1
|
Voicu G, Mocanu CA, Safciuc F, Rebleanu D, Anghelache M, Cecoltan S, Droc I, Simionescu M, Manduteanu I, Calin M. VCAM-1 targeted nanocarriers of shRNA-Smad3 mitigate endothelial-to-mesenchymal transition triggered by high glucose concentrations and osteogenic factors in valvular endothelial cells. Int J Biol Macromol 2024; 281:136355. [PMID: 39374726 DOI: 10.1016/j.ijbiomac.2024.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Endothelial to mesenchymal transition (EndMT) of valvular endothelial cells (VEC) is a key process in the development and progression of calcific aortic valve disease (CAVD). High expression of the Smad3 transcription factor is crucial in the transition process. We hypothesize that silencing Smad3 could hinder EndMT and provide a novel treatment for CAVD. We aimed at developing nanoparticles encapsulating short-hairpin (sh)RNA sequences specific for Smad3 targeted to the aortic valve. We synthesized VCAM-1-targeted lipopolyplexes encapsulating shRNA-Smad3 plasmid (V-LPP/shSmad3) and investigated their potential to reduce the EndMT of human VEC. VEC incubation in a medium containing high glucose concentrations and osteogenic factors (HGOM) triggers EndMT and increased expression of Smad3. Exposed to lipopolyplexes, VEC took up efficiently the V-LPP/shSmad3. The latter reduced the EndMT process in VEC exposed to HGOM by downregulating the expression of αSMA and S100A4 mesenchymal markers and increasing the expression of the CD31 endothelial marker. In vivo, V-LPP/shSmad3 accumulated in the aortic root and aorta of a murine model of atherosclerosis complicated with diabetes, without affecting the liver and kidney function. The results suggest that targeting activated VEC with lipopolyplexes to silence Smad3 could be an effective, novel treatment for CAVD mediated by the EndMT process.
Collapse
Affiliation(s)
- Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Sergiu Cecoltan
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ionel Droc
- Central Military Hospital "Dr. Carol Davila", Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
2
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Tucureanu MM, Ciortan L, Macarie RD, Mihaila AC, Droc I, Butoi E, Manduteanu I. The Specific Molecular Changes Induced by Diabetic Conditions in Valvular Endothelial Cells and upon Their Interactions with Monocytes Contribute to Endothelial Dysfunction. Int J Mol Sci 2024; 25:3048. [PMID: 38474293 DOI: 10.3390/ijms25053048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic valve disease (AVD) represents a global public health challenge. Research indicates a higher prevalence of diabetes in AVD patients, accelerating disease advancement. Although the specific mechanisms linking diabetes to valve dysfunction remain unclear, alterations of valvular endothelial cells (VECs) homeostasis due to high glucose (HG) or their crosstalk with monocytes play pivotal roles. The aim of this study was to determine the molecular signatures of VECs in HG and upon their interaction with monocytes in normal (NG) or high glucose conditions and to propose novel mechanisms underlying valvular dysfunction in diabetes. VECs and THP-1 monocytes cultured in NG/HG conditions were used. The RNAseq analysis revealed transcriptomic changes in VECs, in processes related to cytoskeleton regulation, focal adhesions, cellular junctions, and cell adhesion. Key molecules were validated by qPCR, Western blot, and immunofluorescence assays. The alterations in cytoskeleton and intercellular junctions impacted VEC function, leading to changes in VECs adherence to extracellular matrix, endothelial permeability, monocyte adhesion, and transmigration. The findings uncover new molecular mechanisms of VEC dysfunction in HG conditions and upon their interaction with monocytes in NG/HG conditions and may help to understand mechanisms of valvular dysfunction in diabetes and to develop novel therapeutic strategies in AVD.
Collapse
Affiliation(s)
- Monica Madalina Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Razvan Daniel Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Andreea Cristina Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, 010825 Bucharest, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", 050568 Bucharest, Romania
| |
Collapse
|
4
|
Ye W, Li L, Zeng J. Association of Cardiac Valve Calcification and 1-year Mortality after Lower-extremity Amputation in Diabetic Patients: A Retrospective Study. Curr Neurovasc Res 2024; 20:599-607. [PMID: 38083889 DOI: 10.2174/0115672026277348231130112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/24/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Cardiac valve calcification predisposes patients to a higher risk of adverse cardiovascular events. This study aimed to investigate the association between cardiac valve calcification and 1-year mortality in diabetic patients after lower-extremity amputation. METHODS This was a retrospective study conducted on the clinical data of diabetic patients who underwent lower-extremity amputation admitted to the Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China for diabetic foot ulcers needed lower extremity amputation surgery between July 2017 and March 2021. Detailed preoperative medical assessments were performed and recorded. Cardiac valve calcification was assessed using echocardiography at baseline. Oneyear follow-up assessments were conducted and included clinical visits, hospital record assessments, and telephone reviews to obtain the survival status of patients. RESULTS Ninety-three diabetic patients participated in the study. The 1-year follow-up mortality rate after amputation was 24.7%. Compared to the survival group, the prevalence of cardiac valve calcification and the Revised Cardiac Risk Index (RCRI) were higher in the mortality group. In the Cox regression analysis, cardiac valvular calcification (HR=3.427, 95% CI=1.125- 10.443, p =0.030) was found to be an independent predictor of all-cause mortality after amputation. In addition, the patients with both aortic valve calcification and mitral annular calcification had a higher all-cause mortality rate (50%). Receiver operator characteristic curve analysis showed a stronger predictive ability when using a combination of calcified valve number and RCRI (AUC=0.786 95%, CI=0.676-0.896, p =0.000). CONCLUSION In diabetic patients after lower-extremity amputation, cardiac valve calcification was associated with all-cause mortality during 1-year follow-up. Combination of calcified valve number and RCRI score showed a stronger predictive value for mortality.
Collapse
Affiliation(s)
- Weibin Ye
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Li Li
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| | - Jianfeng Zeng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, China
| |
Collapse
|
5
|
Hwang IC, Kim S, Boo D, Park C, Yoo S, Yoon YE, Cho GY. Impact of glycemic control on the progression of aortic stenosis: a single-center cohort study using a common data model. BMC Endocr Disord 2023; 23:143. [PMID: 37430289 PMCID: PMC10331980 DOI: 10.1186/s12902-023-01403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a well-established risk factor for the progression of degenerative aortic stenosis (AS). However, no study has investigated the impact of glycemic control on the rate of AS progression. We aimed to assess the association between the degree of glycemic control and the AS progression, using an electronic health record-based common data model (CDM). METHODS We identified patients with mild AS (aortic valve [AV] maximal velocity [Vpeak] 2.0-3.0 m/sec) or moderate AS (Vpeak 3.0-4.0 m/sec) at baseline, and follow-up echocardiography performed at an interval of ≥ 6 months, using the CDM of a tertiary hospital database. Patients were divided into 3 groups: no DM (n = 1,027), well-controlled DM (mean glycated hemoglobin [HbA1c] < 7.0% during the study period; n = 193), and poorly controlled DM (mean HbA1c ≥ 7.0% during the study period; n = 144). The primary outcome was the AS progression rate, calculated as the annualized change in the Vpeak (△Vpeak/year). RESULTS Among the total study population (n = 1,364), the median age was 74 (IQR 65-80) years, 47% were male, the median HbA1c was 6.1% (IQR 5.6-6.9), and the median Vpeak was 2.5 m/sec (IQR 2.2-2.9). During follow-up (median 18.4 months), 16.1% of the 1,031 patients with mild AS at baseline progressed to moderate AS, and 1.8% progressed to severe AS. Among the 333 patients with moderate AS, 36.3% progressed to severe AS. The mean HbA1c level during follow-up showed a positive relationship with the AS progression rate (β = 2.620; 95% confidence interval [CI] 0.732-4.507; p = 0.007); a 1%-unit increase in HbA1c was associated with a 27% higher risk of accelerated AS progression defined as △Vpeak/year values > 0.2 m/sec/year (adjusted OR = 1.267 per 1%-unit increase in HbA1c; 95% CI 1.106-1.453; p < 0.001), and HbA1c ≥ 7.0% was significantly associated with an accelerated AS progression (adjusted odds ratio = 1.524; 95% CI 1.010-2.285; p = 0.043). This association between the degree of glycemic control and AS progression rate was observed regardless of the baseline AS severity. CONCLUSION In patients with mild to moderate AS, the presence of DM, as well as the degree of glycemic control, is significantly associated with accelerated AS progression.
Collapse
Affiliation(s)
- In-Chang Hwang
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea.
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Seok Kim
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Dachung Boo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Changhyun Park
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Sooyoung Yoo
- Office of eHealth Research and Business, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
| | - Yeonyee E Yoon
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Goo-Yeong Cho
- Department of Cardiology, Cardiovascular Center, Seoul National University Bundang Hospital, 82 Gumi-Ro-173-Gil, Seongnam, Gyeonggi, 13620, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Xiao F, Pan H, Yang D, Wang R, Wu B, Shao Y, Zhou B. Identification of TNFα-mediated inflammation as potential pathological marker and therapeutic target for calcification progress of congenital bicuspid aortic valve. Eur J Pharmacol 2023; 951:175783. [PMID: 37172927 DOI: 10.1016/j.ejphar.2023.175783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUD Congenital bicuspid aortic valve (cBAV) develops calcification and stenotic obstruction early compared with degenerative tricuspid aortic valve (dTAV), which requires surgical intervention. Here we report a comparative study of patients with cBAV or dTAV to identify risk factors associated with the rapid development of calcified bicuspid valves. METHODS A total of 69 aortic valves (24 dTAV and 45 cBAV) were collected at the time of surgical aortic valve replacement for comparative clinical characteristics. Ten samples were randomly selected from each group for histology, pathology, and inflammatory factors expression and comparison analyses. OM-induced calcification in porcine aortic valve interstitial cell cultures were prepared for illustrating the underlying molecular mechanisms about calcification progress of cBAV and dTAV. RESULTS We found that cBAV patients have increased cases of aortic valve stenosis compared with dTAV patients. Histopathological examinations revealed increased collagens deposition, neovascularization and infiltrations by inflammatory cells, especially T-lymphocytes and macrophages. We identified that tumor necrosis factor α (TNFα) and its regulated inflammatory cytokines are upregulated in cBAV. Further in vitro study indicated that TNFα-NFκB and TNFα-GSK3β pathway accelerate aortic valve interstitial cells calcification, while inhibition of TNFα significantly delays this process. CONCLUSION The finding of intensified TNFα-mediated inflammation in the pathological cBAV advocates the inhibition of TNFα as a potential treatment for patients with cBAV by alleviating the progress of inflammation-induced valve damage and calcification.
Collapse
Affiliation(s)
- Feng Xiao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China.
| | - Haotian Pan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruxing Wang
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, 214023, China
| | - Bingruo Wu
- Departments of Genetics, Pediatrics and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Yongfeng Shao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Bin Zhou
- Departments of Genetics, Pediatrics and Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| |
Collapse
|
7
|
Voicu G, Mocanu CA, Safciuc F, Anghelache M, Deleanu M, Cecoltan S, Pinteala M, Uritu CM, Droc I, Simionescu M, Manduteanu I, Calin M. Nanocarriers of shRNA-Runx2 directed to collagen IV as a nanotherapeutic system to target calcific aortic valve disease. Mater Today Bio 2023; 20:100620. [PMID: 37063777 PMCID: PMC10102408 DOI: 10.1016/j.mtbio.2023.100620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Runx2 is a key transcription factor involved in valvular interstitial cells (VIC) osteodifferentiation, a process actively entwined with the calcific aortic valve disease (CAVD). We hypothesize that a strategy intended to silence Runx2 could be a valuable novel therapeutic option for CAVD. To this intent, we aimed at (i) developing targeted nanoparticles for efficient delivery of short hairpin (sh)RNA sequences specific for Runx2 to the aortic valve employing a relevant mouse model for CAVD and (ii) investigate their therapeutic potential in osteoblast-differentiated VIC (oVIC) cultivated into a 3D scaffold. Since collagen IV was used as a target, a peptide that binds specifically to collagen IV (Cp) was conjugated to the surface of lipopolyplexes encapsulating shRNA-Runx2 (Cp-LPP/shRunx2). The results showed that Cp-LPP/shRunx2 were (i) cytocompatible; (ii) efficiently taken up by 3D-cultured oVIC; (iii) diminished the osteodifferentiation of human VIC (cultured in a 3D hydrogel-derived from native aortic root) by reducing osteogenic molecules expression, alkaline phosphatase activity, and calcium concentration; and (iv) were recruited in aortic valve leaflets in a murine model of atherosclerosis. Taken together, these data recommend Cp-LPP/shRunx2 as a novel targeted nanotherapy to block the progression of CAVD, with a good perspective to be introduced in practical use.
Collapse
Affiliation(s)
- Geanina Voicu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Cristina Ana Mocanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Maria Anghelache
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Sergiu Cecoltan
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
| | - Cristina Mariana Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487, Iasi, Romania
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115, Iasi, Romania
| | - Ionel Droc
- Central Military Hospital “Dr. Carol Davila”, Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania
- Corresponding author. “Medical and Pharmaceutical Bionanotechnologies” Laboratory, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568, Bucharest, Romania.
| |
Collapse
|
8
|
Selig JI, Krug HV, Küppers C, Ouwens DM, Kraft FA, Adler E, Bauer SJ, Lichtenberg A, Akhyari P, Barth M. Interactive contribution of hyperinsulinemia, hyperglycemia, and mammalian target of rapamycin signaling to valvular interstitial cell differentiation and matrix remodeling. Front Cardiovasc Med 2022; 9:942430. [PMID: 36386326 PMCID: PMC9661395 DOI: 10.3389/fcvm.2022.942430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes and its major key determinants insulin resistance and hyperglycemia are known risk factors for calcific aortic valve disease (CAVD). The processes leading to molecular and structural alterations of the aortic valve are yet not fully understood. In previous studies, we could show that valvular interstitial cells (VIC) display canonical elements of classical insulin signaling and develop insulin resistance upon hyperinsulinemia and hyperglycemia accompanied by impaired glucose metabolism. Analyses of cultured VIC and aortic valve tissue revealed extracellular matrix remodeling and degenerative processes. Since PI3K signaling through mammalian target of rapamycin (mTOR) is involved in fibrotic processes of the heart, we aim at further functional investigation of this particular Akt-downstream signaling pathway in the context of diabetes-induced CAVD. Primary cultures of VIC were treated with hyperinsulinemia and hyperglycemia. Phosphorylation of mTOR(Ser2448) was determined by Western blot analysis after acute insulin stimulus. Inhibition of mTOR phosphorylation was performed by rapamycin. Phosphorylation of mTOR complex 1 (MTORC1) downstream substrates 4E-BP1(Thr37/46) and P70S6K(Thr389), and MTORC2 downstream substrate Akt(Ser473) as well as the PDK1-dependent phosphorylation of Akt(Thr308) was investigated. Markers for extracellular matrix remodeling, cell differentiation and degenerative changes were analyzed by Western blot analysis, semi-quantitative real-time PCR and colorimetric assays. Hyperinsulinemia and hyperglycemia lead to alterations of VIC activation, differentiation and matrix remodeling as well as to an abrogation of mTOR phosphorylation. Inhibition of mTOR signaling by rapamycin leads to a general downregulation of matrix molecules, but to an upregulation of α-smooth muscle actin expression and alkaline phosphatase activity. Comparison of expression patterns upon diabetic conditions and rapamycin treatment reveal a possible regulation of particular matrix components and key degeneration markers by MTORC1 downstream signaling. The present findings broaden the understanding of mitogenic signaling pathways in VIC triggered by hyperinsulinemia and hyperglycemia, supporting the quest for developing strategies of prevention and tailored treatment of CAVD in diabetic patients.
Collapse
Affiliation(s)
- Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - H. Viviana Krug
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Caroline Küppers
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Felix A. Kraft
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Adler
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian J. Bauer
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Payam Akhyari,
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
VLA4-Enhanced Allogeneic Endothelial Progenitor Cell-Based Therapy Preserves the Aortic Valve Function in a Mouse Model of Dyslipidemia and Diabetes. Pharmaceutics 2022; 14:pharmaceutics14051077. [PMID: 35631662 PMCID: PMC9143616 DOI: 10.3390/pharmaceutics14051077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
The number and function of endothelial progenitor cells (EPCs) are reduced in diabetes, contributing to deteriorated vascular repair and the occurrence of cardiovascular complications. Here, we present the results of treating early diabetic dyslipidemic mice or dyslipidemic with disease-matched EPCs modified to overexpress VLA4 (VLA4-EPCs) as compared with the treatment of EPCs transfected with GFP (GFP-EPCs) as well as EPCs from healthy animals. Organ imaging of injected PKH26-stained cells showed little pulmonary first-pass effects and distribution in highly vascularized organs, with splenic removal from circulation, mostly in non-diabetic animals. Plasma measurements showed pronounced dyslipidemia in all animals and glycaemia indicative of diabetes in streptozotocin-injected animals. Echocardiographic measurements performed 3 days after the treatment showed significantly improved aortic valve function in animals treated with VLA4-overexpressing EPCs compared with GFP-EPCs, and similar results in the groups treated with healthy EPCs and VLA4-EPCs. Immunohistochemical analyses revealed active inflammation and remodelling in all groups but different profiles, with higher MMP9 and lower P-selectin levels in GFP-EPCs, treated animals. In conclusion, our experiments show that genetically modified allogeneic EPCs might be a safe treatment option, with bioavailability in the desired target compartments and the ability to preserve aortic valve function in dyslipidemia and diabetes.
Collapse
|
10
|
Han K, Shi D, Yang L, Xie M, Zhong R, Wang Z, Gao F, Ma X, Zhou Y. Diabetes Is Associated With Rapid Progression of Aortic Stenosis: A Single-Center Retrospective Cohort Study. Front Cardiovasc Med 2022; 8:812692. [PMID: 35284496 PMCID: PMC8904744 DOI: 10.3389/fcvm.2021.812692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Background Mounting evidence indicates that rapid progression of aortic stenosis (AS) is significantly associated with poor prognosis. Whether diabetes accelerates the progression of AS remains controversial. Objectives The purpose of the present study was to investigate whether diabetes was associated with rapid progression of AS. Methods We retrospectively analyzed 276 AS patients who underwent transthoracic echocardiography at least twice with a maximum interval ≥ 180 days from January 2016 to June 2021. AS severity was defined by specific threshold values for peak aortic jet velocity (Vmax) and/or mean pressure gradient. An increase of Vmax ≥ 0.3 m/s/year was defined as rapid progression. The binary Logistic regression models were used to determine the association between diabetes and rapid progression of AS. Results At a median echocardiographic follow-up interval of 614 days, the annual increase of Vmax was 0.16 (0.00–0.41) m/s. Compared with those without rapid progression, patients with rapid progression were older and more likely to have diabetes (P = 0.040 and P = 0.010, respectively). In the univariate binary Logistic regression analysis, diabetes was associated with rapid progression of AS (OR = 2.02, P = 0.011). This association remained significant in the multivariate analysis based on model 2 and model 3 (OR = 1.93, P = 0.018; OR = 1.93, P = 0.022). After propensity score-matching according to Vmax, diabetes was also associated rapid progression of AS (OR = 2.57, P = 0.045). Conclusions Diabetes was strongly and independently associated with rapid progression of AS.
Collapse
Affiliation(s)
- Kangning Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Dongmei Shi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Lixia Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Meng Xie
- Department of Echocardiogram, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Rongrong Zhong
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Zhijian Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Fei Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Xiaoteng Ma
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Yujie Zhou
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing, China.,The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Tandon I, Ozkizilcik A, Ravishankar P, Balachandran K. Aortic valve cell microenvironment: Considerations for developing a valve-on-chip. BIOPHYSICS REVIEWS 2021; 2:041303. [PMID: 38504720 PMCID: PMC10903420 DOI: 10.1063/5.0063608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/15/2021] [Indexed: 03/21/2024]
Abstract
Cardiac valves are sophisticated, dynamic structures residing in a complex mechanical and hemodynamic environment. Cardiac valve disease is an active and progressive disease resulting in severe socioeconomic burden, especially in the elderly. Valve disease also leads to a 50% increase in the possibility of associated cardiovascular events. Yet, valve replacement remains the standard of treatment with early detection, mitigation, and alternate therapeutic strategies still lacking. Effective study models are required to further elucidate disease mechanisms and diagnostic and therapeutic strategies. Organ-on-chip models offer a unique and powerful environment that incorporates the ease and reproducibility of in vitro systems along with the complexity and physiological recapitulation of the in vivo system. The key to developing effective valve-on-chip models is maintaining the cell and tissue-level microenvironment relevant to the study application. This review outlines the various components and factors that comprise and/or affect the cell microenvironment that ought to be considered while constructing a valve-on-chip model. This review also dives into the advancements made toward constructing valve-on-chip models with a specific focus on the aortic valve, that is, in vitro studies incorporating three-dimensional co-culture models that incorporate relevant extracellular matrices and mechanical and hemodynamic cues.
Collapse
Affiliation(s)
- Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| |
Collapse
|
13
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
14
|
Kopytek M, Mazur P, Ząbczyk M, Undas A, Natorska J. Diabetes concomitant to aortic stenosis is associated with increased expression of NF-κB and more pronounced valve calcification. Diabetologia 2021; 64:2562-2574. [PMID: 34494136 PMCID: PMC8494674 DOI: 10.1007/s00125-021-05545-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/26/2021] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes has been demonstrated to predispose to aortic valve calcification. We investigated whether type 2 diabetes concomitant to aortic stenosis (AS) enhances valvular inflammation and coagulation activation via upregulated expression of NF-κB, with subsequent increased expression of bone morphogenetic protein 2 (BMP-2). METHODS In this case-control study, 50 individuals with severe isolated AS and concomitant type 2 diabetes were compared with a control group of 100 individuals without diabetes. The median (IQR) duration of diabetes since diagnosis was 11 (7-18) years, and 36 (72%) individuals had HbA1c ≥48 mmol/mol (≥6.5%). Stenotic aortic valves obtained during valve replacement surgery served for in loco NF-κB, BMP-2, prothrombin (FII) and active factor X (FXa) immunostaining. In vitro cultures of valve interstitial cells (VICs), isolated from obtained valves were used for mechanistic experiments and PCR investigations. RESULTS Diabetic compared with non-diabetic individuals displayed enhanced valvular expression of NF-κB, BMP-2, FII and FXa (all p ≤ 0.001). Moreover, the expression of NF-κB and BMP-2 positively correlated with amounts of valvular FII and FXa. Only in diabetic participants, valvular NF-κB expression was strongly associated with serum levels of HbA1c, and moderately with fructosamine. Of importance, in diabetic participants, valvular expression of NF-κB correlated with aortic valve area (AVA) and maximal transvalvular pressure gradient. In vitro experiments conducted using VIC cultures revealed that glucose (11 mmol/l) upregulated expression of both NF-κB and BMP-2 (p < 0.001). In VIC cultures treated with glucose in combination with reactive oxygen species (ROS) inhibitor (N-acetyl-L-cysteine), the expression of NF-κB and BMP-2 was significantly suppressed. A comparable effect was observed for VICs cultured with glucose in combination with NF-κB inhibitor (BAY 11-7082), suggesting that high doses of glucose activate oxidative stress leading to proinflammatory actions in VICs. Analysis of mRNA expression in VICs confirmed these findings; glucose caused a 6.9-fold increase in expression of RELA (NF-κB p65 subunit), with the ROS and NF-κB inhibitor reducing the raised expression of RELA by 1.8- and 3.2-fold, respectively. CONCLUSIONS/INTERPRETATION Type 2 diabetes enhances in loco inflammation and coagulation activation within stenotic valve leaflets. Increased valvular expression of NF-κB in diabetic individuals is associated not only with serum HbA1c and fructosamine levels but also with AVA and transvalvular gradient, indicating that strict long-term glycaemic control is needed in AS patients with concomitant type 2 diabetes. This study suggests that maintaining these variables within the normal range may slow the rate of AS progression.
Collapse
Affiliation(s)
- Magdalena Kopytek
- John Paul II Hospital, Kraków, Poland
- Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Mazur
- Jagiellonian University Medical College, Kraków, Poland
| | - Michał Ząbczyk
- John Paul II Hospital, Kraków, Poland
- Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- John Paul II Hospital, Kraków, Poland
- Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Natorska
- John Paul II Hospital, Kraków, Poland.
- Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
15
|
Manduteanu I, Simionescu D, Simionescu A, Simionescu M. Aortic valve disease in diabetes: Molecular mechanisms and novel therapies. J Cell Mol Med 2021; 25:9483-9495. [PMID: 34561944 PMCID: PMC8505854 DOI: 10.1111/jcmm.16937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non‐diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic‐hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes‐induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.
Collapse
Affiliation(s)
- Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Dan Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Agneta Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
16
|
Cecoltan S, Ciortan L, Macarie RD, Vadana M, Mihaila AC, Tucureanu M, Vlad ML, Droc I, Gherghiceanu M, Simionescu A, Simionescu DT, Butoi E, Manduteanu I. High Glucose Induced Changes in Human VEC Phenotype in a 3D Hydrogel Derived From Cell-Free Native Aortic Root. Front Cardiovasc Med 2021; 8:714573. [PMID: 34458339 PMCID: PMC8387830 DOI: 10.3389/fcvm.2021.714573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Valvular endothelial cells (VEC) have key roles in maintaining valvular integrity and homeostasis, and dysfunctional VEC are the initiators and major contributors to aortic valve disease in diabetes. Previous studies have shown that HG stimulated an inflammatory phenotype in VEC. Inflammation was shown to induce endothelial to mesenchymal transition (EndMT), a process extensively involved in many pathologies, including calcification of the aortic valve. However, the effect of HG on EndMT in VEC is not known. In addition, there is evidence that endothelin (ET) is a proinflammatory agent in early diabetes and was detected in aortic stenosis, but it is not known whether HG induces ET and endothelin receptors and whether endothelin modulates HG-dependent inflammation in VEC. This study aims to evaluate HG effects on EndMT, on endothelin and endothelin receptors induction in VEC and their role in HG induced VEC inflammation. Methods and Results: We developed a new 3D model of the aortic valve consisting of a hydrogel derived from a decellularized extracellular cell matrix obtained from porcine aortic root and human valvular cells. VEC were cultured on the hydrogel surface and VIC within the hydrogel, and the resulted 3D construct was exposed to high glucose (HG) conditions. VEC from the 3D construct exposed to HG exhibited: attenuated intercellular junctions and an abundance of intermediate filaments (ultrastructural analysis), decreased expression of endothelial markers CD31 and VE–cadherin and increased expression of the mesenchymal markers α-SMA and vimentin (qPCR and immunocytochemistry), increased expression of inflammatory molecules ET-1 and its receptors ET-A and ET-B, ICAM-1, VCAM-1 (qPCR and Immunocytochemistry) and augmented adhesiveness. Blockade of ET-1 receptors, ET-A and ET-B reduced secretion of inflammatory biomarkers IL-1β and MCP-1 (ELISA assay). Conclusions: This study demonstrates that HG induces EndMT in VEC and indicates endothelin as a possible target to reduce HG-induced inflammation in VEC.
Collapse
Affiliation(s)
- Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Razvan D Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andreea C Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Monica Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihaela-Loredana Vlad
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ionel Droc
- Cardiovascular Surgery Department, Central Military Hospital, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Victor Babeş National Institute of Pathology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Agneta Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.,Clemson University, Cardiovascular Tissue Engineering in Diabetes, Clemson, SC, United States
| | - Dan Teodor Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania.,Clemson University, Cardiovascular Tissue Engineering in Diabetes, Clemson, SC, United States
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ileana Manduteanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
17
|
Shaabani E, Sharifiaghdam M, Lammens J, De Keersmaecker H, Vervaet C, De Beer T, Motevaseli E, Ghahremani MH, Mansouri P, De Smedt S, Raemdonck K, Faridi-Majidi R, Braeckmans K, Fraire JC. Increasing Angiogenesis Factors in Hypoxic Diabetic Wound Conditions by siRNA Delivery: Additive Effect of LbL-Gold Nanocarriers and Desloratadine-Induced Lysosomal Escape. Int J Mol Sci 2021; 22:9216. [PMID: 34502144 PMCID: PMC8431033 DOI: 10.3390/ijms22179216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Impaired wound healing in people with diabetes has multifactorial causes, with insufficient neovascularization being one of the most important. Hypoxia-inducible factor-1 (HIF-1) plays a central role in the hypoxia-induced response by activating angiogenesis factors. As its activity is under precise regulatory control of prolyl-hydroxylase domain 2 (PHD-2), downregulation of PHD-2 by small interfering RNA (siRNA) could stabilize HIF-1α and, therefore, upregulate the expression of pro-angiogenic factors as well. Intracellular delivery of siRNA can be achieved with nanocarriers that must fulfill several requirements, including high stability, low toxicity, and high transfection efficiency. Here, we designed and compared the performance of layer-by-layer self-assembled siRNA-loaded gold nanoparticles with two different outer layers-Chitosan (AuNP@CS) and Poly L-arginine (AuNP@PLA). Although both formulations have exactly the same core, we find that a PLA outer layer improves the endosomal escape of siRNA, and therefore, transfection efficiency, after endocytic uptake in NIH-3T3 cells. Furthermore, we found that endosomal escape of AuNP@PLA could be improved further when cells were additionally treated with desloratadine, thus outperforming commercial reagents such as Lipofectamine® and jetPRIME®. AuNP@PLA in combination with desloratadine was proven to induce PHD-2 silencing in fibroblasts, allowing upregulation of pro-angiogenic pathways. This finding in an in vitro context constitutes a first step towards improving diabetic wound healing with siRNA therapy.
Collapse
Affiliation(s)
- Elnaz Shaabani
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Joris Lammens
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (J.L.); (C.V.)
| | - Herlinde De Keersmaecker
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (J.L.); (C.V.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology (LPPAT), Department of Pharmaceutical Analysis, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium;
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran;
| | - Mohammad Hossein Ghahremani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran;
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran;
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| | - Juan C. Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (E.S.); (M.S.); (H.D.K.); (S.D.S.); (K.R.); (J.C.F.)
| |
Collapse
|
18
|
Engineering the aortic valve extracellular matrix through stages of development, aging, and disease. J Mol Cell Cardiol 2021; 161:1-8. [PMID: 34339757 DOI: 10.1016/j.yjmcc.2021.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/01/2023]
Abstract
For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease. We then provide an overview of the bottom-up tissue engineering strategies that have been used to mimic the valvular ECM, and opportunities for advancement in these areas.
Collapse
|
19
|
Selig JI, Boulgaropoulos J, Niazy N, Ouwens DM, Preuß K, Horn P, Westenfeld R, Lichtenberg A, Akhyari P, Barth M. Crosstalk of Diabetic Conditions with Static Versus Dynamic Flow Environment-Impact on Aortic Valve Remodeling. Int J Mol Sci 2021; 22:ijms22136976. [PMID: 34203572 PMCID: PMC8268732 DOI: 10.3390/ijms22136976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes mellitus (T2D) is one of the prominent risk factors for the development and progression of calcific aortic valve disease. Nevertheless, little is known about molecular mechanisms of how T2D affects aortic valve (AV) remodeling. In this study, the influence of hyperinsulinemia and hyperglycemia on degenerative processes in valvular tissue is analyzed in intact AV exposed to an either static or dynamic 3D environment, respectively. The complex native dynamic environment of AV is simulated using a software-governed bioreactor system with controlled pulsatile flow. Dynamic cultivation resulted in significantly stronger fibrosis in AV tissue compared to static cultivation, while hyperinsulinemia and hyperglycemia had no impact on fibrosis. The expression of key differentiation markers and proteoglycans were altered by diabetic conditions in an environment-dependent manner. Furthermore, hyperinsulinemia and hyperglycemia affect insulin-signaling pathways. Western blot analysis showed increased phosphorylation level of protein kinase B (AKT) after acute insulin stimulation, which was lost in AV under hyperinsulinemia, indicating acquired insulin resistance of the AV tissue in response to elevated insulin levels. These data underline a complex interplay of diabetic conditions on one hand and biomechanical 3D environment on the other hand that possesses an impact on AV tissue remodeling.
Collapse
Affiliation(s)
- Jessica I. Selig
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
| | - Joana Boulgaropoulos
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
| | - Naima Niazy
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
| | - D. Margriet Ouwens
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Auf’m Hennekamp 65, 40225 Düsseldorf, Germany;
- German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, Neuherberg, 85764 München, Germany
- Department of Endocrinology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Karlheinz Preuß
- Faculty of Biotechnology, Bioprocessing, Modulation and Simulation, University of Applied Sciences Mannheim, Paul-Wittsack-Straße 10, 68163 Mannheim, Germany;
| | - Patrick Horn
- Department of Cardiology, Pneumology and Angiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (P.H.); (R.W.)
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (P.H.); (R.W.)
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
| | - Payam Akhyari
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
- Correspondence:
| | - Mareike Barth
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (J.I.S.); (J.B.); (N.N.); (A.L.); (M.B.)
| |
Collapse
|
20
|
Lai WF, Wong WT. Property-Tuneable Microgels Fabricated by Using Flow-Focusing Microfluidic Geometry for Bioactive Agent Delivery. Pharmaceutics 2021; 13:787. [PMID: 34070328 PMCID: PMC8228633 DOI: 10.3390/pharmaceutics13060787] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatine methacryloyl (GM) shows high biocompatibility and is extensively used in tissue engineering; however, few works have explored the use of GM in bioactive agent delivery. This study adopts a microfluidic approach involving the use of flow-focusing microfluidic geometry for microgel fabrication. This approach generates highly monodisperse microgels whose size can be tuned by altering various fabrication conditions (including the concentration of the gel-forming solution and the flow rates of different phases). By using tetracycline hydrochloride as a model agent, the fabricated microgels enable prolonged agent release, with the encapsulation efficiency being around 30-40% depending on the concentration of the gel-forming solution. Along with their negligible cytotoxicity, our microgels show the potential to serve as carriers of bioactive agents for food and pharmaceutical applications.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
- Ciechanover Institute of Precision and Regenerative Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China;
| |
Collapse
|
21
|
Driscoll K, Cruz AD, Butcher JT. Inflammatory and Biomechanical Drivers of Endothelial-Interstitial Interactions in Calcific Aortic Valve Disease. Circ Res 2021; 128:1344-1370. [PMID: 33914601 DOI: 10.1161/circresaha.121.318011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcific aortic valve disease is dramatically increasing in global burden, yet no therapy exists outside of prosthetic replacement. The increasing proportion of younger and more active patients mandates alternative therapies. Studies suggest a window of opportunity for biologically based diagnostics and therapeutics to alleviate or delay calcific aortic valve disease progression. Advancement, however, has been hampered by limited understanding of the complex mechanisms driving calcific aortic valve disease initiation and progression towards clinically relevant interventions.
Collapse
Affiliation(s)
| | - Alexander D Cruz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca NY
| | | |
Collapse
|
22
|
Weber A, Pfaff M, Schöttler F, Schmidt V, Lichtenberg A, Akhyari P. Reproducible In Vitro Tissue Culture Model to Study Basic Mechanisms of Calcific Aortic Valve Disease: Comparative Analysis to Valvular Interstitials Cells. Biomedicines 2021; 9:biomedicines9050474. [PMID: 33925890 PMCID: PMC8146785 DOI: 10.3390/biomedicines9050474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
The hallmarks of calcific aortic valve disease (CAVD), an active and regulated process involving the creation of calcium nodules, lipoprotein accumulation, and chronic inflammation, are the significant changes that occur in the composition, organization, and mechanical properties of the extracellular matrix (ECM) of the aortic valve (AV). Most research regarding CAVD is based on experiments using two-dimensional (2D) cell culture or artificially created three-dimensional (3D) environments of valvular interstitial cells (VICs). Because the valvular ECM has a powerful influence in regulating pathological events, we developed an in vitro AV tissue culture model, which is more closely able to mimic natural conditions to study cellular responses underlying CAVD. AV leaflets, isolated from the hearts of 6-8-month-old sheep, were fixed with needles on silicon rubber rings to achieve passive tension and treated in vitro under pro-degenerative and pro-calcifying conditions. The degeneration of AV leaflets progressed over time, commencing with the first visible calcified domains after 14 d and winding up with the distinct formation of calcium nodules, heightened stiffness, and clear disruption of the ECM after 56 d. Both the expression of pro-degenerative genes and the myofibroblastic differentiation of VICs were altered in AV leaflets compared to that in VIC cultures. In this study, we have established an easily applicable, reproducible, and cost-effective in vitro AV tissue culture model to study pathological mechanisms underlying CAVD. The valvular ECM and realistic VIC-VEC interactions mimic natural conditions more closely than VIC cultures or 3D environments. The application of various culture conditions enables the examination of different pathological mechanisms underlying CAVD and could lead to a better understanding of the molecular mechanisms that lead to VIC degeneration and AS. Our model provides a valuable tool to study the complex pathobiology of CAVD and can be used to identify potential therapeutic targets for slowing disease progression.
Collapse
|