1
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
2
|
Behravesh N, Younesi H, Bahramifar N, Mousavi SE, Tamunaidu P, Huzir NM, Bijari M. Efficient photocatalysis activation for reactive red 195 degradation by magnetic MIL-53(Fe)/Fe 3O 4@TiO 2 hybrid nanocomposite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117057. [PMID: 39278004 DOI: 10.1016/j.ecoenv.2024.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The study investigated the performance of a novel magnetic hybrid MIL-53(Fe)/Fe3O4@TiO2 composite for removing reactive red 195 (RR195) dye from water using UVc light. Various analytical techniques were used to characterize the nanocomposite materials. X-ray diffraction analysis confirmed the presence of MIL-53(Fe) and TiO2 in the composite. FT-IR analysis identified carboxyl and Ti-O-Ti groups in the photocatalyst structure. The study evaluated the effects of pH, dye concentration, photocatalyst dosage, and temperature on RR195 photodegradation. The Langmuir-Hinshelwood kinetic model provided the best fit for the reaction rate. Optimal conditions for an 84 % dye degradation were found at a photocatalyst dose of 15 mg/100 mL, pH 3, dye concentration of 100 mg/L, and 35 °C after 120 minutes of UVc light exposure. Thermodynamic analysis indicated an endothermic reaction with positive values for Δ#H and negative values for Δ#S. The MIL-53(Fe)/Fe3O4@TiO2 composite demonstrated excellent stability and achieved over 90 % dye degradation after five cycles. Overall, the composite shows promise for treating wastewater with dyes.
Collapse
Affiliation(s)
- Narges Behravesh
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran.
| | - Nader Bahramifar
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Seyedeh Elaheh Mousavi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, B.O. Box 46414-356, Nour, Mazandaran, Iran
| | - Pramila Tamunaidu
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia Kuala Lumpur, Jalan Semarak, Kuala Lumpur 54100, Malaysia; Malaysia-Japan Advanced Research Centre (MJARC), Eduhub Pagoh, Universiti Teknologi Malaysia Pagoh, Pagoh, Muar, Johor 84600, Malaysia
| | - Nurhamieza Md Huzir
- Malaysia-Japan Advanced Research Centre (MJARC), Eduhub Pagoh, Universiti Teknologi Malaysia Pagoh, Pagoh, Muar, Johor 84600, Malaysia
| | - Mehran Bijari
- Department of Environmental Technologies, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| |
Collapse
|
3
|
Usman A, Khoo KS, Ariffin MM, Loh SH, Wan Mohd Khalik WMA, Yusoff HM, Zango ZU, Aldaghri O, Ibnaouf KH, Eisa MH, Binzowaimil AM, Lim JW. Adsorption of terbutaline β-agonists from wastewater by mechano-synthesized iron oxide nanoparticles modified copper (II) isonicotinate metal-organic framework. ENVIRONMENTAL RESEARCH 2024; 258:119413. [PMID: 38876422 DOI: 10.1016/j.envres.2024.119413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Frequent detection of terbutaline in wastewater highlights its potential risks to human health associated in the environment. Exposure to terbutaline through contaminated water sources or food chain have adverse effects to human health. This work emphasized on the removal of terbutaline from wastewater using adsorption technology. Mechanochemically synthesized [Cu(INA)2] metal-organic frameworks (MOFs) and its magnetic composite ([Cu(INA)2]-MOF@Fe3O4) are designed with higher specific surface areas and tailored features to accommodate the molecular size and structure of terbutaline. Thus, batch experiment has been conducted using the [Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 for the terbutaline adsorption. The adsorption efficiency achieved by the MOFs was 91.8% and 99.3% for the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4 respectively. The optimum for the adsorption study included terbutaline concentration of 40 mg/L, adsorbent dose of 5 mg/L, pH of 11, temperature of 25 °C and equilibrium time of 40 min. The kinetics and isotherms have been described by pseudo-second order and Langmuir models, while the thermodynamics revealed the exothermic and spontaneous nature of the process. The promising performance of the MOFs is manifested on the ease of regeneration and reusability, achieving adsorption efficiency of 85.0% and 94.7% by the Cu(INA)2]-MOF and [Cu(INA)2]-MOF@Fe3O4, respectively at five consecutive cycles. The higher performance of the MOFs demonstrates their excellent potentialities for the terbutaline adsorption from the aqueous solution.
Collapse
Affiliation(s)
- Armaya'u Usman
- Analytical Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Marinah Mohd Ariffin
- Analytical Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Saw Hong Loh
- Analytical Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan Mohd Afiq Wan Mohd Khalik
- Analytical Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hanis Mohd Yusoff
- Analytical Chemistry Unit, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Zango ZU, Khoo KS, Ali AF, Abidin AZ, Zango MU, Lim JW, Wadi IA, Eisa MH, Alhathlool R, Abu Alrub S, Aldaghri O, Suresh S, Ibnaouf KH. Development of inorganic and mixed matrix membranes for application in toxic dyes-contaminated industrial effluents with in-situ treatments. ENVIRONMENTAL RESEARCH 2024; 256:119235. [PMID: 38810826 DOI: 10.1016/j.envres.2024.119235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Dyes are the most ubiquitous organic pollutants in industrial effluents. They are highly toxic to both plants and animals; thus, their removal is paramount to the sustainability of ecosystem. However, they have shown resistance to photolysis and various biological, physical, and chemical wastewater remediation processes. Membrane removal technology has been vital for the filtration/separation of the dyes. In comparison to polymeric membranes, inorganic and mixed matrix (MM) membranes have shown potentials to the removal of dyes. The inorganic and MM membranes are particularly effective due to their high porosity, enhanced stability, improved permeability, higher enhanced selectivity and good stability and resistance to harsh chemical and thermal conditions. They have shown prospects in filtration/separation, adsorption, and catalytic degradation of the dyes. This review highlighted the advantages of the inorganic and MM membranes for the various removal techniques for the treatments of the dyes. Methods for the membranes production have been reviewed. Their application for the filtration/separation and adsorption have been critically analyzed. Their application as support for advanced oxidation processes such as persulfate, photo-Fenton and photocatalytic degradations have been highlighted. The mechanisms underscoring the efficiency of the processes have been cited. Lastly, comments were given on the prospects and challenges of both inorganic and MM membranes towards removal of the dyes from industrial effluents.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Ahmed Fate Ali
- Department of Environmental Management, Bayero University, 3011, Kano State, Nigeria
| | - Asmaa Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ismael A Wadi
- Prince Sattam Bin Abdulaziz University, Basic Science Unit, Alkharj, 16278, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - S Abu Alrub
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia
| | - Sagadevan Suresh
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Shahzadi S, Akhtar M, Arshad M, Ijaz MH, Janjua MRSA. A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv 2024; 14:27575-27607. [PMID: 39228752 PMCID: PMC11369977 DOI: 10.1039/d4ra05183a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Carbon composites derived from Metal-Organic Frameworks (MOFs) have shown great promise as multipurpose materials for a range of electrochemical and environmental applications. Since carbon-based nanomaterials exhibit intriguing features, they have been widely exploited as catalysts or catalysts supports in the chemical industry or for energy or environmental applications. To improve the catalytic performance of carbon-based materials, high surface areas, variable porosity, and functionalization are thought to be essential. This study offers a thorough summary of the most recent developments in MOF-derived carbon composite synthesis techniques, emphasizing innovative approaches that improve the structural and functional characteristics of the materials. Their uses in electrochemical technologies, such as energy conversion and storage, and their function in environmental electrocatalysis for water splitting and pollutant degradation are also included in the debate. This review seeks to clarify the revolutionary effect of carbon composites formed from MOFs on sustainable technology solutions by analyzing current research trends and innovations, opening the door for further advancements in this rapidly evolving sector.
Collapse
Affiliation(s)
- Sehar Shahzadi
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Mariam Akhtar
- School of Chemistry, University of the Punjab, Quaid-i-Azam Campus Lahore 54590 Pakistan
| | - Muhammad Arshad
- Department of Chemistry, Government College University Faisalabad Faisalabad 38000 Pakistan +92 300 660 4948
| | - Muhammad Hammad Ijaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad 38000 Pakistan
| | | |
Collapse
|
6
|
Kim SY, Shin MW, Oh KH, Bae YS. Large-Scale Computational Screening-Aided Development of High-Performance Adsorbent for Simultaneous Capture of Aromatic Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43565-43573. [PMID: 39129505 DOI: 10.1021/acsami.4c08171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The development of an efficient adsorbent for the simultaneous capture of large amounts of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) is an important and challenging issue. Here, through a stepwise screening of 10,142 metal-organic framework (MOF) structures from the computation-ready, experimental (CoRE) MOF database, 65 MOFs are proposed as promising adsorbent candidates for BTEX capture by considering the structures with accessible pore sizes for BTEX adsorption, sufficient hydrophobicity, high benzene selectivity (>0.2), and large total BTEX uptake (>3 mmol/g). Among the top-performing MOFs in terms of the BTEXmatrix (total BTEX uptake × benzene selectivity), EGUELUY01 was synthesized, and it exhibited large uptakes (≈5 mmol/g) for all BTEX components at concentrations of 1200-1500 ppm, which are superior to the BTEX uptake of the benchmark adsorbent, activated carbon. Moreover, some structure-property relationships required for BTEX adsorbents are provided through the obtained large-scale simulation data and machine learning analysis. The determined relationships will be useful for the future development of efficient BTEX adsorbents.
Collapse
Affiliation(s)
- Seo-Yul Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Min Woo Shin
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Kwang Hyun Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Youn-Sang Bae
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
7
|
Sundararaman S, Adhilimam, Chacko J, D P, M K, Kumar JA, A S, P T, M R, Bokov DO. Noteworthy synthesis strategies and applications of metal-organic frameworks for the removal of emerging water pollutants from aqueous environment. CHEMOSPHERE 2024; 362:142729. [PMID: 38971438 DOI: 10.1016/j.chemosphere.2024.142729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
17 global Sustainable Development Goals (SDGs) were established through the adoption of the 2030 Agenda for Sustainable Development by all United Nations members. Clean water and sanitation (SDG 6) and industry, innovation, and infrastructure (SDG 9) are the SDGs focus of this work. Of late, various new companies delivering metal-organic frameworks (MOFs) have blossomed and moved the field of adsorption utilizing MOFs to another stage. Inside this unique circumstance, this article aims to catch recent advancements in the field of MOFs and the utilizations of MOFs relate to the expulsion of arising contaminations that present huge difficulties to water quality because of their steadiness and possible damage to environments and human wellbeing. Customary water treatment techniques regularly neglect to eliminate these poisons, requiring the advancement of novel methodologies. This study overviews engineering techniques for controlling MOF characteristics for better flexibility, stability, and surface area. A current report on MOFs gathered new perspectives that are amicably discussed in emergent technologies and extreme applications towards environmental sectors. Various applications in many fields that exploit MOFs are being fostered, including gas storage, fluid separation, adsorbents, catalysis, medication delivery, and sensor utilizations. The surface area of a wide range of MOFs ranges from 103 to 104 m2/g, which exceeds the standard permeability of several material designs. MOFs with extremely durable porosity are more significant in their assortment and variety than other classes of porous materials. The work outlines the difficulties encountered in the synthesis steps and suggests ways to make use of MOFs' value in a variety of contexts. This caters to creating multivariate systems enclosed with numerous functionalities, leading to the synthesis of MOFs that offer a synergistic blend of in-built properties and exclusive applications. Additionally, the MOF-related future development opportunities and challenges are discussed.
Collapse
Affiliation(s)
- Sathish Sundararaman
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Adhilimam
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Jobin Chacko
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Prabu D
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Karthikeyan M
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India.
| | - Saravanan A
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Thamarai P
- Department of Sustainable Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Saveetha University, India
| | - Rajasimman M
- Department of Chemical Engineering, Annamalai University, Chidambaram, Tamilnadu, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| |
Collapse
|
8
|
Zango ZU, Khoo KS, Garba A, Garba ZN, Danmallam UN, Aldaghri O, Ibnaouf KH, Ahmad NM, Binzowaimil AM, Lim JW, Bhattu M, Ramesh MD. A review on titanium oxide nanoparticles modified metal-organic frameworks for effective CO 2 conversion and efficient wastewater remediation. ENVIRONMENTAL RESEARCH 2024; 252:119024. [PMID: 38692419 DOI: 10.1016/j.envres.2024.119024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Environmental pollution has been increasing since last decade due to increasing industrialisation and urbanisation. Various kinds ofenvironmental pollutants including carbon dioxide (CO2), dyes, pharmaceuticals, phenols, heavy metals along with many organic and inorganic species have been discovered in the various environmental compartments which possess harmful impacts tox human health, wildlife, and ecosystems. Thus, various efforts have been made through regulations, technological advancements, and public awareness campaigns to reduce the impact of the pollution. However, finding suitable alternatives to mitigate their impacts remained a challenge. Metal-organic frameworks (MOFs) are one of the advanced materials with unique features such as high porosity and stability which exhibit versatile applications in environmental remediation. Their composites with titanium oxide nanoparticles (TiO2) have been discovered to offer potential feature such as light harvesting capacity and catalytic activity. The composite integration and properties have been confirmed through characterization using surface area analysis, scanning electron/transmission electron microscopy, atomic force microscopy, fourier transformed infrared spectroscopy, X-ray diffraction analysis, X-ray photoelectron spectroscopy, thermogravimetric analysis, and others. Thus, this work rigorously discussed potential applications of the MOF@TiO2 nanomaterials for the CO2 capture and effective utilization in methanol, ethanol, acetone, acetaldehyde, and other useful products that served as fuel to various industrial processes. Additionally, the work highlights the effective performance of the materials towards photocatalytic degradation of both organic and inorganic pollutants with indepth mechanistic insights. The article will offer significant contribution for the development of sustainable and efficient technologies for the environmental monitoring and pollution mitigation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City 2137, Katsina, Nigeria
| | - Zaharaddeen N Garba
- Department of Chemistry, Ahmadu Bello University, 810107, Zaria. Nigeria, India
| | | | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia.
| | - Nasir M Ahmad
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; Laser and Optoelectronics Engineering Department, Dijlah University College, Baghdad, Iraq
| | - Ayed M Binzowaimil
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Riyadh, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali-140413, Punjab, India
| | - M D Ramesh
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica-1000000, Chile
| |
Collapse
|
9
|
Xie Y, Zhang T, Wang B, Wang W. The Application of Metal-Organic Frameworks in Water Treatment and Their Large-Scale Preparation: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1972. [PMID: 38730779 PMCID: PMC11084628 DOI: 10.3390/ma17091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.
Collapse
Affiliation(s)
- Yuhang Xie
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; (Y.X.); (B.W.)
- Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenju Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Shee NK, Kim HJ. Recent Developments in Porphyrin-Based Metal-Organic Framework Materials for Water Remediation under Visible-Light Irradiation. Int J Mol Sci 2024; 25:4183. [PMID: 38673768 PMCID: PMC11050243 DOI: 10.3390/ijms25084183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Access to clean drinking water is a basic requirement, and eliminating pollutants from wastewater is important for saving water ecosystems. The porous structure and surface characteristics of metal-organic frameworks (MOFs) can function as a perfect scaffold for removing toxic compounds from wastewater. Porphyrins are promising building blocks for constructing MOFs. Porphyrin-based metal-organic frameworks (P-MOFs) have been fabricated using porphyrin ligands, metal clusters, or ions. These materials can harvest light from a wide region of the solar spectrum, and their framework morphology and physicochemical properties can be controlled by changing their peripheral subunits or metal ions. These porous crystalline materials have generated interest because of their distinctive characteristics, including large permanent porosity, interesting surface morphology, broad conformational diversity, high photostability, and semiconducting nature. This article discusses the recent progress and usefulness of P-MOFs. The fabrication procedures of P-MOFs are discussed, followed by the adsorptive and photocatalytic removal of contaminants from wastewater. The relationships between the geometries of P-MOFs and their light-harvesting and charge-transfer mechanisms for the photocatalytic degradation of pollutants are highlighted. Finally, some future perspectives and obstacles in the photodegradation usage of P-MOFs are discussed, along with feasible research directions to standardize efficient photocatalysts for improved photodegradation for water treatment.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
11
|
Zango ZU, Khoo KS, Garba A, Lawal MA, Abidin AZ, Wadi IA, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Da Oh W. A review on carbon-based biowaste and organic polymer materials for sustainable treatment of sulfonamides from pharmaceutical wastewater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:145. [PMID: 38568460 DOI: 10.1007/s10653-024-01936-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
Frequent detection of sulfonamides (SAs) pharmaceuticals in wastewater has necessitated the discovery of suitable technology for their sustainable remediation. Adsorption has been widely investigated due to its effectiveness, simplicity, and availability of various adsorbent materials from natural and artificial sources. This review highlighted the potentials of carbon-based adsorbents derived from agricultural wastes such as lignocellulose, biochar, activated carbon, carbon nanotubes graphene materials as well as organic polymers such as chitosan, molecularly imprinted polymers, metal, and covalent frameworks for SAs removal from wastewater. The promising features of these materials including higher porosity, rich carbon-content, robustness, good stability as well as ease of modification have been emphasized. Thus, the materials have demonstrated excellent performance towards the SAs removal, attributed to their porous nature that provided sufficient active sites for the adsorption of SAs molecules. The modification of physico-chemical features of the materials have been discussed as efficient means for enhancing their adsorption and reusable performance. The article also proposed various interactive mechanisms for the SAs adsorption. Lastly, the prospects and challenges have been highlighted to expand the knowledge gap on the application of the materials for the sustainable removal of the SAs.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria.
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, Katsina CityKatsina, 2137, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, Katsina City, 2137, Katsina, Nigeria
| | | | - Asmaa' Zainal Abidin
- Department of Chemistry and Biology, Centre for Defense Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, 57000, Kuala Lumpur, Malaysia
| | - Ismael A Wadi
- Basic Science Unit, Prince Sattam Bin Abdulaziz University, 16278, Alkharj, Alkharj, Saudi Arabia
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Riyadh, Saudi Arabia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| |
Collapse
|
12
|
Zango ZU, Lawal MA, Usman F, Sulieman A, Akhdar H, Eisa MH, Aldaghri O, Ibnaouf KH, Lim JW, Khoo KS, Cheng YW. Promoting the suitability of graphitic carbon nitride and metal oxide nanoparticles: A review of sulfonamides photocatalytic degradation. CHEMOSPHERE 2024; 351:141218. [PMID: 38266876 DOI: 10.1016/j.chemosphere.2024.141218] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The widespread consumption of pharmaceutical drugs and their incomplete breakdown in organisms has led to their extensive presence in aquatic environments. The indiscriminate use of antibiotics, such as sulfonamides, has contributed to the development of drug-resistant bacteria and the persistent pollution of water bodies, posing a threat to human health and the safety of the environment. Thus, it is paramount to explore remediation technologies aimed at decomposing and complete elimination of the toxic contaminants from pharmaceutical wastewater. The review aims to explore the utilization of metal-oxide nanoparticles (MONPs) and graphitic carbon nitrides (g-C3N4) in photocatalytic degradation of sulfonamides from wastewater. Recent advances in oxidation techniques such as photocatalytic degradation are being exploited in the elimination of the sulfonamides from wastewater. MONP and g-C3N4 are commonly evolved nano substances with intrinsic properties. They possessed nano-scale structure, considerable porosity semi-conducting properties, responsible for decomposing wide range of water pollutants. They are widely applied for photocatalytic degradation of organic and inorganic substances which continue to evolve due to the low-cost, efficiency, less toxicity, and more environmentally friendliness of the materials. The review focuses on the current advances in the application of these materials, their efficiencies, degradation mechanisms, and recyclability in the context of sulfonamides photocatalytic degradation.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | | | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), United States
| | - Abdelmoneim Sulieman
- Department of Radiology and Medical Imaging, Prince Sattam bin Abdulaziz University, PO Box 422, Alkharj, 11942, Kingdom of Saudi Arabia
| | - Hanan Akhdar
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| | - M H Eisa
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Yoke Wang Cheng
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, 138602, Singapore, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 138602, Singapore, Singapore
| |
Collapse
|
13
|
Shee NK, Kim HJ. Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives. Molecules 2024; 29:611. [PMID: 38338355 PMCID: PMC10856464 DOI: 10.3390/molecules29030611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Self-organized, well-defined porphyrin-based nanostructures with controllable sizes and morphologies are in high demand for the photodegradation of hazardous contaminants under sunlight. From this perspective, this review summarizes the development progress in the fabrication of porphyrin-based nanostructures by changing their synthetic strategies and designs. Porphyrin-based nanostructures can be fabricated using several methods, including ionic self-assembly, metal-ligand coordination, reprecipitation, and surfactant-assisted methods. The synthetic utility of porphyrins permits the organization of porphyrin building blocks into nanostructures, which can remarkably improve their light-harvesting properties and photostability. The tunable functionalization and distinctive structures of porphyrin nanomaterials trigger the junction of the charge-transfer mechanism and facilitate the photodegradation of pollutant dyes. Finally, porphyrin nanomaterials or porphyrin/metal nanohybrids are explored to amplify their photocatalytic efficiency.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
14
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
15
|
Li G, Song T, Gao Y, Deng Q, Jiang Y, Yang S. Piezoelectric polarization coupled with photoinduced catalytic oxidation technology for environmental pollution control: Recent advances and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167284. [PMID: 37741396 DOI: 10.1016/j.scitotenv.2023.167284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Energy scarcity and environmental pollution concerns have become substantial impediments to sustainable global economic development. The advent of semiconductor photocatalysis technology provides a potential possibility for effectively alleviating excessive energy consumption and maintaining the long-term stability of the aqueous ecosystem. However, the inefficient transmission efficiency of charge carriers and the high recombination rate of photogenerated electron-hole pairs will culminate in the mediocre catalytic performance observed in conventional semiconductor materials. Fortunately, the piezo-photocatalysis ingeniously integrates the piezoelectric properties of piezoelectric crystals with the optoelectronic properties of semiconductors, thus building a theoretical system of photo-electric-chemical three-phase coupled catalysis. Currently, the photo-mechanical energy synergistic catalytic oxidation degradation process, as a cutting-edge technology based on clean renewable energy, has been perceived as a promising environmental remediation strategy. Herein, a critical review of the application of piezo-photocatalysis in environmental pollution control was delivered. We undertook a comprehensive analysis to elucidate the underlying enhancement mechanism of the piezoelectric effect on photocatalysis in terms of charge migration dynamics and pertinent energy band bending phenomena. In addition, we meticulously summarized diverse innovative methods for introducing vibration energy in piezo-photocatalytic degradation systems (ultrasound, fluid mechanical energy, airflow, self-assembled reactors, etc.). Then, state-of-the-art research advances in the field of environmental pollution control and the corresponding environmental decontamination mechanisms were elaborated based on various integration modes of catalysts (single component, noble metal deposition, heterojunction, coupled substrate materials, etc.). Eventually, an in-depth assessment of current limitations and development trends of piezo-photocatalytic degradation technology has been proposed, along with proactive strategies aimed at surmounting the existing challenges.
Collapse
Affiliation(s)
- Guanqiao Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Qiyuan Deng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Yi Jiang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Shenggang Yang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
16
|
Zango ZU, Binzowaimil AM, Aldaghri OA, Eisa MH, Garba A, Ahmed NM, Lim JW, Ng HS, Daud H, Jumbri K, Khoo KS, Ibnaouf KH. Applications of covalent organic frameworks for the elimination of dyes from wastewater: A state-of-the-arts review. CHEMOSPHERE 2023; 343:140223. [PMID: 37734509 DOI: 10.1016/j.chemosphere.2023.140223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Covalent organic frameworks (COFs) are class of porous coordination polymers made up of organic building blocks joined together by covalent bonding through thermodynamic and controlled reversible polymerization reactions. This review discussed versatile applications of COFs for remediation of wastewater containing dyes, emphasizing the advantages of both pristine and modified materials in adsorption, membrane separation, and advanced oxidations processes. The excellent performance of COFs towards adsorption and membrane filtration has been centered to their higher crystallinity and porosity, exhibiting exceptionally high surface area, pore size and pore volumes. Thus, they provide more active sites for trapping the dye molecules. On one hand, the photocatalytic performance of the COFs was attributed to their semiconducting properties, and when coupled with other functional semiconducting materials, they achieve good mechanical and thermal stabilities, positive light response, and narrow band gap, a typical characteristic of excellent photocatalysts. As such, COFs and their composites have demonstrated excellent potentialities for the elimination of the dyes.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Ayed M Binzowaimil
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Osamah A Aldaghri
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Mohamed Hassan Eisa
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Naser M Ahmed
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Hanita Daud
- Mathematical and Statistical Science, Department of Fundamental and Applied Sciences, Institute of Autonomous System, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Khairulazhar Jumbri
- Department of Fundamental and Applied Sciences, Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Khalid Hassan Ibnaouf
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia.
| |
Collapse
|
17
|
Krishnaprasanth A, Mannu P, Mahalingam S, Pattappan D, Kandasami A, Lai YT, Masuda Y, Chang HW, Chen MY, Yeh PH, Dong CL. Novel GdTaO 4 phase for efficient photocatalytic degradation of organic dye under visible light irradiation: An X-ray spectroscopic investigation. CHEMOSPHERE 2023; 340:139834. [PMID: 37625493 DOI: 10.1016/j.chemosphere.2023.139834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The novel GdTaO4 phase exhibits good photocatalytic activity under visible light irradiation and holds great promise for the removal of organic dyes from industrial wastes. The GdTaO4 samples were synthesized using the hydrothermal and calcination process with different weight ratios of gadolinium nitrate hydrate (G) and tantalum pentachloride (T), and their structural studies confirmed the formation of the GdTaO4 (GT) phase. Among the samples, GT-4 (with a weight ratio of 4:1) exhibited the highest photocatalytic activity for the degradation of Methyl Orange (MO) dye under visible light irradiation. To enhance the photocatalytic performance, H2O2 was used as a green additive, and the photocatalytic abilities were examined by varying dye types and concentrations. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) revealed the local atomic and electronic structures around Ta and Gd and highlighted the contribution of Gd3+ to the GT system, which is a crucial factor in supporting the enhanced photocatalytic performance. Moreover, in-situ XAS at Gd M5-edge and O K-edge were examined under illumination/dark conditions to explore the electronic structures of photo-excited electron transition in the photocatalytic process. The analytical results provided strong evidence correlating the electronic structure and photocatalytic property of the GT. This study demonstrates that GdTaO4 exhibits good photocatalytic activity under visible light irradiation, making it a promising new Ta-based photocatalyst for the effective removal of organic dyes from industrial wastes.
Collapse
Affiliation(s)
| | - Pandian Mannu
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Seetha Mahalingam
- Department of Physics, Kongunadu Arts and Science College, Coimbatore, 641 029, India.
| | - Dhanaprabhu Pattappan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Asokan Kandasami
- Department of Physics & Centre for Interdisciplinary Research, University of Petroleum and Energy Studies (UPES) Dehradun, Uttarakhand, 248007, India
| | - Yi-Ting Lai
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Yoshitake Masuda
- National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Nagoya, 463 8560, Japan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan; Pesticide Analysis Center, National United University, Miaoli, 360302, Taiwan
| | - Mei-Yu Chen
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Ping-Hung Yeh
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan
| | - Chung-Li Dong
- Research Center for X-ray Science & Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
| |
Collapse
|
18
|
ÖZCAN E, MERMER Z, ZORLU Y. Metal-organic frameworks as photocatalysts in energetic and environmental applications. Turk J Chem 2023; 47:1018-1052. [PMID: 38173745 PMCID: PMC10760874 DOI: 10.55730/1300-0527.3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/31/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal-organic frameworks (MOFs) are an exciting new class of porous materials with great potential for photocatalytic applications in the environmental and energy sectors. MOFs provide significant advantages over more traditional materials when used as photocatalysts due to their high surface area, adaptable topologies, and functional ability. In this article, we summarize current developments in the use of MOFs as photocatalysts for a variety of applications, such as CO2 reduction, water splitting, pollutant degradation, and hydrogen production. We discuss the fundamental properties of MOFs that make them ideal for photocatalytic applications, as well as strategies for improving their performance. The opportunities and challenges presented by this rapidly expanding field are also highlighted.
Collapse
Affiliation(s)
- Elif ÖZCAN
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Zeliha MERMER
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| | - Yunus ZORLU
- Gebze Technical University, Department of Chemistry, Kocaeli,
Turkiye
| |
Collapse
|
19
|
Nasari Z, Taherimehr M. Optimization of Visible-Light-Driven Ciprofloxacin Degradation Using a Z-Scheme Semiconductor MgFe 2O 4/UiO-67. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14357-14373. [PMID: 37766455 DOI: 10.1021/acs.langmuir.3c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
A heterogeneous photocatalyst, MgFe2O4/UiO-67 (MU-x), was successfully synthesized by doping magnetic magnesium ferrite nanoparticles (MgFe2O4) with the UiO-67 metal-organic framework at various weight ratios (MgFe2O4: UiO-67 at 30, 50, 70, and 90 wt %). Various techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR) , Brunauer-Emmett-Teller (BET), photoluminescence (PL), vibrating sample magnetometry (VSM), electrochemical impedance spectroscopy (EIS), and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), were used to characterize the prepared photocatalysts. The photocatalytic performance of MU-x in the degradation of ciprofloxacin (CIP) under visible light was assessed. The CIP degradation efficiency was found to increase as the amount of MgFe2O4 in the composite was increased up to 70 wt %. Experimental conditions were optimized using response surface methodology (RSM) based on central composite design (CCD) with three factors: initial pH, catalyst loading, and CIP concentration. Using the obtained model, the optimal conditions were determined as follows: initial pH of 8.025, catalyst loading of 33.8 wt %, and CIP concentration of 10.8 mg/L. Under these optimal conditions, a notable improvement was achieved, with 99.62% of CIP removal achieved within 90 min, surpassing the performance of previously reported photocatalysts. Total organic carbon (TOC) analysis revealed a high degree of mineralization, at 81.25%. The degradation pathway of CIP was investigated based on liquid chromatography-mass spectrometry (LC-MS) analysis. Finally, the values of ECB and EVB of the photocatalyst were determined and the possible degradation mechanism of CIP was investigated based on Mott-Schottky and the applied scavengers. The hydroxyl radical (•OH) was identified as the dominant species in the removal of CIP through a trapping experiment. The photocatalyst with 70 wt % of MgFe2O4 (MU-70) exhibited excellent stability and recoverability with an external magnet, demonstrating 86.33% CIP removal after four cycles. According to the obtained results, MU-70 is a promising visible-light-active photocatalyst with great potential for water treatment applications and convenient recovery.
Collapse
Affiliation(s)
- Zoha Nasari
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol 4714871167, Iran
| | - Masoumeh Taherimehr
- Department of Chemistry, Faculty of Basic Sciences, Babol Noshirvani University of Technology, Babol 4714871167, Iran
| |
Collapse
|
20
|
A V M, K A, I BM. An integrated approach to remove endocrine-disrupting chemicals bisphenol and its analogues from the aqueous environment: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1518-1546. [PMID: 37768753 PMCID: wst_2023_280 DOI: 10.2166/wst.2023.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine-disrupting chemical (EDC) used as a plastic enhancer in producing polycarbonate resins to manufacture hard plastics. Due to strict limitations on the manufacturing and utilization of BPA, several bisphenol substitutes, bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF), have been developed to replace it in various applications. Because of their widespread use in food containers, infant bottles, and reusable water bottles, bisphenols (BPs) have been identified in different environmental circumstances, including drinking water, seawater, industrial effluent, and endocrine systems such as human blood, urine, and breast milk. However, locating and analyzing them in different conditions has proven to be challenging. Therefore, there is a need to reduce the prevalence of BPs in the environment. The significance of advanced treatment options for treating and eliminating BPA and its alternatives from water bodies are reviewed. Also, the research gaps and future scopes are discussed in this review article. According to the literature survey, adsorption and photocatalytic degradation provide synergistic benefits for environmental challenges because of their substantial adsorption Q5 capacity, high oxidation capability, and low cost compared to alternative individual treatment options.
Collapse
Affiliation(s)
- Monica A V
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India E-mail:
| | - Anbalagan K
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Becky Miriyam I
- Department of Chemical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
21
|
Zango ZU, Ethiraj B, Al-Mubaddel FS, Alam MM, Lawal MA, Kadir HA, Khoo KS, Garba ZN, Usman F, Zango MU, Lim JW. An overview on human exposure, toxicity, solid-phase microextraction and adsorptive removal of perfluoroalkyl carboxylic acids (PFCAs) from water matrices. ENVIRONMENTAL RESEARCH 2023; 231:116102. [PMID: 37196688 DOI: 10.1016/j.envres.2023.116102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) are sub-class of perfluoroalkyl substances commonly detected in water matrices. They are persistent in the environment, hence highly toxic to living organisms. Their occurrence at trace amount, complex nature and prone to matrix interference make their extraction and detection a challenge. This study consolidates current advancements in solid-phase extraction (SPE) techniques for the trace-level analysis of PFCAs from water matrices. The advantages of the methods in terms of ease of applications, low-cost, robustness, low solvents consumption, high pre-concentration factors, better extraction efficiency, good selectivity and recovery of the analytes have been emphasized. The article also demonstrated effectiveness of some porous materials for the adsorptive removal of the PFCAs from the water matrices. Mechanisms of the SPE/adsorption techniques have been discussed. The success and limitations of the processes have been elucidated.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Fahad S Al-Mubaddel
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, 11421, Saudi Arabia; Fellow, King Abdullah City for Renewable and Atomic Energy: Energy Research and Innovation Center, (ERIC), Riyadh, 11451, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | | | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi State, Nigeria
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| | | | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
22
|
Mahmad A, Ubaidah Noh T, Izzah Khalid N. Eco-friendly water treatment: The role of MIL metal–organic frameworks for the bisphenols adsorption from water. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
23
|
Karuppaiyan J, Jeyalakshmi R, Kiruthika S, Wadaan MA, Khan MF, Kim W. A study on the role of surface functional groups of metakaolin in the removal of methylene blue: Characterization, kinetics, modeling and RSM optimization. ENVIRONMENTAL RESEARCH 2023; 226:115604. [PMID: 36934864 DOI: 10.1016/j.envres.2023.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this study, thermally activated kaolinite clay is explored as a suitable material for dye removal applications, which gave rise to highly reactive silica species in a broad range of aluminosilicate clusters. Multinuclear NMR studies described it as a short-range network in which Al sites in IV, V, and VI are coordinated, and Si is present mainly as Si(Q4(1Al)). Critical parameters for methylene blue (MB) were determined by the Placket Burman Design (PBD) as initial dye concentration, contact time, adsorbent dosage, pH and size. The % of MB removal studied after optimizing the parameters by central composite design (CCD), based on Response Surface Methodology, was found to be 90%. The adsorption kinetics and thermodynamics were systematically studied and reported by fitting them into different models. The maximum removal of the dye reached 97.8 mg/g according to the Freundlich isotherm, accomplished through chemisorption, following a pseudo-second-order reaction and the process is thermodynamically spontaneous and endothermic. The line spectrum of X-ray photoelectron spectroscopy (XPS) shows the participation of Si, Al, O, Ca and Na of Metakaolin (AK) and nitrogen of MB in the adsorption process. The appropriate stabilization of the N atom of the chromophore on the Si and Al atom in AK resulting from the ionic interaction on the surface is established from an increase in the binding energy of Al and Si. A single bridging oxygen signal at 532.32eVcorresponding to AK after dye adsorption tends to form siloanol/aluminol, and their interaction is lowered to 531.58eV. Regeneration of adsorbent after thermal treatment without loss of efficiency proved.
Collapse
Affiliation(s)
- Janani Karuppaiyan
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - R Jeyalakshmi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India.
| | - S Kiruthika
- Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203, India
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Woog Kim
- Department of Environmental Engineering, Kyungpook National University, South Korea
| |
Collapse
|
24
|
Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, Da Oh W, Lim JW. A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115326. [PMID: 36690243 DOI: 10.1016/j.envres.2023.115326] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi, Nigeria
| | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
25
|
Sharma P, Jatrana A, Mondal S, Maan S, Kumar V. A Promising HKUST‐1@SiO
2
Composite for the Effective Adsorption of Chlorpyriphos from Aqueous Medium. ChemistrySelect 2023. [DOI: 10.1002/slct.202204312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Prachi Sharma
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana 125001
| | - Anushree Jatrana
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana 125001
| | - Sanchit Mondal
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana 125001
| | - Sheetal Maan
- Department of Chemistry Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana 125001
| | - Vinay Kumar
- Department of Physics Chaudhary Charan Singh Haryana Agricultural University Hisar Haryana 125001
| |
Collapse
|
26
|
Mohamed NS, Ibrahim SM, Ahmed MM, Al-Hossainy AF. Removal of Toxic Basic Fuchsin Dye from Liquids by Antibiotic Azithromycin Using Adsorption, TD-DFT Calculations, Kinetic, and Equilibrium Studies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Nora S. Mohamed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, New Valley, Egypt
| | - Samia M. Ibrahim
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, New Valley, Egypt
| | - Mahmoud M. Ahmed
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, New Valley, Egypt
| | - Ahmed F. Al-Hossainy
- Chemistry Department, Faculty of Science, New Valley University, El-Kharga 72511, New Valley, Egypt
| |
Collapse
|
27
|
Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
|
28
|
Efremenko E, Lyagin I, Aslanli A, Stepanov N, Maslova O, Senko O. Carrier Variety Used in Immobilization of His 6-OPH Extends Its Application Areas. Polymers (Basel) 2023; 15:591. [PMID: 36771892 PMCID: PMC9920489 DOI: 10.3390/polym15030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Organophosphorus hydrolase, containing a genetically introduced hexahistidine sequence (His6-OPH), attracts the attention of researchers by its promiscuous activity in hydrolytic reactions with various substrates, such as organophosphorus pesticides and chemical warfare agents, mycotoxins, and N-acyl homoserine lactones. The application of various carrier materials (metal-organic frameworks, polypeptides, bacterial cellulose, polyhydroxybutyrate, succinylated gelatin, etc.) for the immobilization and stabilization of His6-OPH by various methods, enables creation of biocatalysts with various properties and potential uses, in particular, as antidotes, recognition elements of biosensors, in fibers with chemical and biological protection, dressings with antimicrobial properties, highly porous sorbents for the degradation of toxicants, including in flow systems, etc. The use of computer modeling methods in the development of immobilized His6-OPH samples provides in silico prediction of emerging interactions between the enzyme and immobilizing polymer, which may have negative effects on the catalytic properties of the enzyme, and selection of the best options for experiments in vitro and in vivo. This review is aimed at analysis of known developments with immobilized His6-OPH, which allows to recognize existing recent trends in this field of research, as well as to identify the reasons limiting the use of a number of polymer molecules for the immobilization of this enzyme.
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Naghdi S, Shahrestani MM, Zendehbad M, Djahaniani H, Kazemian H, Eder D. Recent advances in application of metal-organic frameworks (MOFs) as adsorbent and catalyst in removal of persistent organic pollutants (POPs). JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130127. [PMID: 36303355 DOI: 10.1016/j.jhazmat.2022.130127] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The presence of persistent organic pollutants (POPs) in the aquatic environment is causing widespread concern due to their bioaccumulation, toxicity, and possible environmental risk. These contaminants are produced daily in large quantities and released into water bodies. Traditional wastewater treatment plants are ineffective at degrading these pollutants. As a result, the development of long-term and effective POP removal techniques is critical. In water, adsorption removal and photocatalytic degradation of POPs have been identified as energy and cost-efficient solutions. Both technologies have received a lot of attention for their efforts to treat the world's wastewater. Photocatalytic removal of POPs is a promising, effective, and long-lasting method, while adsorption removal of persistent POPs represents a simple, practical method, particularly in decentralized systems and isolated areas. It is critical to develop new adsorbents/photocatalysts with the desired structure, tunable chemistry, and maximum adsorption sites for highly efficient removal of POPs. As a class of recently created multifunctional porous materials, Metal-organic frameworks (MOFs) offer tremendous prospects in adsorptive removal and photocatalytic degradation of POPs for water remediation. This review defines POPs and discusses current research on adsorptive and photocatalytic POP removal using emerging MOFs for each type of POPs.
Collapse
Affiliation(s)
- Shaghayegh Naghdi
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| | - Masoumeh Moheb Shahrestani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Mohammad Zendehbad
- Institute of Soil Physics and Rural Water Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hoorieh Djahaniani
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada
| | - Hossein Kazemian
- Northern Analytical Lab Services (Northern BC's Environmental and Climate Solutions Innovation Hub), University of Northern British Columbia, Prince George, BC, Canada; Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
| | - Dominik Eder
- Institute of Material Chemistry, Technische Universität Wien, 1060 Vienna, Austria.
| |
Collapse
|
30
|
Karbassiyazdi E, Kasula M, Modak S, Pala J, Kalantari M, Altaee A, Esfahani MR, Razmjou A. A juxtaposed review on adsorptive removal of PFAS by metal-organic frameworks (MOFs) with carbon-based materials, ion exchange resins, and polymer adsorbents. CHEMOSPHERE 2023; 311:136933. [PMID: 36280122 DOI: 10.1016/j.chemosphere.2022.136933] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/23/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The removal of poly- and perfluoroalkyl substances (PFAS) from the aquatic environment is a universal concern due to the adverse effects of these substances on both the environment and public health. Different adsorbents, including carbon-based materials, ion exchange resins, biomaterials, and polymers, have been used for the removal of short-chain (C < 6) and long-chain (C > 7) PFAS from water with varying performance. Metal-organic frameworks (MOFs), as a new generation of adsorbents, have also been recently used to remove PFAS from water. MOFs provide unique properties such as significantly enhanced surface area, structural tunability, and improved selectivity compared to conventional adsorbents. However, due to various types of MOFs, their complex chemistry and morphology, different PFAS compounds, lack of standard adsorption test, and different testing conditions, there are inconclusive and contradictory findings in the literature. Therefore, this review aims to provide critical analysis of the performance of different types of MOFs in the removal of long-chain (C > 7), short-chain (C < 6), and ultra-short-chain (C < 3) PFAS and comprehensively study the efficiency of MOFs for PFAS removal in comparison with other adsorbents. In addition, the adsorption mechanisms and kinetics of PFAS components on different MOFs, including Materials of Institute Lavoisier (MIL), Universiteit of Oslo (UiO), Zeolitic imidazolate frameworks (ZIFs), Hong Kong University of Science and Technology (HKUST), and other hybrid types of MOF were discussed. The study also discussed the effect of environmental factors such as pH and ionic strength on the adsorption of PFAS on MOFs. In addition to the adsorption process, the reusability and regeneration of MOFs in the PFAS removal process are discussed. Finally, challenges and future outlooks of the utility of MOFs for PFAS removal were discussed to inspire future critical research efforts in removing PFAS.
Collapse
Affiliation(s)
- Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Medha Kasula
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Sweta Modak
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Jasneet Pala
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA
| | - Mohammad Kalantari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, The University of Alabama, Alabama, USA.
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
31
|
García A, Rodríguez B, Rosales M, Quintero YM, G. Saiz P, Reizabal A, Wuttke S, Celaya-Azcoaga L, Valverde A, Fernández de Luis R. A State-of-the-Art of Metal-Organic Frameworks for Chromium Photoreduction vs. Photocatalytic Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4263. [PMID: 36500886 PMCID: PMC9738636 DOI: 10.3390/nano12234263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly mobile cancerogenic and teratogenic heavy metal ion. Among the varied technologies applied today to address chromium water pollution, photocatalysis offers a rapid reduction of Cr(VI) to the less toxic Cr(III). In contrast to classic photocatalysts, Metal-Organic frameworks (MOFs) are porous semiconductors that can couple the Cr(VI) to Cr(III) photoreduction to the chromium species immobilization. In this minireview, we wish to discuss and analyze the state-of-the-art of MOFs for Cr(VI) detoxification and contextualizing it to the most recent advances and strategies of MOFs for photocatalysis purposes. The minireview has been structured in three sections: (i) a detailed discussion of the specific experimental techniques employed to characterize MOF photocatalysts, (ii) a description and identification of the key characteristics of MOFs for Cr(VI) photoreduction, and (iii) an outlook and perspective section in order to identify future trends.
Collapse
Affiliation(s)
- Andreina García
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
- Mining Engineering Department, Faculty of Physical and Mathematical Sciences (FCFM), Universidad de Chile, Av. Tupper 2069, Santiago 8370451, Chile
| | - Bárbara Rodríguez
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8320000, Chile;
| | - Maibelin Rosales
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Yurieth M. Quintero
- Advanced Mining Technology Center (AMTC), Universidad de Chile, Avenida Beauchef 850, Santiago 8370451, Chile; (M.R.); (Y.M.Q.)
| | - Paula G. Saiz
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Ander Reizabal
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| | - Stefan Wuttke
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Celaya-Azcoaga
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ainara Valverde
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Roberto Fernández de Luis
- Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (P.G.S.); (A.R.); (S.W.); (L.C.-A.); (A.V.)
| |
Collapse
|
32
|
Sajjadinezhad SM, Tanner K, Harvey PD. Metal-porphyrinic framework nanotechnologies in modern agricultural management. J Mater Chem B 2022; 10:9054-9080. [PMID: 36321474 DOI: 10.1039/d2tb01516a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal-porphyrinic frameworks are an important subclass of metal-organic frameworks (MOFs). These porous materials exhibit a large number of applications for sustainable development and related environmental considerations. Their attractive features include (1) as a free base or metalated with zinc(II) or iron(II or III), they are environmentally benign, and (2) they absorb visible light and are emissive and semi-conducting, making them convenient tools for sensing agrochemicals. But the key feature that makes these nano-sized pristine materials or their composites in many ways superior to most MOFs is their ability to photo-generate reactive oxygen species with visible light, including singlet oxygen. This review describes important issues related to agriculture, including controlled delivery of pesticides and agrochemicals, detection of pesticides and pathogenic metals, elimination of pesticides and toxic metals, and photodynamic antimicrobial activity, and has an important implication for food safety. This comprehensive review presents the progress of the rather rapid developments of these functional and increasingly nano-sized materials and composites in the area of sustainable agriculture.
Collapse
Affiliation(s)
| | - Kevin Tanner
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, PQ, J1K 2R1, Canada.
| |
Collapse
|
33
|
Hou Y, Liu F, Zhang B, Tong M. Thiadiazole-Based Covalent Organic Frameworks with a Donor-Acceptor Structure: Modulating Intermolecular Charge Transfer for Efficient Photocatalytic Degradation of Typical Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16303-16314. [PMID: 36305749 DOI: 10.1021/acs.est.2c06056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As novel metal-free photocatalysts, covalent organic frameworks (COFs) have great potential to decontaminate pollutants in water. Fast charge recombination in COFs yet inhibits their photocatalytic performance. We found that the intramolecular charge transfer within COFs could be modulated via constructing a donor-acceptor (D-A) structure, leading to the improved photocatalytic performance of COFs toward pollutant degradation. By integrating electron donor units (1,3,4-thiadiazole or 1,2,4-thiadiazole ring) and electron acceptor units (quinone), two COFs (COF-TD1 and COF-TD2) with robust D-A characteristics were fabricated as visible-light-driven photocatalysts to decontaminate paracetamol. With the readily excited electrons in 1,3,4-thiadiazole rings, COF-TD1 exhibited efficient electron-hole separation through a push-pull electronic effect, resulting in superior paracetamol photodegradation performance (>98% degradation in 60 min) than COF-TD2 (∼60% degradation within 120 min). COF-TD1 could efficiently photodegrade paracetamol in complicated water matrices even in river water, lake water, and sewage wastewater. Diclofenac, bisphenol A, naproxen, and tetracycline hydrochloride were also effectively degraded by COF-TD1. Efficient photodegradation of paracetamol in a scaled-up reactor could be achieved either by COF-TD1 in a powder form or that immobilized onto a glass slide (to further ease recovery and reuse) under natural sunlight irradiation. Overall, this study provided an effective strategy for designing excellent COF-based photocatalysts to degrade emerging contaminants.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Boaiqi Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
34
|
Abukhadra MR, Saad I, Othman SI, Katowah DF, Ajarem JS, Alqarni SA, Allam AA, Al Zoubi Investigatio W, Gun Ko Supervisor Y. Characterization of Fe0@Chitosan/Cellulose Structure as Effective Green Adsorbent for Methyl Parathion, Malachite Green, and Levofloxacin Removal: Experimental and Theoretical Studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Solar photocatalytic degradation of emerging contaminants using NH2-MIL-125 grafted by heterocycles. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Experimental and molecular modelling approach for rapid adsorption of Bisphenol A using Zr and Fe based metal–organic frameworks. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals. Polymers (Basel) 2022; 14:polym14132545. [PMID: 35808592 PMCID: PMC9269069 DOI: 10.3390/polym14132545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%.
Collapse
|
40
|
Recent Progress in the Removal of Legacy and Emerging Organic Contaminants from Wastewater Using Metal-Organic Frameworks: An Overview on Adsorption and Catalysis Processes. MATERIALS 2022; 15:ma15113850. [PMID: 35683144 PMCID: PMC9181615 DOI: 10.3390/ma15113850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Water covers about 70% of the Earth’s surface, but the amount of freshwater available for human use is only 2.5% and, although it is continuously replenished via the water cycle, freshwater is a finite and limited resource. The Earth’s water is affected by pollution and while water quality is an issue of global concern, the specific regulations on contaminants of emerging concern (CECs) are limited. In order to achieve the goals set by EU regulations, the treatment of wastewater is a scientifically and technologically challenging issue. Metal–organic frameworks (MOFs) are promising materials used for the removal of priority and emerging contaminants from wastewater, since they can mitigate those contaminants via both adsorption as well as catalysis processes. MOFs can offer selective adsorption of CECs by various adsorption mechanisms. The catalytic removal of priority and emerging organic contaminants from wastewater using MOFs implies Fenton, electro-Fenton, and photo-Fenton processes. Overall, MOFs can be considered as promising materials for the elimination of priority and emerging organic contaminants from various wastewater types, but the involved processes must be studied in detail for a larger number of compounds.
Collapse
|
41
|
Spontaneous Adsorption and Efficient Photodegradation of Indigo Carmine under Visible Light by Bismuth Oxyiodide Nanoparticles Fabricated Entirely at Room Temperature. INORGANICS 2022. [DOI: 10.3390/inorganics10050065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bismuth oxyiodide (BiOI) is a targeted material for its relative safety and photocatalytic activity under visible light. In this study, a successful simple and energy-saving route was applied to prepare BiOI through a sonochemical process at room temperature. The characterization of the prepared BiOI was conducted by physical means. The transmission electron microscope (TEM) image showed that the BiOI comprises nanoparticles of about 20 nm. Also, the surface area of the BiOI was found to be 34.03 m2 g−1 with an energy gap of 1.835 eV. The adsorption and photocatalytic capacities of the BiOI were examined for the indigo carmine dye (IC) as a model water-pollutant via the batch experiment methodology. The solution parameters were optimized, including pH, contact time, IC concentration, and temperature. Worth mentioning that an adsorption capacity of 185 mg·g−1 was obtained from 100 mg L−1 IC solution at 25 °C within 60 min as an equilibrium time. In addition, the BiOI showed a high degradation efficiency towards IC under tungsten lamb (80 W), where 93% was removed within 180 min, and the complete degradation was accomplished in 240 min. The fabricated BiOI nanoparticles completely mineralized the IC under artificial visible light, as indicated by the total organic carbon analysis.
Collapse
|
42
|
Mukherjee D, Van der Bruggen B, Mandal B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. CHEMOSPHERE 2022; 295:133835. [PMID: 35122821 DOI: 10.1016/j.chemosphere.2022.133835] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 05/24/2023]
Abstract
Heterogeneous photocatalysis using metal-organic frameworks (MOFs) is expected to provide a pivotal solution for the remediation of toxic dyes and heavy metals from textile wastewater. However, MOFs often suffer from a low removal efficiency, due to the rapid recombination between holes and electrons, generated upon photoexcitation. Additionally, the MOFs exhibit poor water stability, which restricts their large-scale application. In this regard, various approaches (i.e. doping of metal nanoparticle, semiconductor, quantum dot, and ligand functionalization) have been adopted for the formation of multifunctional composites. The MOF-composites possess suitable photochemical, surface, optical, and electronic properties, resulting in enhanced water stability, visible light absorption, and reduced recombination between photogenerated species. This comprehensive review targets to provide an insight into the synthesis and subsequent application of various MOF composites for photocatalytic removal of organic contaminants (dyes) and inorganic (Cr(VI)) contaminants from water. MOFs/graphene oxide composites possess improved surface area and reusability whereas noble metal incorporated MOFs composites suffer from photocorrosion and are relatively costly. Zr and Ti based MOFs exhibit tuning from UV to visible light response and surpass the poor water stability upon binary/ternary composite formation. The role of the dopants in enhancing the efficiency of the composites; the effect of influencing factors such as solution pH, pollutant concentration; the mechanism, and the kinetics of reactions have been outlined. In spite of many advancements, the article also summarizes some roadblocks that need to be unraveled to achieve the energy-water-environment nexus and scope for future breakthrough research in this field.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Department of Chemical Engineering, Separation Science Laboratory, India Institute of Technology Guwahati, Guwahati, 781039, India.
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Separation Science Laboratory, India Institute of Technology Guwahati, Guwahati, 781039, India; KU Leuven, Department of Chemical Engineering, ProcESS - Process Engineering for Sustainable Systems, Celestijnenlaan 200F, B - 3001, Leuven, Belgium.
| | - Bishnupada Mandal
- Department of Chemical Engineering, Separation Science Laboratory, India Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
43
|
Mohsen M, Tantawy H, Naeem I, Awaad M, Abuzalat O, Baraka A. Activation of Cadmium–Imidazole Buffering Coordination Polymer by Sulfur-Doping for the Enhancement of Photocatalytic Degradation of Cationic and Anionic Dyes Under Visible Light. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02324-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractThe buffering Cadmium–Imidazole Coordination Polymer (Cd–Im-CP) was synthesized hydrothermally from cadmium chloride and imidazole at 70 °C and then was subjected to doping- by the non-metal sulfur using Na2S solution as a novel modification strategy to produce S–Cd–Im CPs. To investigate doping nature and its effects, Cd–Im CP and S–Cd–Im CPs were characterized applying different analyses techniques, FTIR, Raman, PXRD, SEM/EDX, TGA, and UV–Vis DRS analyses. Characterizations showed the successful chemical doping of sulfur. The inclusion of sulfur within chemical CP structure caused narrowing of material’s bandgap from 4.55 and 3.4 eV to 4.25 and 2.35 eV for S–Cd–Im CPs allowing it for photoresponse towards Visible-light. Both Cd–Im CP and S–Cd–Im CPs were applied for photocatalytic degradation of the selected dyes methylene blue (MB),and methyl orange (MO) employing visible and UV irradiations considering three different initial pH levels to investigate the consequence of sulfur doping. After eliminating the photolysis effect, the best degradation by S–Cd–Im CPs was recorded for MB at initial pH 4 being 13 fold that is for Cd–Im CP. The highest apparent turnover frequencies are 1.2 × 10−3 h−1 for MB at initial pH 10 and 1.03 × 10−4 h−1 for MO at initial pH 4 are given by 10S–Cd–IM CP under Visible-light. Generally, S–Cd–Im CPs remarkably improved photocatalysis degradation of both the dyes for all initial pH levels under Visible-light.
Collapse
|
44
|
Attia MS, Youssef AO, Abou-Omar MN, Mohamed EH, Boukherroub R, Khan A, Altalhi T, Amin MA. Emerging advances and current applications of nanoMOF-based membranes for water treatment. CHEMOSPHERE 2022; 292:133369. [PMID: 34953879 DOI: 10.1016/j.chemosphere.2021.133369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are significantly tunable materials that can be exploited in a wide range of applications. In recent years, a large number of studies have been focused on synthesizing nano-scale MOFs (nanoMOFs), thus taking advantage of these unique materials in various applications, especially those that are only possible at nano-scale. One of the technologies where nanoMOF materials occupy a central role is the membrane technology as one of the most efficient separation techniques. Therefore, numerous reports can be found on the enhancement of the physicochemical properties of polymeric membranes by using nanoMOFs, leading to remarkably improved performance. One of the most considerable applications of these nanoMOF-based membranes is in water treatment systems, because freshwater scarcity is now an undeniable crisis facing humanity. In this in-depth review, the most prominent synthesis and post-synthesis methods for the fabrication of nanoMOFs are initially discussed. Afterwards, different nanoMOF-based composite membranes such as thin-film nanocomposites (TFN) and mixed-matrix membranes (MMM) and their various fabrication methods are reviewed and compared. Then, the impacts of using MOFs-based membranes for water purification through growing metal-organic frameworks crystals on the support materials and utilization of metal-organic frameworks as fillers in mixed matrix membrane (MMM) are highlighted. Finally, a summary of pros and cons of using nanoMOFs in membrane technology for water treatment purposes and clear future prospects and research potentials are presented.
Collapse
Affiliation(s)
- M S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mona N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Analytical, Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El Sherouk City, Cairo, Egypt
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Afrasyab Khan
- Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
45
|
Shee N, Jo HJ, Kim HJ. Coordination framework materials fabricated by the self-assembly of Sn(IV) porphyrins with Ag(I) ions for the photocatalytic degradation of organic dyes in wastewater. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01615f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two porphyrin-based coordination frameworks, [Ag2(TPyP)Sn(OH)2](NO3)2●(solv)x (1) and [Ag2(TPyP)Sn(INA)2](OTf)2●(CH3CN)2 (2) (INA = isonicotinato anion, OTf = CF3SO3-), were constructed by the self-assembly of hexacoordinated (meso-tetra-(4-pyridyl)porphyrinato)Sn(IV) building blocks with Ag(I) ions. They...
Collapse
|
46
|
Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
47
|
Uddin MJ, Ampiaw RE, Lee W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. CHEMOSPHERE 2021; 284:131314. [PMID: 34198066 DOI: 10.1016/j.chemosphere.2021.131314] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 05/10/2023]
Abstract
Water pollution from synthetic dyes is a growing environmental concern because many dyes have carcinogenic effects on humans and aquatic life. Adsorption is a widely used technology for the separation and removal of dyes from wastewater. However, the dye removal process using conventional adsorbents is not sufficiently efficient for industrial wastewater. Metal-organic frameworks (MOFs) addresses these drawbacks. MOF showed excellent dye removal and degradation capacity owing to its multifunctionality, water-stability, large surface area, tunable pore size and recyclability. Magnetic MOFs retained excellent performance up to several consecutive cycles. Modified MOFs performed as Fenton-like catalysis process which generated abundant reactive radicals that degraded complex organic dyes into simple and less toxic forms which were further adsorbed onto the MOF. This review systematically compiles in-depth studies on the adsorptive removal of dyes from wastewater, MOF adsorption mechanisms, major influencing factors, to adsorption efficiency of MOFs. While all MOFs adsorb dyes through electrostatic attraction, the type of MOF, presence of functional groups, ligands, and pH significantly control the adsorption mechanism. Before developing an MOF, optimization and upgradation of factors and interaction between available adsorption site and adsorbate is needed. Finally, the prospects and new frontiers of MOFs in sustainable water treatment is discussed.
Collapse
Affiliation(s)
- Md Jamal Uddin
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Rita E Ampiaw
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea
| | - Wontae Lee
- Department of Environmental Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, 39177, Republic of Korea.
| |
Collapse
|
48
|
Isaeva VI, Vedenyapina MD, Kurmysheva AY, Weichgrebe D, Nair RR, Nguyen NPT, Kustov LM. Modern Carbon-Based Materials for Adsorptive Removal of Organic and Inorganic Pollutants from Water and Wastewater. Molecules 2021; 26:6628. [PMID: 34771037 PMCID: PMC8587771 DOI: 10.3390/molecules26216628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022] Open
Abstract
Currently, a serious threat for living organisms and human life in particular, is water contamination with persistent organic and inorganic pollutants. To date, several techniques have been adopted to remove/treat organics and toxic contaminants. Adsorption is one of the most effective and economical methods for this purpose. Generally, porous materials are considered as appropriate adsorbents for water purification. Conventional adsorbents such as activated carbons have a limited possibility of surface modification (texture and functionality), and their adsorption capacity is difficult to control. Therefore, despite the significant progress achieved in the development of the systems for water remediation, there is still a need for novel adsorptive materials with tunable functional characteristics. This review addresses the new trends in the development of new adsorbent materials. Herein, modern carbon-based materials, such as graphene, oxidized carbon, carbon nanotubes, biomass-derived carbonaceous matrices-biochars as well as their composites with metal-organic frameworks (MOFs) and MOF-derived highly-ordered carbons are considered as advanced adsorbents for removal of hazardous organics from drinking water, process water, and leachate. The review is focused on the preparation and modification of these next-generation carbon-based adsorbents and analysis of their adsorption performance including possible adsorption mechanisms. Simultaneously, some weak points of modern carbon-based adsorbents are analyzed as well as the routes to conquer them. For instance, for removal of large quantities of pollutants, the combination of adsorption and other methods, like sedimentation may be recommended. A number of efficient strategies for further enhancing the adsorption performance of the carbon-based adsorbents, in particular, integrating approaches and further rational functionalization, including composing these adsorbents (of two or even three types) can be recommended. The cost reduction and efficient regeneration must also be in the focus of future research endeavors. The targeted optimization of the discussed carbon-based adsorbents associated with detailed studies of the adsorption process, especially, for multicomponent adsorbate solution, will pave a bright avenue for efficient water remediation.
Collapse
Affiliation(s)
- Vera I. Isaeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Marina D. Vedenyapina
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Alexandra Yu. Kurmysheva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
| | - Dirk Weichgrebe
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Rahul Ramesh Nair
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Ngoc Phuong Thanh Nguyen
- Institute for Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany; (D.W.); (R.R.N.); (N.P.T.N.)
| | - Leonid M. Kustov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia;
- Chemistry Department, Moscow State University, Leninskie Gory 1, Bldg. 3, 119992 Moscow, Russia
| |
Collapse
|
49
|
Wibowo A, Marsudi MA, Pramono E, Belva J, Parmita AWYP, Patah A, Eddy DR, Aimon AH, Ramelan A. Recent Improvement Strategies on Metal-Organic Frameworks as Adsorbent, Catalyst, and Membrane for Wastewater Treatment. Molecules 2021; 26:5261. [PMID: 34500695 PMCID: PMC8434549 DOI: 10.3390/molecules26175261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The accumulation of pollutants in water is dangerous for the environment and human lives. Some of them are considered as persistent organic pollutants (POPs) that cannot be eliminated from wastewater effluent. Thus, many researchers have devoted their efforts to improving the existing technology or providing an alternative strategy to solve this environmental problem. One of the attractive materials for this purpose are metal-organic frameworks (MOFs) due to their superior high surface area, high porosity, and the tunable features of their structures and function. This review provides an up-to-date and comprehensive description of MOFs and their crucial role as adsorbent, catalyst, and membrane in wastewater treatment. This study also highlighted several strategies to improve their capability to remove pollutants from water effluent.
Collapse
Affiliation(s)
- Arie Wibowo
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia
| | - Maradhana A. Marsudi
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| | - Edi Pramono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami 36, Surakarta 57126, Central Java, Indonesia;
| | - Jeremiah Belva
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| | - Ade W. Y. P. Parmita
- Materials and Metallurgy Engineering, Institut Teknologi Kalimantan, Jl. Soekarno Hatta 15, Balikpapan 76127, East Kalimantan, Indonesia;
| | - Aep Patah
- Inorganic and Physical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Diana Rakhmawaty Eddy
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM.21, Sumedang 45363, West Java, Indonesia;
| | - Akfiny Hasdi Aimon
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia;
| | - Aditianto Ramelan
- Materials Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, West Java, Indonesia; (M.A.M.); (J.B.)
| |
Collapse
|
50
|
Singh A, Singh AK, Liu J, Kumar A. Syntheses, design strategies, and photocatalytic charge dynamics of metal–organic frameworks (MOFs): a catalyzed photo-degradation approach towards organic dyes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02275f] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The presented review focuses on design strategies to develop tailor-made MOFs/CPs of main group, transition and inner-transition elements and their photocatalytic properties to decompose dyes in wastewater discharge and their photocatalytic mechanism.
Collapse
Affiliation(s)
- Ayushi Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Ashish Kumar Singh
- Department of Chemistry
- Guru Ghasidas Vishwavidyalaya
- Bilaspur-495009
- India
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| |
Collapse
|