1
|
Wang D, Gao P, Zheng M, Duan Z, Wang D, Ding D, Xia F. Mechanically durable plant-based composite surface towards enhanced antifouling properties. J Colloid Interface Sci 2025; 679:457-466. [PMID: 39490264 DOI: 10.1016/j.jcis.2024.10.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
The biofouling adhering to underwater facilities has a negative impact on the environment, energy, and economic development. However, conventional anti-adhesion organic silicon and organic fluorine materials often have poor adhesion properties and mechanical stability when combined with substrates. This work presents a novel strategy for preparing composite antifouling coatings that low surface energy plant-based carnauba wax (CW) covering through rough substrates and chemically bond with flexible polydimethylsiloxane (PDMS) oligomers or polymers. The CW coating adheres strongly to the substrate owing to the mobility of the liquated CW, which flows into the micro-nano structure of the substrate and solidifies on the solid surface. The polymerization reaction of (PDMS) oligomers compounded the coating, thereby creating a composite coating with superior lubricating and antifouling properties. This distinctive bonding process imbued the coating with exceptional characteristics, including remarkable mechanical stability in destructive tests as well as an impressive ability to repel fouling, such as protein attachment, bacterial adhesion, diatom deposition, and biofilm formation. This work systematically investigated the impact of the composition and structure of composite materials on their mechanical stability and resistance to fouling, and developed high-performance antifouling coatings in the real world.
Collapse
Affiliation(s)
- Dagui Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China; Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft, Sichuan, Guanghan 618307, China
| | - Pengcheng Gao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Mengmeng Zheng
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| | - Zhijuan Duan
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| | - Dehui Wang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Defang Ding
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, China
| |
Collapse
|
2
|
Koričan M, Vladimir N, Hadžić N, Ložar V. Life-cycle cost assessment of hull protection technologies considering their effect on the environmental friendliness of fishing vessels. MARINE POLLUTION BULLETIN 2024; 209:117137. [PMID: 39426175 DOI: 10.1016/j.marpolbul.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Biofouling represents a global challenge for the maritime industry, affecting vessel performance and environmental footprint. This paper analyses various antifouling technologies to reduce the vessel's environmental impact and its operating costs by reduced fuel consumption and less frequent dry-docking. It evaluates both passive and active technologies - passive referring to antifouling coatings and active involving systems that continuously prevent biofouling using energy. The methodology employs mathematical models to quantify the additional resistance and emissions caused by biofouling. Using the case of a fishing vessel operating in the Adriatic Sea, operational features and potential economic and environmental benefits resulting implementing an innovative biofouling protection system are analysed. Economic analysis includes a comprehensive cost structure, investment details, maintenance and operating costs, and possible future carbon taxation scenarios. The research indicates that active antifouling protection is more efficient than passive protection, including a potential reduction of the required power of up to 120 kW, leading to decreased fuel consumption and lower environmental impact, particularly at higher speeds. Despite higher initial investments, life-cycle cost analysis favours active protection systems.
Collapse
Affiliation(s)
- Marija Koričan
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| | - Nikola Vladimir
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia.
| | - Neven Hadžić
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| | - Viktor Ložar
- University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia
| |
Collapse
|
3
|
Kim T, Eo S, Shim WJ, Kim M. Qualitative and quantitative assessment of microplastics derived from antifouling paint in effluent from ship hull hydroblasting and their emission into the marine environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135258. [PMID: 39047565 DOI: 10.1016/j.jhazmat.2024.135258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
This study focused on microplastic (MP) contamination originating from ship paint, particularly during the hydroblasting of ship hull, to understand the emission characteristics of MPs into the marine environment. We evaluated paint particles generated from the hydroblasting of an ocean-going vessel based on their number, size, polymer type, and mass. Hydroblasting a vessel produced 4.3 × 1015 particles, predominantly comprising acrylic particles, 99.9 % of which were smaller than 5 mm. Of the 44.1 kg of antifouling (AF) paint particles generated, 36.5 kg consisted of particles smaller than 5 mm, with 18.2 kg being identified as plastic emissions. Furthermore, we calculated the MP emission factor (8.43 g/m2) for hydroblasting on AF paint by dividing the total emission by the wetted surface area (WSA) of the vessel. This factor was then extrapolated by multiplying it with the total WSA of global ships and their hull cleaning frequency to preliminarily estimate the annual global MP emissions. Consequently, a total of 665.6 tons of plastics was generated globally by hydroblasting, with approximately 550.2 tons of these being in the form of MPs. This study highlights the need for developing stricter regulations governing hydroblasting operations and waste disposal practices to protect marine environments from MP pollution.
Collapse
Affiliation(s)
- Taekhyun Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Soeun Eo
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Moonkoo Kim
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
4
|
Alidokht L, Fitzpatrick K, Butler C, Hunsucker KZ, Braga C, Maza WA, Fears KP, Arekhi M, Lanzarini-Lopes M. UV emitting glass: A promising strategy for biofilm inhibition on transparent surfaces. Biofilm 2024; 7:100186. [PMID: 38495771 PMCID: PMC10940134 DOI: 10.1016/j.bioflm.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces. Specifically, this paper describes how UEGs are enabled by innovatively modifying the surfaces of the glass with light scattering particles. Modification of glass surface with silica nanoparticles at a concentration 26.5 μg/cm2 resulted in over ten-fold increase in UV irradiance, while maintaining satisfactory visible and IR transparency metrics of over 99 %. The UEG reduced visible biological growth by 98 % and resulted in a decrease of 1.79 log in detected colony forming units when compared to the control during a 20 day submersion at Port Canaveral, Florida, United States. These findings serve as strong evidence that UV emitting glass should be explored as a promising approach for biofilm inhibition on transparent surfaces.
Collapse
Affiliation(s)
- Leila Alidokht
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Katrina Fitzpatrick
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Caitlyn Butler
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Kelli Z. Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Cierra Braga
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - William A. Maza
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Kenan P. Fears
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Marieh Arekhi
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Mariana Lanzarini-Lopes
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
5
|
Putra NR, Ismail A, Sari DP, Nurcholis N, Murwatono TT, Rina R, Yuniati Y, Suwarni E, Sasmito A, Virliani P, Alif Rahadi SJ, Irianto I, Widati AA. A bibliometric analysis of cellulose anti-fouling in marine environments. Heliyon 2024; 10:e28513. [PMID: 38596028 PMCID: PMC11002589 DOI: 10.1016/j.heliyon.2024.e28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Marine biofouling poses significant challenges to maritime industries worldwide, affecting vessel performance, fuel efficiency, and environmental sustainability. These challenges demand innovative and sustainable solutions. In this review, the evolving landscape of cellulose-based materials for anti-fouling applications in marine environments is explored. Through a comprehensive bibliometric analysis, the current state of research is examined, highlighting key trends, emerging technologies, and geographical distributions. Cellulose, derived from renewable resources, offers a promising avenue for sustainable anti-fouling strategies due to its biodegradability, low toxicity, and resistance to microbial attachment. Recent advancements in cellulose-based membranes, coatings, and composites are discussed, showcasing their efficacy in mitigating biofouling while minimizing environmental impact. Opportunities for interdisciplinary collaboration and innovation are identified to drive the development of next-generation anti-fouling solutions. By harnessing the power of cellulose, progress towards cleaner, more sustainable oceans can be facilitated, fostering marine ecosystems and supporting global maritime industries.
Collapse
Affiliation(s)
- Nicky Rahmana Putra
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Abdi Ismail
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Dian Purnama Sari
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Nurcholis Nurcholis
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | | | - Rina Rina
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Yuniati Yuniati
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Endah Suwarni
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Agus Sasmito
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Putri Virliani
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Shinta Johar Alif Rahadi
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Irianto Irianto
- Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
6
|
Mancillas-Salas S, Ledón-Smith JÁ, Pérez-Álvarez M, Cadenas-Pliego G, Mata-Padilla JM, Andrade-Guel M, Esparza-González SC, Vargas-Gutiérrez G, Sierra-Gómez UA, Saucedo-Salazar EM. Nanostructured Copper Selenide Coatings for Antifouling Applications. Polymers (Basel) 2024; 16:489. [PMID: 38399867 PMCID: PMC10892470 DOI: 10.3390/polym16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The accumulation of microorganisms, plants, algae, or small animals on wet surfaces that have a mechanical function causes biofouling, which can result in structural or other functional deficiencies. The maritime shipping industry must constantly manage biofouling to optimize operational performance, which is a common and long-lasting problem. It can occur on any metal structure in contact with or submerged in ocean water, which represents additional costs in terms of repairs and maintenance. This study is focused on the production of antifouling coatings, made with nanoparticles of copper selenide (CuSe NPs) modified with gum arabic, within a water-base acrylic polymeric matrix. During the curing of the acrylic resin, the CuSe NPs remain embedded in the resin, but this does not prevent the release of ions. The coatings released copper and selenium ions for up to 80 days, and selenium was the element that was released the most. The adhesion of film coatings to metallic substrates showed good adhesion, scale 5B (ASTM D3359 standard). Antimicrobial activity tests show that the coatings have an inhibitory effect on Escherichia coli and Candida albicans. The effect is more noticeable when the coating is detached from the substrate and placed on a growing medium, compared to the coating on a substrate. Scanning electron microscopy (SEM) observations show that nanostructured CuSe coatings are made up of rod-shaped and spherical particles with an average particle size of 101.6 nm and 50 nm, respectively. The energy dispersive X-ray spectroscopy (EDS) studies showed that the ratio of selenium nanoparticles is greater than that of copper and that their distribution is homogeneous.
Collapse
Affiliation(s)
- Sergio Mancillas-Salas
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | - José Ángel Ledón-Smith
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | - Marissa Pérez-Álvarez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | - José Manuel Mata-Padilla
- CONAHCYT, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico;
| | - Marlene Andrade-Guel
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | | | - Gregorio Vargas-Gutiérrez
- Centro de Investigación y de Estudios Avanzados del IPN, CINVESTAV Unidad Saltillo, Ramos Arizpe 25900, Coahuila, Mexico;
| | - Uriel Alejandro Sierra-Gómez
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| | - Esmeralda Monserrat Saucedo-Salazar
- Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna 140, Saltillo 25294, Coahuila, Mexico; (S.M.-S.); (J.Á.L.-S.); (M.A.-G.); (U.A.S.-G.); (E.M.S.-S.)
| |
Collapse
|
7
|
Zhou N, Long S, Song D, Hui B, Cui X, An C, Zhang M. Fabrication of carbon dots-embedded luminescent transparent wood with ultraviolet blocking and thermal insulating capacities towards smart window application. Int J Biol Macromol 2024; 259:129358. [PMID: 38218267 DOI: 10.1016/j.ijbiomac.2024.129358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/11/2023] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
To expand functions of transparent wood (TW) including fluorescence, ultraviolet blocking, heat preservation and insulation, we adopted carbon quantum dots (CQDs) to prepare luminescent transparent wood. CQDs with yellow/red fluorescence (YCD/RCD) were prepared by chitosan and o-phenylenediamine. Afterwards, Balsa woods were pretreated to obtain wood frameworks (DW/LW), which were further combined with epoxy resin for achieving transparent woods (DW-TW/LW-TW). Results showed LW retained more lignin, the LW-TW blocked more ultraviolet light, displaying the better visible transmission and mechanical strength than DW-TW. After adding YCD and RCD to LW-TW, the yellow and red fluorescence transparent woods with outstanding mechanical and ultraviolet blocking properties were prepared, especially the red fluorescence transparent wood (RTW). Specifically, the tensile strength and elongation at break of RTW reached up to 19.39 MPa and 5.35 %, respectively. Moreover, RTW could block 78.8 % of UV-B light and 78 % of UV-A light, respectively. Besides, RTW possessed excellent visible transmission (70.3 %) and UV blocking (88.87 %). Significantly, both RTW and YTW displayed outstanding water repellency, excellent durability, good thermal stability and insulation. Predictably, luminescent transparent woods certainly will enhance the adaptability of wood, and broaden its applications in green decoration, lighting setup, sensor and other fields.
Collapse
Affiliation(s)
- Ningyu Zhou
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Shoufu Long
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Dongsheng Song
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Bin Hui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials School of Materials Science and Engineering, Qingdao University, Qingdao 266000, China
| | - Xinjie Cui
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Congcong An
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China
| | - Ming Zhang
- Wood Material Science and Engineering Key Laboratory of Jilin Province, School of Materials Science and Engineering, Beihua University, Jilin 132013, China.
| |
Collapse
|
8
|
Yu S, Liu Y, Chen Q, Yu X, Hyun G, Wang S, Ye Y, Feng J, Chen Z, Jiang F, King J, Li T, Hu L, Liu P. Damage-Tolerant Wood Layers for Corrosion Protection of Metal Structures. NANO LETTERS 2024; 24:245-253. [PMID: 38157424 DOI: 10.1021/acs.nanolett.3c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Mechanically strong and damage-tolerant corrosion protection layers are of great technological importance. However, corrosion protection layers with high modulus (>1.5 GPa) and tensile strength (>100 MPa) are rare. Here, we report that a 130 μm thick densified wood veneer with a Young's modulus of 34.49 GPa and tensile strength of 693 MPa exhibits both low diffusivity for metal ions and the ability of self-recovery from mechanical damage. Densified wood veneer is employed as an intermediate layer to render a mechanically strong corrosion protection structure, referred to as "wood corrosion protection structure", or WCPS. The corrosion rate of low-carbon steel protected by WCPS is reduced by 2 orders of magnitude than state-of-the-art corrosion protection layers during a salt spray test. The introduction of engineered wood veneer as a thin and mechanically strong material points to new directions of sustainable corrosion protection design.
Collapse
Affiliation(s)
- Sicen Yu
- Program of Materials Science, University of California San Diego, La Jolla, California 92093, United States
| | - Yu Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaolu Yu
- Program of Materials Science, University of California San Diego, La Jolla, California 92093, United States
| | - Gayea Hyun
- Department of NanoEngineering and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Shen Wang
- Department of NanoEngineering and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yuhang Ye
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jiaqi Feng
- Program of Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zheng Chen
- Program of Materials Science, University of California San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
- Program of Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Feng Jiang
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph King
- Advanced Research Projects Agency - Energy, U.S. Department of Energy, Washington, D.C. 20585, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Ping Liu
- Program of Materials Science, University of California San Diego, La Jolla, California 92093, United States
- Department of NanoEngineering and Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
- Program of Chemical Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Es-Soufi H, Berdimurodov E, Sayyed MI, Bih L. Nanoceramic-based coatings for corrosion protection: a review on synthesis, mechanisms, and applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-023-31658-3. [PMID: 38183543 DOI: 10.1007/s11356-023-31658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024]
Abstract
Corrosion is a pervasive issue with significant economic and safety implications across various industries. Nanoceramic-based coatings have emerged as a promising solution for corrosion protection due to their unique properties and mechanisms. This review aims to comprehensively examine the synthesis, mechanisms, and applications of nanoceramic-based coatings for corrosion protection. The review begins by highlighting the importance of corrosion protection and its impact on different industries. It introduces nanoceramic-based coatings as a potential solution to address this challenge. The objective is to provide a thorough understanding of the synthesis methods, mechanisms, and applications of these coatings. The fundamental principles of corrosion and different corrosion mechanisms are discussed, along with the limitations of traditional corrosion protection methods. The review emphasizes how nanoceramic-based coatings can overcome these limitations and provide superior corrosion resistance. Various synthesis methods, including sol-gel, electrodeposition, and physical vapor deposition, are described in detail, along with the factors influencing the synthesis process. Recent advancements and innovations in nanoceramic coating synthesis techniques are also highlighted. This looks at how coatings made with tiny ceramic particles protect against corrosion. It examines the importance of small-scale details like particle size, shape, and what the particles are made of. The formation of passive layers, self-healing mechanisms, and barrier properties of nanoceramic coatings are explained. The diverse applications of nanoceramic coatings for corrosion protection in industries such as automotive, aerospace, and marine are comprehensively discussed. Case studies and examples demonstrating the significant corrosion resistance and improved performance achieved with nanoceramic coatings are presented.
Collapse
Affiliation(s)
- Hicham Es-Soufi
- National Higher School of Chemistry (NHSC), Ibn Tofail University, BP. 133-14000, Kenitra, Morocco.
- Laboratory of Organic, Inorganic Chemistry, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofaïl University, PO Box 133-14000-, Kenitra, Morocco.
- Laboratory of Sciences and Professions of the Engineer, Materials and Processes Department, ENSAM-Meknes Marjane II, Moulay Ismail University, El Mansour Meknes P.O. Box 15290, Morocco.
| | - Elyor Berdimurodov
- Chemical & Materials Engineering, New Uzbekistan University, Movarounnahr street 1, Mirzo-Ulug'bek district, Tashkent, 100000, Uzbekistan
- Medical School, Central Asian University, Tashkent, 111221, Uzbekistan
- Faculty of Chemistry, National University of Uzbekistan, Tashkent, 100034, Uzbekistan
| | - M I Sayyed
- Department of Physics, Faculty of Science, Isra University, Amman, 11622, Jordan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Lahcen Bih
- Laboratory of Sciences and Professions of the Engineer, Materials and Processes Department, ENSAM-Meknes Marjane II, Moulay Ismail University, El Mansour Meknes P.O. Box 15290, Morocco
| |
Collapse
|
10
|
Liu P, Zhang H, Fan Y, Xu D. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention. Microorganisms 2023; 11:2299. [PMID: 37764143 PMCID: PMC10535020 DOI: 10.3390/microorganisms11092299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Microbially influenced corrosion (MIC) is a formidable challenge in the marine industry, resulting from intricate interactions among various biochemical reactions and microbial species. Many preventions used to mitigate biocorrosion fail due to ignorance of the MIC mechanisms. This review provides a summary of the current research on microbial corrosion in marine environments, including corrosive microbes and biocorrosion mechanisms. We also summarized current strategies for inhibiting MIC and proposed future research directions for MIC mechanisms and prevention. This review aims to comprehensively understand marine microbial corrosion and contribute to novel strategy developments for biocorrosion control in marine environments.
Collapse
Affiliation(s)
- Pan Liu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| | - Haiting Zhang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Yongqiang Fan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
11
|
Buketov A, Sapronov O, Klevtsov K, Kim B. Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport. Polymers (Basel) 2023; 15:3449. [PMID: 37631509 PMCID: PMC10458151 DOI: 10.3390/polym15163449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Corrosive destruction and hydroabrasive wear is a serious problem in the operation of machine parts and water transport mechanisms. It is promising to develop new composite materials with improved properties to increase the reliability of transport vehicles. In this regard, the use of new polymer-based materials, which are characterized by improved anticorrosion properties and wear resistance, is promising. In this work, therefore, for the formation of multifunctional protective coatings, epoxy dian oligomer brand ED-20, polyethylene polyamine (PEPA) hardener, a mixture of nanodispersed compounds with a dispersion of 30-90 nm, fillers Agocel S-2000 and Waltrop with a dispersion of 8-12 μm, and particles of iron slag with a dispersion of 60-63 μm are used for the formation of multifunctional protective coatings. Using the method of mathematically planning the experiment, the content of additives of different physico-chemical natures in the epoxy binder is optimized to obtain fireproof coatings with improved operational characteristics. A mathematical model is developed for optimizing the content of components in the formation of protective anticorrosion and wear-resistant coatings for means of transport as a result of the complex effect of a mixture of nanodispersed compounds, iron scale, and Waltrop. Based on the mathematical planning of the experiment, new regularities of increasing the corrosion resistance and resources of the means of transport are established through the formation of four different protective coatings, which are tested for resistance to aggressive environments (technical water-CAS No. 7732-18-5, gasoline-CAS No. 64742-82-1, acetone-CAS No. 67-64-1, I-20A lubricant-CAS No. 64742-62-7, sodium solutions-CAS No. 1310-73-2, and sulfuric acid-CAS No. 7664-93-9) and hydroabrasive wear resistances. A study of the change in the permeability index in aggressive environments is additionally carried out, taking into account the rational ratio of dispersive fillers in the epoxy binder, which made it possible to create an effective barrier to the penetration of aggressive water molecules into the base. A decrease in the permeability of protective coatings by 2.0-3.3 times relative to the epoxy matrix is achieved. In addition, the wear resistance of the developed materials under the action of hydroabrasion is investigated. The relative resistance of the CM to the action of hydroabrasion was found by the method of materials and coatings testing on the gas-abrasive wear with a centrifugal accelerator. This method enables one to model the real process of the wear of mechanism parts under the hydroabrasive action. It is shown that the coefficient of the wear resistance of the developed materials is 1.3 times higher than that of the polymer matrix, which indicates the resistance of the composites to the influence of hydroabrasive environment. As a result, modified epoxy composite protective coatings with improved anticorrosion properties and wear resistance under hydroabrasive conditions are developed. It is established that the protective coating filled with particles of a mixture of nanodispersed compounds (30-90 nm), iron scale (60-63 μm), and Waltrop (8-12 μm) has the lowest permeability indicators. The permeability in natural conditions of such a coating during the time t = 300 days of the study is χ = 0.5%, which is 3.6 times less than the similar indicators of the epoxy matrix. It is substantiated that the protective coating filled with particles of a mixture of nanodispersed compounds (30-90 nm), iron scale (60-63 μm), and Agocel S-2000 (8-12 μm) is characterized by the highest indicators of wear resistance. The coefficient of wear resistance under the action of hydroabrasion of such a coating is K = 1.75, which is 1.3 times higher than the similar indicators of the original epoxy matrix.
Collapse
Affiliation(s)
- Andriy Buketov
- Department of Transport Technologies and Mechanical Engineering, Kherson State Maritime Academy, Ushakova Avenue, 20, 73003 Kherson, Ukraine; (A.B.); (K.K.)
| | - Oleksandr Sapronov
- Department of Transport Technologies and Mechanical Engineering, Kherson State Maritime Academy, Ushakova Avenue, 20, 73003 Kherson, Ukraine; (A.B.); (K.K.)
| | - Kostyantyn Klevtsov
- Department of Transport Technologies and Mechanical Engineering, Kherson State Maritime Academy, Ushakova Avenue, 20, 73003 Kherson, Ukraine; (A.B.); (K.K.)
| | - Boksun Kim
- School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
| |
Collapse
|
12
|
Khandeparker L, Desai DV, Teja Mittireddi R, Panda E, Hede N, Mapari K. Efficacy of amorphous TiO x-coated surfaces against micro- and macrofouling through laboratory microcosms and field studies. BIOFOULING 2023; 39:853-866. [PMID: 37965754 DOI: 10.1080/08927014.2023.2279997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
In this study, Soda Lime Glass (SLG) and Stainless Steel (SS316L) substrata coated with Titanium oxide (TiOx) were tested for their efficacy in the laboratory microcosms and in field against micro- and macrofouling. Laboratory microcosm studies were conducted for five days using natural biofilms, single-species diatom (Navicula sp.), and bacterial biofilms, whereas field observations were conducted for 30 days. The TiOx-coating induced change in the mean contact angle of the substratum and rendered SS316L more hydrophilic and SLG hydrophobic, which influenced the Navicula sp. biofilm, and bacterial community structure of the biofilm. Overall, the TiOx-coated SS316L showed minimal microfouling, whereas non-coated SLG exhibited greater efficacy in deterring/preventing macrofouling organisms. Moreover, the reduction in macrofouling could be attributed to high abundance of Actinobacteria. Unraveling the mechanism of action needs future studies emphasizing biochemical processes and pathways.
Collapse
Affiliation(s)
- Lidita Khandeparker
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Dattesh V Desai
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Ravi Teja Mittireddi
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Emila Panda
- Materials Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Niyati Hede
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| | - Kaushal Mapari
- Biological Oceanography Division, CSIR - National Institute of Oceanography, Goa, India
| |
Collapse
|
13
|
Scolaro C, Liotta LF, Calabrese C, Marcì G, Visco A. Adhesive and Rheological Features of Ecofriendly Coatings with Antifouling Properties. Polymers (Basel) 2023; 15:polym15112456. [PMID: 37299255 DOI: 10.3390/polym15112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
In this work, formulations of "environmentally compatible" silicone-based antifouling, synthesized in the laboratory and based on copper and silver on silica/titania oxides, have been characterized. These formulations are capable of replacing the non-ecological antifouling paints currently available on the market. The texture properties and the morphological analysis of these powders with an antifouling action indicate that their activity is linked to the nanometric size of the particles and to the homogeneous dispersion of the metal on the substrate. The presence of two metal species on the same support limits the formation of nanometric species and, therefore, the formation of homogeneous compounds. The presence of the antifouling filler, specifically the one based on titania (TiO2) and silver (Ag), facilitates the achievement of a higher degree of cross-linking of the resin, and therefore, a better compactness and completeness of the coating than that attained with the pure resin. Thus, a high degree of adhesion to the tie-coat and, consequently, to the steel support used for the construction of the boats was achieved in the presence of the silver-titania antifouling.
Collapse
Affiliation(s)
- Cristina Scolaro
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Leonarda Francesca Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Carla Calabrese
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Giuseppe Marcì
- "Schiavello-Grillone" Photocatalysis Group, Department of Engineering, University of Palermo, Viale Delle Scienze, 90128 Palermo, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via P. Gaifami 18, 9-95126 Catania, Italy
| |
Collapse
|
14
|
Braga CR, Richard KN, Gardner H, Swain G, Hunsucker KZ. Investigating the Impacts of UVC Radiation on Natural and Cultured Biofilms: An assessment of Cell Viability. Microorganisms 2023; 11:1348. [PMID: 37317322 DOI: 10.3390/microorganisms11051348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Biofilms are conglomerates of cells, water, and extracellular polymeric substances which can lead to various functional and financial setbacks. As a result, there has been a drive towards more environmentally friendly antifouling methods, such as the use of ultraviolet C (UVC) radiation. When applying UVC radiation, it is important to understand how frequency, and thus dose, can influence an established biofilm. This study compares the impacts of varying doses of UVC radiation on both a monocultured biofilm consisting of Navicula incerta and field-developed biofilms. Both biofilms were exposed to doses of UVC radiation ranging from 1626.2 mJ/cm2 to 9757.2 mJ/cm2 and then treated with a live/dead assay. When exposed to UVC radiation, the N. incerta biofilms demonstrated a significant reduction in cell viability compared to the non-exposed samples, but all doses had similar viability results. The field biofilms were highly diverse, containing not only benthic diatoms but also planktonic species which may have led to inconsistencies. Although they are different from each other, these results provide beneficial data. Cultured biofilms provide insight into how diatom cells react to varying doses of UVC radiation, whereas the real-world heterogeneity of field biofilms is useful for determining the dosage needed to effectively prevent a biofilm. Both concepts are important when developing UVC radiation management plans that target established biofilms.
Collapse
Affiliation(s)
- Cierra R Braga
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kailey N Richard
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Geoffrey Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL 32901, USA
| |
Collapse
|
15
|
Zhao J, Chen J, Zheng X, Lin Q, Zheng G, Xu Y, Lin F. Urushiol-Based Benzoxazine Containing Sulfobetaine Groups for Sustainable Marine Antifouling Applications. Polymers (Basel) 2023; 15:polym15102383. [PMID: 37242960 DOI: 10.3390/polym15102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Benzoxazine resins are new thermosetting resins with excellent thermal stability, mechanical properties, and a flexible molecular design, demonstrating promise for applications in marine antifouling coatings. However, designing a multifunctional green benzoxazine resin-derived antifouling coating that combines resistance to biological protein adhesion, a high antibacterial rate, and low algal adhesion is still challenging. In this study, a high-performance coating with a low environmental impact was synthesized using urushiol-based benzoxazine containing tertiary amines as the precursor, and a sulfobetaine moiety into the benzoxazine group was introduced. This sulfobetaine-functionalized urushiol-based polybenzoxazine coating (poly(U-ea/sb)) was capable of clearly killing marine biofouling bacteria adhered to the coating surface and significantly resisting protein attachment. poly(U-ea/sb) exhibited an antibacterial rate of 99.99% against common Gram negative bacteria (e.g., Escherichia coli and Vibrio alginolyticus) and Gram positive bacteria (e.g., Staphylococcus aureus and Bacillus sp.), with >99% its algal inhibition activity, and it effectively prevented microbial adherence. Here, a dual-function crosslinkable zwitterionic polymer, which used an "offensive-defensive" tactic to improve the antifouling characteristics of the coating was presented. This simple, economic, and feasible strategy provides new ideas for the development of green marine antifouling coating materials with excellent performance.
Collapse
Affiliation(s)
- Jing Zhao
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Jipeng Chen
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Xiaoxiao Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Qi Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Guocai Zheng
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Yanlian Xu
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| | - Fengcai Lin
- Fujian Engineering Research Center of New Chinese Lacquer Materials, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
16
|
Yan W, Xue S, Bin Xiang, Zhao X, Zhang W, Mu P, Li J. Recent advances of slippery liquid-infused porous surfaces with anti-corrosion. Chem Commun (Camb) 2023; 59:2182-2198. [PMID: 36723187 DOI: 10.1039/d2cc06688b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metal materials are susceptible to the influence of environmental media, and chemical or electrochemical multiphase reactions occur on the metal surface, resulting in the corrosion of metal materials, which can directly damage the geometry and reduce the physical properties of metal materials. This corrosion damage can seriously affect the long-term use of metal materials in marine equipment and the aerospace industry, and other fields. Inspired by the special microstructure and slippery properties of natural nepenthes intine, researchers have prepared slippery liquid-infused porous surfaces (SLIPS) with a stable continuous lubricant layer by injecting low-surface-energy lubricants into a substrate with a micro/nano-porous structure. This surface has excellent hydrophobicity, low friction, non-adhesiveness, and self-healing properties. The broad application prospects of SLIPS in the fields of anti-corrosion, anti-icing, anti-bacteria, and anti-fouling have made it a hot research topic directing the study of biomimetic materials at present. However, SLIPS are susceptible to environmental shear forces, such as ocean flow or extraneous fluids, resulting in destruction of the porous structure and loss of surface lubricant, thereby depriving SLIPS of the ability to protect metals from corrosion. Therefore, it is important for metal corrosion protection to find ways to improve the stability and extend the service life of SLIPS. Over the last several years, research into and development of SLIPS have come a long way. Herein, a summary of available reports on SLIPS is given in terms of design principles and their performance characteristics, the construction of rough/porous substrate structures, the choice of low-surface-energy modifiers and lubricants, and lubricant infusion methods. Ways of constructing different substrate structures and the characteristics, advantages, and disadvantages of choosing various modifiers and lubricants to prepare the surface are compared. Finally, a comprehensive summary and outlook of SLIPS with anti-corrosion properties are provided. We are convinced that a comprehensive review of SLIPS will provide important guidance and strong reference for the design and preparation of green and economical SLIPS with anti-corrosion capabilities in the future.
Collapse
Affiliation(s)
- Wenhao Yan
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Shuaiya Xue
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Bin Xiang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Xuerui Zhao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Wei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Peng Mu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Jian Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| |
Collapse
|
17
|
Guimarães RHE, Wallner-Kersanach M, Correa JAM. Assessment of anthropogenic metals in shipyard sediment in the Amazon delta estuary in northern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77007-77025. [PMID: 35675010 DOI: 10.1007/s11356-022-20960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Shipyard activities have contributed to the release of anthropogenic metals in sediment in the Amazon delta estuary, but no studies of the issue have been carried out in northern Brazil. This study evaluated the sediment that is under the influence of shipyard activities in the Guajará Bay and in the channel of the Maguari River, in Belém, Pará (PA) state, northern Brazil. Sediment samples were collected in the vicinity of the shipyards, while samples of paint and metal fragments were collected from hulls of abandoned vessels. Metals under analysis were Cu, Zn, Pb, Ni, Cr, Ba, V, Li, Fe and Al. Mean Cu concentrations found in the sediment in two shipyards - 28.3 mg kg-1 and 41.0 mg kg-1 - were above the threshold effect level (TEL) for the amphipod Hyalella azteca. The highest concentrations of metals found in paint fragments from abandoned vessels were 29,588 mg kg-1 Ba, 9,350 mg kg-1 Zn, 1,097 mg kg-1 Pb and 548 mg kg-1 Cr. This fact suggests that vessel abandonment is a major source of contamination in shipyard areas. The principal component analysis (PCA) showed that most metals under study are closely related to sediment contamination in the shipyards. Geoaccumulation index and screening concentrations of inorganic contaminants for metals in freshwater ecosystems confirmed that a shipyard was contaminated by copper. Results may support further studies of contamination and application of waste management to shipyards and vessel graveyards around the world.
Collapse
Affiliation(s)
| | - Mônica Wallner-Kersanach
- Laboratório de Hidroquímica, Instituto de Oceanografia, Universidade Federal de Rio Grande, Rio Grande, RS, 96203-000, Brazil.
| | | |
Collapse
|
18
|
Bembenek M, Mandziy T, Ivasenko I, Berehulyak O, Vorobel R, Slobodyan Z, Ropyak L. Multiclass Level-Set Segmentation of Rust and Coating Damages in Images of Metal Structures. SENSORS (BASEL, SWITZERLAND) 2022; 22:7600. [PMID: 36236705 PMCID: PMC9571848 DOI: 10.3390/s22197600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This paper describes the combined detection of coating and rust damages on painted metal structures through the multiclass image segmentation technique. Our prior works were focused solely on the localization of rust damages and rust segmentation under different ambient conditions (different lighting conditions, presence of shadows, low background/object color contrast). This paper method proposes three types of damages: coating crack, coating flaking, and rust damage. Background, paint flaking, and rust damage are objects that can be separated in RGB color-space alone. For their preliminary classification SVM is used. As for paint cracks, color features are insufficient for separating it from other defect types as they overlap with the other three classes in RGB color space. For preliminary paint crack segmentation we use the valley detection approach, which analyses the shape of defects. A multiclass level-set approach with a developed penalty term is used as a framework for the advanced final damage segmentation stage. Model training and accuracy assessment are fulfilled on the created dataset, which contains input images of corresponding defects with respective ground truth data provided by the expert. A quantitative analysis of the accuracy of the proposed approach is provided. The efficiency of the approach is demonstrated on authentic images of coated surfaces.
Collapse
Affiliation(s)
- Michał Bembenek
- Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Teodor Mandziy
- Department of the Theory of Wave Processes and Optical Systems of Diagnostics, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., 79060 Lviv, Ukraine
| | - Iryna Ivasenko
- Department of the Theory of Wave Processes and Optical Systems of Diagnostics, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., 79060 Lviv, Ukraine
| | - Olena Berehulyak
- Department of the Theory of Wave Processes and Optical Systems of Diagnostics, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., 79060 Lviv, Ukraine
| | - Roman Vorobel
- Department of the Theory of Wave Processes and Optical Systems of Diagnostics, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., 79060 Lviv, Ukraine
- Department of Computer Sciences, University of Lodz, Pomorska Str. 149/153, 90-236 Lodz, Poland
| | - Zvenomyra Slobodyan
- Department of Corrosion and Corrosion Protection, Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova St., 79060 Lviv, Ukraine
| | - Liubomyr Ropyak
- Department of Computerized Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, 76019 Ivano-Frankivsk, Ukraine
| |
Collapse
|
19
|
Neßlinger V, Welzel S, Rieker F, Meinderink D, Nieken U, Grundmeier G. Thin Organic‐inorganic Anti‐fouling Hybrid‐films for Microreactor Components. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Neßlinger
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Stefan Welzel
- Institute of Chemical Process Engineering University of Stuttgart Böblinger Str. 78 70199 Stuttgart Germany
| | - Florian Rieker
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Dennis Meinderink
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Ulrich Nieken
- Institute of Chemical Process Engineering University of Stuttgart Böblinger Str. 78 70199 Stuttgart Germany
| | - Guido Grundmeier
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
20
|
Sfameni S, Rando G, Galletta M, Ielo I, Brucale M, De Leo F, Cardiano P, Cappello S, Visco A, Trovato V, Urzì C, Plutino MR. Design and Development of Fluorinated and Biocide-Free Sol–Gel Based Hybrid Functional Coatings for Anti-Biofouling/Foul-Release Activity. Gels 2022; 8:gels8090538. [PMID: 36135250 PMCID: PMC9498927 DOI: 10.3390/gels8090538] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 02/03/2023] Open
Abstract
Biofouling has destructive effects on shipping and leisure vessels, thus producing severe problems for marine and naval sectors due to corrosion with consequent elevated fuel consumption and higher maintenance costs. The development of anti-fouling or fouling release coatings creates deterrent surfaces that prevent the initial settlement of microorganisms. In this regard, new silica-based materials were prepared using two alkoxysilane cross-linkers containing epoxy and amine groups (i.e., 3-Glycidyloxypropyltrimethoxysilane and 3-aminopropyltriethoxysilane, respectively), in combination with two functional fluoro-silane (i.e., 3,3,3-trifluoropropyl-trimethoxysilane and glycidyl-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononylether) featuring well-known hydro repellent and anti-corrosion properties. As a matter of fact, the co-condensation of alkoxysilane featuring epoxide and amine ends, also mixed with two opportune long chain and short chain perfluorosilane precursors, allows getting stable amphiphilic, non-toxic, fouling release coatings. The sol–gel mixtures on coated glass slides were fully characterized by FT-IR spectroscopy, while the morphology was studied by scanning electron microscopy (SEM), and atomic force microscopy (AFM). The fouling release properties were evaluated through tests on treated glass slides in different microbial suspensions in seawater-based mediums and in seawater natural microcosms. The developed fluorinated coatings show suitable antimicrobial activities and low adhesive properties; no biocidal effects were observed for the microorganisms (bacteria).
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Maurilio Galletta
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Ileana Ielo
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Bologna, CNR Bologna Research Area, Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Filomena De Leo
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Paola Cardiano
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Simone Cappello
- Institute for Biological Resource and Marine Biotechnology (IRBIM)—CNR of Messina, Spianata S. Raineri 86, 98122 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials, CNR—IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Valentina Trovato
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044 Dalmine, Italy
| | - Clara Urzì
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Correspondence: (C.U.); (M.R.P.)
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Correspondence: (C.U.); (M.R.P.)
| |
Collapse
|
21
|
Sfameni S, Rando G, Marchetta A, Scolaro C, Cappello S, Urzì C, Visco A, Plutino MR. Development of Eco-Friendly Hydrophobic and Fouling-Release Coatings for Blue-Growth Environmental Applications: Synthesis, Mechanical Characterization and Biological Activity. Gels 2022; 8:528. [PMID: 36135240 PMCID: PMC9498436 DOI: 10.3390/gels8090528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
The need to ensure adequate antifouling protection of the hull in the naval sector led to the development of real painting cycles, which involve the spreading of three layers of polymeric material on the hull surface exposed to the marine environment, specifically defined as primer, tie coat and final topcoat. It is already well known that coatings based on suitable silanes provide an efficient and non-toxic approach for the hydrophobic and antifouling/fouling release treatment of surfaces. In the present work, functional hydrophobic hybrid silica-based coatings (topcoats) were developed by using sol-gel technology and deposited on surfaces with the "doctor blade" method. In particular, those organic silanes, featuring opportune functional groups such as long (either fluorinated) alkyl chains, have a notable influence on surface wettability as showed in this study. Furthermore, the hydrophobic behavior of this functionalized coating was improved by introducing an intermediate commercial tie-coat layer between the primer and the topcoat, in order to decrease the wettability (i.e., decreasing the surface energy with a matching increase in the contact angle, CA) and to therefore make such coatings ideal for the design and development of fouling release paints. The hereby synthesized coatings were characterized by optical microscopy, contact angle analysis and a mechanical pull-off test to measure the adhesive power of the coating against a metal substrate typically used in the nautical sector. Analysis to evaluate the bacterial adhesion and the formation of microbial biofilm were related in laboratory and simulation (microcosm) scales, and assessed by SEM analysis.
Collapse
Affiliation(s)
- Silvia Sfameni
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Giulia Rando
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Alessia Marchetta
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Cristina Scolaro
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Simone Cappello
- Institute for Biological Resource and Marine Biotechnology (IRBIM)-CNR of Messina, Spianata S. Raineri 86, 98122 Messina, Italy
| | - Clara Urzì
- Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
- Institute for Polymers, Composites and Biomaterials-CNR IPCB, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, Viale F. Stagno d’Alcontres 31, Vill. S. Agata, 98166 Messina, Italy
| |
Collapse
|
22
|
Antifouling Systems Based on Copper and Silver Nanoparticles Supported on Silica, Titania, and Silica/Titania Mixed Oxides. NANOMATERIALS 2022; 12:nano12142371. [PMID: 35889595 PMCID: PMC9320147 DOI: 10.3390/nano12142371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023]
Abstract
Silica, titania, and mixed silica–titania powders have been used as supports for loading 5 wt% Cu, 5 wt% Ag, and 2.5 wt% Cu-2.5 wt% Ag with the aim of providing a series of nanomaterials with antifouling properties. All the solids were easily prepared by the wetness-impregnation method from commercially available chemical precursors. The resulting materials were characterized by several techniques such as X-ray diffraction analysis, X-ray photoelectron spectroscopy, N2 physisorption, and temperature-programmed reduction measurements. Four selected Cu and Ag SiO2- and TiO2-supported powders were tested as fillers for the preparation of marine antifouling coatings and complex viscosity measurements. Titania-based coatings showed better adhesion than silica-based coatings and the commercial topcoat. The addition of fillers enhances the resin viscosity, suggesting better workability of titania-based coatings than silica-based ones. The ecotoxicological performance of the powders was evaluated by Microtox luminescence tests, using the marine luminescent bacterium Vibrio fisheri. Further investigations of the microbiological activity of such materials were carried out focusing on the bacterial growth of Pseudoalteromonas sp., Alteromonas sp., and Pseudomonas sp. through measurements of optical density at 600 nm (OD600nm).
Collapse
|
23
|
Wang H, Zhang L, Chen R, Liu Super vision Q, Liu J, Yu J, Liu P, Duan J, Wang J. Surface Morphology Properties and Antifouling Activity of Bi2WO6/Boron-grafted Polyurethane Composite Coatings Realized via Multiple Synergy. J Colloid Interface Sci 2022; 626:815-823. [DOI: 10.1016/j.jcis.2022.06.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 10/31/2022]
|
24
|
Novel Sustainable Castor Oil-Based Polyurethane Biocomposites Reinforced with Piassava Fiber Powder Waste for High-Performance Coating Floor. SUSTAINABILITY 2022. [DOI: 10.3390/su14095082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The search for new greener materials that contribute to a more sustainable world motivated the present study in which novel biocomposites with 10, 20 and 30 vol% of piassava fiber powder waste reinforcing castor oil-based polyurethane (COPU) intended for a high-performance coated floor (HPCF) were developed. The novel biocomposites were characterized by flexural, Izod impact and wear standard tests as well as Fourier transform infrared spectroscopy (FTIR) and fracture analysis using scanning electron microscopy (SEM). Both flexural modulus and strength displayed marked increases reaching more than 800 and 500%, respectively, compared to plain COPU for 30 vol% piassava powder incorporation. FTIR bands indicated the existence of interaction between the piassava constituents and COPU. However, SEM fractographs disclosed the presence of bubbles attributed to retained gases during the COPU curing. Consequently, the Izod impact resistance showed a 50% decrease while the wear was more than three times accentuated for 30 vol% piassava powder biocomposite. These results met the specified values of corresponding standards and revealed a promising new greener material for HPCFs.
Collapse
|
25
|
Pistone A, Scolaro C, Celesti C, Visco A. Study of Protective Layers Based on Crosslinked Glutaraldehyde/3-aminopropyltriethoxysilane. Polymers (Basel) 2022; 14:801. [PMID: 35215713 PMCID: PMC8963086 DOI: 10.3390/polym14040801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we report the synthesis and characterization of novel coatings based on (3-aminopropyl)-triethoxysilane (AP) mixed with different amounts of glutaraldehyde (GA). The synthesized coatings have been layered on a glass substrate and characterized by optical microscopy and roughness measurements, thermogravimetric analyses and differential scanning calorimetry, contact angle analysis, rheological measurement, and an adhesion test. It was observed that the higher the GA content (up to AP:GA ratio of 0.3), the sooner the crosslinking reaction starts, leading to a coating with increased hydrophobic and adhesion features without compromising the final AP cross-linked network. Hence, the obtained results show the effectiveness of AP modification with GA from the perspective of an application as protective coatings.
Collapse
Affiliation(s)
- Alessandro Pistone
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.S.); (C.C.)
| | - Cristina Scolaro
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.S.); (C.C.)
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.S.); (C.C.)
| | - Annamaria Visco
- Department of Engineering, University of Messina, Contrada Di Dio, I-98166 Messina, Italy; (C.S.); (C.C.)
- Institute for Polymers, Composites and Biomaterials, CNR-IPCB, Via P. Gaifami 18, 9-95126 Catania, Italy
| |
Collapse
|
26
|
Prousis KC, Kikionis S, Ioannou E, Morgana S, Faimali M, Piazza V, Calogeropoulou T, Roussis V. Synthesis and Antifouling Activity Evaluation of Analogs of Bromosphaerol, a Brominated Diterpene Isolated from the Red Alga Sphaerococcus coronopifolius. Mar Drugs 2021; 20:md20010007. [PMID: 35049862 PMCID: PMC8781426 DOI: 10.3390/md20010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022] Open
Abstract
Marine biofouling is an epibiotic biological process that affects almost any kind of submerged surface, causing globally significant economic problems mainly for the shipping industry and aquaculture companies, and its prevention so far has been associated with adverse environmental effects for non-target organisms. Previously, we have identified bromosphaerol (1), a brominated diterpene isolated from the red alga Sphaerococcus coronopifolius, as a promising agent with significant antifouling activity, exerting strong anti-settlement activity against larvae of Amphibalanus (Balanus) amphitrite and very low toxicity. The significant antifouling activity and low toxicity of bromosphaerol (1) motivated us to explore its chemistry, aiming to optimize its antifouling potential through the preparation of a number of analogs. Following different synthetic routes, we successfully synthesized 15 structural analogs (2–16) of bromosphaerol (1), decorated with different functional groups. The anti-settlement activity (EC50) and the degree of toxicity (LC50) of the bromosphaerol derivatives were evaluated using cyprids and nauplii of the cirriped crustacean A. amphitrite as a model organism. Derivatives 2, 4, and 6–16 showed diverse levels of antifouling activity. Among them, compounds 9 and 13 can be considered as well-performing antifoulants, exerting their activity through a non-toxic mechanism.
Collapse
Affiliation(s)
- Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11653 Athens, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
| | - Silvia Morgana
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
| | - Marco Faimali
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
| | - Veronica Piazza
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment (IAS), National Research Council (CNR), Via De Marini 6, 16149 Genova, Italy; (S.M.); (M.F.)
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11653 Athens, Greece;
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.)
- Correspondence: (V.P.); (T.C.); (V.R.); Tel.: +39-010-6475409 (V.P.); +30-210-7273833 (T.C.); +30-210-7274592 (V.R.)
| |
Collapse
|
27
|
A Review of Structural Adhesive Joints in Hybrid Joining Processes. Polymers (Basel) 2021; 13:polym13223961. [PMID: 34833260 PMCID: PMC8619164 DOI: 10.3390/polym13223961] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Hybrid joining (HJ) is the combination of two or more joining techniques to produce joints with enhanced properties in comparison to those obtained from their parent techniques. Their adoption is widespread (metal to metal joint, composite to composite and composite to metal) and is present in a vast range of applications including all industrial sectors, from automotive to aerospace, including naval, construction, mechanical and utilities. The objective of this literature review is to summarize the existing research on hybrid joining processes incorporating structural adhesives highlighting their field of application and to present the recent development in this field. To achieve this goal, the first part presents an introduction on the main class of adhesives, subdivided by their chemical nature (epoxy, polyurethane, acrylic and cyanoacrylate, anaerobic and high-temperature adhesives) The second part describes the most commonly used Hybrid Joining (HJ) techniques (mechanical fastening and adhesive bonding, welding processes and adhesive bonding) The third part of the review is about the application of adhesives in dependence of performance, advantage and disadvantage in the hybrid joining processes. Finally, conclusions and an outlook on critical challenges, future perspectives and research activities are summarized. It was concluded that the use of hybrid joining technology could be considered as a potential solution in various industries, in order to reduce the mass as well as the manufacturing cost.
Collapse
|
28
|
Nautical Tourism in Marine Protected Areas (MPAs): Evaluating an Impact of Copper Emission from Antifouling Coating. SUSTAINABILITY 2021. [DOI: 10.3390/su132111897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Copper (Cu) has a narrow range between optimal concentrations as a micronutrient critical for phytoplankton growth and concentrations potentially toxic to living organisms. This sensitivity indicates an ecosystem vulnerability that threatens not only nature but also human health due to bioaccumulation. An important source of elevated Cu concentrations in coastal environments are biocides used as antifouling protection on ships. A pilot study conducted in the Marine Protected Area (MPA) of the Krka Estuary (Croatia) over a period of 16 months investigated the relationship between ship traffic and Cu concentrations. The aim was to contribute to more informed environmental management by assessing the associated risks. In the study presented here, Cu concentrations were monitored, analyzed, and correlated with vessel traffic. Observations revealed that the seasonal increase in maritime traffic caused by nautical tourism was associated with an increase in Cu concentrations of more than five times, posing a toxicity risk to the environment. In order to understand the distribution of copper emissions, a mapping of maritime traffic was carried out by counting transits, radar imagery, and drone photography. This approach has proven sufficient to identify the potential risks to the marine environment and human health, thus providing an effective assessment tool for marine stakeholders.
Collapse
|
29
|
Guennec A, Brelle L, Balnois E, Linossier I, Renard E, Langlois V, Faÿ F, Chen GQ, Simon-Colin C, Vallée-Réhel K. Antifouling properties of amphiphilic poly(3-hydroxyalkanoate): an environmentally-friendly coating. BIOFOULING 2021; 37:894-910. [PMID: 34579623 DOI: 10.1080/08927014.2021.1981298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The development of biofouling is a major problem for marine industries. The conception of antifouling and fouling release coatings, with controlled physical-chemical properties is a promising strategy. Among them, amphiphilic systems, such as those composed of a hydrophobic polydimethylsiloxane matrix and a hydrophilic polyethyleneglycol additive are the most efficient and up to date. Despite their effectiveness, these systems are questioned due to the petrochemical origin of PDMS. The aim of this project was to substitute the PDMS matrix with a biopolymer, poly(3-hydroxybuyrate-co-3-hydroxyvalerate) and to improve its anti-adhesion properties through the elaboration of an amphiphilic system, via the addition of PEG or PHBHHx-b-PEG copolymer. The results, including the physico-chemical properties of PHBHV based coatings and static adhesion tests on a marine bacterium, Bacillus 4J6 and a diatom, Phaeodactylum tricornutum are compared with those of PDMS and PEG-modified PDMS coatings. Real antiadhesion activity was obtained for the PHBHV/PHBHHx-b-PEG system for a promising eco-friendly strategy.
Collapse
Affiliation(s)
- A Guennec
- Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Université Bretagne Sud, Lorient Cedex, France
| | - L Brelle
- CNRS, ICMPE, UMR 7182, Université Paris Est Créteil, Thiais, France
| | - E Balnois
- Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Université de Brest, Quimper, France
| | - I Linossier
- Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Université Bretagne Sud, Lorient Cedex, France
| | - E Renard
- CNRS, ICMPE, UMR 7182, Université Paris Est Créteil, Thiais, France
| | - V Langlois
- CNRS, ICMPE, UMR 7182, Université Paris Est Créteil, Thiais, France
| | - F Faÿ
- Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Université Bretagne Sud, Lorient Cedex, France
| | - G Q Chen
- Center of Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - C Simon-Colin
- LM2E, CNRS, IFREMER, Université de Brest, Plouzané, France
| | - K Vallée-Réhel
- Laboratoire de Biotechnologie et de Chimie Marines, EA 3884, Université Bretagne Sud, Lorient Cedex, France
| |
Collapse
|
30
|
Composite Slow-Release Fouling Release Coating Inspired by Synergistic Anti-Fouling Effect of Scaly Fish. Polymers (Basel) 2021; 13:polym13162602. [PMID: 34451141 PMCID: PMC8401683 DOI: 10.3390/polym13162602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 01/07/2023] Open
Abstract
Inspired by the antifouling properties of scaly fish, the conventional silicone coating with phenylmethylsilicone oil (PSO/PDMS) composite coating was fabricated and modified with single layer polystyrene (PS) microsphere (PSO/PDMS-PS) arrays. The fish scale like micro-nano structures were fabricated on the surface of bio-inspired coating, which can reduce the contact area with the secreted protein membrane of fouling organisms effectively and prevent further adhesion between fouling organisms and bio-inspired coating. Meanwhile, PSO exuded to the coating surface has the similar function with mucus secreted by fish epidermis, which make the coating surface slithery and will be polished with the fouling organisms in turbulent waters. Compared to PSO/PDMS coating without any structure and conventional silicone coating, PSO/PDMS-PS showed better antiadhesion activity against both marine bacteria and benthic diatom (Navicula sp.). Additionally, the existence of PS microspheres can reduce the release rate of PSO greatly, which will extend the service life of coating. Compared to PSO/PDMS coating, the sustained release efficiency of PSO/PDMS-PS coating can reach 23.2%. This facile method for fabricating the bio-inspired composite slow-release antifouling coating shows a widely fabricating path for the development of synergistic anti-fouling coating.
Collapse
|
31
|
Nikolaidou AJ, Ioannou CS, Papadopoulos NT, Athanassiou CG. Efficacy of polydimethylsiloxane against Culex pipiens (Diptera: Culicidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39614-39624. [PMID: 33761075 DOI: 10.1007/s11356-021-13075-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
We evaluated, under controlled laboratory conditions, the insecticidal activity of polydimethylsiloxane (PDMS) for the control of the house mosquito, Culex pipiens. In a first series of bioassays, we tested the residual effect of different PDMS doses to control 3rd instar larvae. The label dose caused high mortality rates (>80%) even after 50 days from the initial application. Mortality levels at half the label dose were significantly higher compared to control, during the entire experimental period following a gradual decrease over time. Similar trends were observed when the 1/4 and the 1/8 of the label dose were applied with a much steeper decrease at long time intervals since the initial application especially for the lowest dose. However, after the 10th day of the bioassays and until the end of the experiments, mortality rates in the case of the label dose were higher compared to all other doses after the initial 10 days post application. Conversely, the insecticidal efficacy of PDMS against pupae was generally lower in comparison with larvae. Indeed, 10 days after the application, mortality was notably reduced, regardless of the dose rate tested. In a second series of bioassays, we assessed the efficacy of short exposures of different instars of larvae and nymphs to registered formulation and label dose. Mortality was well over 95% for 2nd instar larvae at exposure intervals ranging from 1 to 4 days. Significant mortality was recorded to 3rd instar larvae even at 15 min of exposure. Exposures longer than 30 min caused high mortality rates to 3rd instar larvae. Similar results were also recorded in pupae. Finally, in a third series of bioassays, the efficacy of PDMS in egg hatch was tested. Egg hatch was completely suppressed in the treated substrate (all egg rafts were "sinking" at the bottom of the test cups). Moreover, there was no oviposition in the case of the application of the label dose, while some egg rafts were recorded at one-eighth of the label dose. In both cases, it was recorded that PDMS acts as an oviposition deterrent. Τhe results of this study show that PDMS is effective in a wide range of conditions and application scenarios.
Collapse
Affiliation(s)
- Anastasia J Nikolaidou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446, N. Ionia, Magnesia, Greece
| | - Charalampos S Ioannou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446, N. Ionia, Magnesia, Greece
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446, N. Ionia, Magnesia, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou str., 38446, N. Ionia, Magnesia, Greece.
| |
Collapse
|
32
|
Advances in Polymer Based Composite Coatings. Polymers (Basel) 2021; 13:polym13101611. [PMID: 34067542 PMCID: PMC8157106 DOI: 10.3390/polym13101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/17/2022] Open
|