters by different approaches (Fedors, Hoy and Hoftyzer-van Krevelen). The theta-solvent composition of the PES solution was 0.3 v/v% water and 0.7 v/v% DMSO in this binary mixture. These measurements were also allowed to determine important parameters such as the coefficients A (=0.67) and B (=3.69 × 104) from the Schulz equation, or the Kη (=8.22 × 10-2) and α (=0.52) constants from the Kuhn-Mark-Houwink equation. Hopefully, the prepared PES with different molecular weights is a promising candidate for biomedical applications and the reported data and constants are useful for other researchers who work with this promising polyester.
Collapse
Affiliation(s)
- Mohamed M. Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ágoston Orbán
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| | - Łukasz Lamch
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary;
| | - Roland Nagy
- Department of MOL Department of Hydrocarbon and Coal Processing, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, H-8200 Veszprém, Hungary;
| | - Adél Ádám
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (A.Á.); (P.S.)
| | - Pál Sipos
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (A.Á.); (P.S.)
| | - Eszter Farkas
- HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, University of Szeged, Dugonics Square 13, H-6720 Szeged, Hungary;
- Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Somogyi Str. 4, H-6720 Szeged, Hungary
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary;
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Faculty of Medicine & Faculty of Science and Informatics, University of Szeged, Korányi Fasor 9, H-6720 Szeged, Hungary;
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary; (M.M.A.); (Á.O.); (Á.D.)
| |
Collapse
|
15
|
Hevilla V, Sonseca A, Echeverría C, Muñoz-Bonilla A, Fernández-García M. Enzymatic Synthesis of Polyesters and Their Bioapplications: Recent Advances and Perspectives. Macromol Biosci 2021; 21:e2100156. [PMID: 34231313 DOI: 10.1002/mabi.202100156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Indexed: 01/17/2023]
Abstract
This article reviews the most important advances in the enzymatic synthesis of polyesters. In first place, the different processes of polyester enzymatic synthesis, i.e., polycondensation, ring opening, and chemoenzymatic polymerizations, and the key parameters affecting these reactions, such as enzyme, concentration, solvent, or temperature, are analyzed. Then, the latest articles on the preparation of polyesters either by direct synthesis or via modification are commented. Finally, the main bioapplications of enzymatically obtained polyesters, i.e., antimicrobial, drug delivery, or tissue engineering, are described. It is intended to point out the great advantages that enzymatic polymerization present to obtain polymers and the disadvantages found to develop applied materials.
Collapse
Affiliation(s)
- Víctor Hevilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Agueda Sonseca
- Instituto de Tecnología de Materiales, Universitat Politècnica de València, Camino de Vera, s/n, Valencia, 46022, Spain
| | - Coro Echeverría
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Alexandra Muñoz-Bonilla
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| | - Marta Fernández-García
- MacroEng Group, Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva, 3, Madrid, 28006, Spain.,Interdisciplinary Platform for "Sustainable Plastics towards a Circular Economy" (SUSPLAST-CSIC), Madrid, 28006, Spain
| |
Collapse
|
16
|
Jacob PL, Ruiz Cantu LA, Pearce AK, He Y, Lentz JC, Moore JC, Machado F, Rivers G, Apebende E, Fernandez MR, Francolini I, Wildman R, Howdle SM, Taresco V. Poly (glycerol adipate) (PGA) backbone modifications with a library of functional diols: Chemical and physical effects. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Achievements and Trends in Biocatalytic Synthesis of Specialty Polymers from Biomass-Derived Monomers Using Lipases. Processes (Basel) 2021. [DOI: 10.3390/pr9040646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
New technologies for the conversion of biomass into high-value chemicals, including polymers and plastics, is a must and a challenge. The development of green processes in the last decade involved a continuous increase of the interest towards the synthesis of polymers using in vitro biocatalysis. Among the remarkable diversity of new bio-based polymeric products meeting the criteria of sustainability, biocompatibility, and eco-friendliness, a wide range of polyesters with shorter chain length were obtained and characterized, targeting biomedical and cosmetic applications. In this review, selected examples of such specialty polymers are presented, highlighting the recent developments concerning the use of lipases, mostly in immobilized form, for the green synthesis of ε-caprolactone co-polymers, polyesters with itaconate or furan units, estolides, and polyesteramides. The significant process parameters influencing the average molecular weights and other characteristics are discussed, revealing the advantages and limitations of biocatalytic processes for the synthesis of these bio-based polymers.
Collapse
|
18
|
Lang K, Sánchez-Leija RJ, Gross RA, Linhardt RJ. Review on the Impact of Polyols on the Properties of Bio-Based Polyesters. Polymers (Basel) 2020; 12:E2969. [PMID: 33322728 PMCID: PMC7764582 DOI: 10.3390/polym12122969] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 11/17/2022] Open
Abstract
Bio-based polyol polyesters are biodegradable elastomers having potential utility in soft tissue engineering. This class of polymers can serve a wide range of biomedical applications. Materials based on these polymers are inherently susceptible to degradation during the period of implantation. Factors that influence the physicochemical properties of polyol polyesters might be useful in achieving a balance between durability and biodegradability. The characterization of these polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical testing, and degradation, have revealed many of their molecular-level differences. The impact of the polyol component on the properties of these bio-based polyesters and the optimal reaction conditions for their synthesis are only now beginning to be resolved. This review describes our current understanding of polyol polyester structural properties as well as a discussion of the more commonly used polyol monomers.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
| | - Regina J. Sánchez-Leija
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (K.L.); (R.J.S.-L.)
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
19
|
Animasawun RK, Taresco V, Swainson SME, Suksiriworapong J, Walker DA, Garnett MC. Screening and Matching Polymers with Drugs to Improve Drug Incorporation and Retention in Nanoparticles. Mol Pharm 2020; 17:2083-2098. [PMID: 32348676 DOI: 10.1021/acs.molpharmaceut.0c00236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Key challenges hindering the clinical translation of the use of nanoparticles (NP) for delivery of drugs to tumors are inadequate drug loading and premature drug release. This study focused on understanding the conditions required to produce nanoparticles that can reach their target site with sufficient drug loading and drug retention for effective pharmacological action. Etoposide, etoposide phosphate, and teniposide were screened against modified poly(glycerol) adipate (PGA) based polymers by monitoring drug release from 40% drug in polymer films and using Fourier transform infrared spectroscopy (FTIR) and contact angle measurements to help understand the release results. Polymers were matched with the specific drugs based on the interactions observed. NP were then prepared by an interfacial deposition method. NPs were characterized and resulted in drug loadings ranging from 3.5% and 5%, respectively, for etoposide phosphate and etoposide with PGA modified with stearate (PGA85%C18) up to 13.4% for teniposide with PGA modified with tryptophan (PGA50%Try) and drug release of just 22-35% over 24 h. Assessment of cytotoxicity showed that etoposide nanoparticles with PGA85%C18 were more potent than an equivalent amount of free drug. This screening method to match polymers to drugs to monitor based drug and polymer interactions thus resulted in the formulation of nanoparticles with higher drug loading and slower release and potential for further development for clinical applications.
Collapse
Affiliation(s)
- Rashidat K Animasawun
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sadie M E Swainson
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Jiraphong Suksiriworapong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhaya Road, Ratchathewi, Bangkok 10400, Thailand
| | - David A Walker
- Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Martin C Garnett
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
20
|
Gordhan D, Swainson SM, Pearce AK, Styliari ID, Lovato T, Burley JC, Garnett MC, Taresco V. Poly (Glycerol Adipate): From a Functionalized Nanocarrier to a Polymeric-Prodrug Matrix to Create Amorphous Solid Dispersions. J Pharm Sci 2020; 109:1347-1355. [DOI: 10.1016/j.xphs.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/21/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
|
21
|
Abstract
Biocompatible and bio-based materials are an appealing resource for the pharmaceutical industry. Poly(glycerol-adipate) (PGA) is a biocompatible and biodegradable polymer that can be used to produce self-assembled nanoparticles (NPs) able to encapsulate active ingredients, with encouraging perspectives for drug delivery purposes. Starch is a versatile, inexpensive, and abundant polysaccharide that can be effectively applied as a bio-scaffold for other molecules in order to enrich it with new appealing properties. In this work, the combination of PGA NPs and starch films proved to be a suitable biopolymeric matrix carrier for the controlled release preparation of hydrophobic drugs. Dynamic Light Scattering (DLS) was used to determine the size of drug-loaded PGA NPs, while the improvement of the apparent drug water solubility was assessed by UV-vis spectroscopy. In vitro biological assays were performed against cancer cell lines and bacteria strains to confirm that drug-loaded PGA NPs maintained the effective activity of the therapeutic agents. Dye-conjugated PGA was then exploited to track the NP release profile during the starch/PGA nanocomposite film digestion, which was assessed using digestion models mimicking physiological conditions. The collected data provide a clear indication of the suitability of our biodegradable carrier system for oral drug delivery.
Collapse
|
22
|
Raposo CD, Costa R, Petrova KT, Brito C, Scotti MT, Cardoso MM. Development of Novel Galactosylated PLGA Nanoparticles for Hepatocyte Targeting Using Molecular Modelling. Polymers (Basel) 2020; 12:E94. [PMID: 31947904 PMCID: PMC7023654 DOI: 10.3390/polym12010094] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
Doxorubicin-loaded PLGA nanoparticles conjugated with a new galactose-based ligand for the specific recognition by human hepatoma cellular carcinoma cells (Hep G2) were successfully produced. The new targeting compound was selected using molecular docking combined with quantum chemical calculations for modelling and comparing molecular interactions among the H1 subunit of the asialoglycoprotein receptor containing the carbohydrate recognition domain and the ligand. The ligand, bis(1-O-ethyl-β-D-galactopyranosyl)amine, was synthetized, characterized, and subsequently linked to PLGA. Unloaded (PLGA-di-GAL NP) and doxorubicin-loaded (DOX-PLGA-di-GAL NP) nanoparticles were prepared using an emulsion method and characterized. The produced DOX-PLGA-di-GAL NP are spherical in shape with a size of 258 ± 47 nm, a zeta potential of -62.3 mV, and a drug encapsulation efficiency of 83%. The in vitro drug release results obtained show a three-phase release profile. In vitro cell studies confirmed the interaction between Hep G2 cells and PLGA-di-GAL NP. Cell cytotoxicity tests showed that unloaded NP are nontoxic and that DOX-PLGA-di-GAL NP caused a decrease of around 80% in cellular viability. The strategy used in this work to design new targeting compounds represents a promising tool to develop effective hepatocyte targeting drug delivery systems and can be applied to other tissues/organs.
Collapse
Affiliation(s)
- Cláudia D. Raposo
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Rita Costa
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Krasimira T. Petrova
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Catarina Brito
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marcus T. Scotti
- Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba Campus I, João Pessoa-PB 58051-900, Brazil
| | - M. Margarida Cardoso
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| |
Collapse
|
23
|
Alaneed R, Hauenschild T, Mäder K, Pietzsch M, Kressler J. Conjugation of Amine-Functionalized Polyesters With Dimethylcasein Using Microbial Transglutaminase. J Pharm Sci 2019; 109:981-991. [PMID: 31682828 DOI: 10.1016/j.xphs.2019.10.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.
Collapse
Affiliation(s)
- Razan Alaneed
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany; Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Till Hauenschild
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany
| | - Markus Pietzsch
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle/Saale, Germany.
| | - Jörg Kressler
- Department of Physical Chemistry, Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle/Saale, Germany.
| |
Collapse
|