2
|
Lee S, Zhao S, Jiang W, Chen X, Zhu L, Joseph J, Agus E, Mary HB, Barooj S, Slaughter K, Cheung K, Luo JN, Shukla C, Gao J, Lee D, Balakrishnan B, Jiang C, Gorantla A, Woo S, Karp JM, Joshi N. Ultra-Long-Term Delivery of Hydrophilic Drugs Using Injectable In Situ Cross-Linked Depots. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.04.565631. [PMID: 39253509 PMCID: PMC11382995 DOI: 10.1101/2023.11.04.565631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Achieving ultra-long-term release of hydrophilic drugs over several months remains a significant challenge for existing long-acting injectables (LAIs). Existing platforms, such as in situ forming implants (ISFI), exhibit high burst release due to solvent efflux and microsphere-based approaches lead to rapid drug diffusion due to significant water exchange and large pores. Addressing these challenges, we have developed an injectable platform that, for the first time, achieves ultra-long-term release of hydrophilic drugs for over six months. This system employs a methacrylated ultra-low molecular weight pre-polymer (polycaprolactone) to create in situ cross-linked depots (ISCD). The ISCD's solvent-free design and dense mesh network, both attributed to the ultra-low molecular weight of the pre-polymer, effectively minimizes burst release and water influx/efflux. In vivo studies in rats demonstrate that ISCD outperforms ISFI by achieving lower burst release and prolonged drug release. We demonstrated the versatility of ISCD by showcasing ultra-long-term delivery of several hydrophilic drugs, including antiretrovirals (tenofovir alafenamide, emtricitabine, abacavir, and lamivudine), antibiotics (vancomycin and amoxicillin) and an opioid antagonist naltrexone. Additionally, ISCD achieved ultra-long-term release of the hydrophobic drug tacrolimus and enabled co-delivery of hydrophilic drug combinations encapsulated in a single depot. We also identified design parameters to tailor the polymer network, tuning drug release kinetics and ISCD degradation. Pharmacokinetic modeling predicted over six months of drug release in humans, significantly surpassing the one-month standard achievable for hydrophilic drugs with existing LAIs. The platform's biodegradability, retrievability, and biocompatibility further underscore its potential for improving treatment adherence in chronic conditions.
Collapse
Affiliation(s)
- Sohyung Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Spencer Zhao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Weihua Jiang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Xinyang Chen
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Lingyun Zhu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Joseph
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Helna Baby Mary
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Shumaim Barooj
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kai Slaughter
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Krisco Cheung
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Chetan Shukla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jingjing Gao
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- College of Engineering, University of Massachusetts Amherst, MA, USA
| | - Dongtak Lee
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Biji Balakrishnan
- Somaiya Centre for Integrated Science education and research, SKSC, Somaiya Vidyavihar University, Mumbai, 400077, India
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Amogh Gorantla
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14215, USA
| | - Jeffrey M Karp
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Nitin Joshi
- Harvard Medical School, Boston, MA, USA
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Meng Y, Chen K, Yang Y, Jiang T, Hao T, Lu X, Zhang Q. Synthesis and Characterization of Crosslinked Castor Oil-Based Polyurethane Nanocomposites Based on Novel Silane-Modified Isocyanate and Their Potential Application in Heat Insulating Coating. Polymers (Basel) 2022; 14:polym14091880. [PMID: 35567049 PMCID: PMC9105965 DOI: 10.3390/polym14091880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
An isocyanate with trimethoxysilane groups at the side chains (IPDI-M) was synthesized via an addition between the mercaptopropyl trimethoxysilane groups (MPTMS) and IPDI tripolymer (IPDI-T). Then, silane grafted isocyanate as the functional hard segment, castor oil as the soft segment, poly (ethylene adipate) diol (PEA) as the chain extender, and MPTMS as an end-capping reagent were applied to form a series of organosilicon hybrid bio-based polyurethane (CPUSi). The effect of the IPDI-M contents on the thermal stability, mechanical properties, and surface properties of the resulting product was systematically investigated. Profit from the Si–O–Si crosslinked structures formed from MPTMS curing, the tensile strength, and Young’s modulus of the resulting products increased from 9.5 MPa to 22.3 Mpa and 4.05 Mpa to 81.59 Mpa, respectively, whereas the elongation at break decreased from 342% to 101%. The glass transition temperature, thermal stability, transparency, hydrophobicity, and chemical resistance were remarkably strengthened for the obtained organosilicon-modified polyurethane with the increasing MPTMS content. At the end of the work, the thermal insulation coating that was based on CPUSi and ATO can effectively block near-infrared rays, and the temperature difference between the inside and outside of the film reached 15.1 °C.
Collapse
Affiliation(s)
- Yuan Meng
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435005, China
| | - Ken Chen
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Yuyin Yang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Tao Jiang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Tonghui Hao
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
| | - Xiaoju Lu
- School of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi 435005, China
- Correspondence: (X.L.); (Q.Z.)
| | - Qunchao Zhang
- School of Materials Science and Engineering, Hubei University, Wuhan 430061, China; (Y.M.); (K.C.); (Y.Y.); (T.J.); (T.H.)
- Correspondence: (X.L.); (Q.Z.)
| |
Collapse
|
7
|
Wang K, Arado T, Huner A, Seol H, Liu X, Wang H, Hassan L, Suresh K, Kim S, Cheng G. Thermoplastic zwitterionic elastomer with critical antifouling properties. Biomater Sci 2022; 10:2892-2906. [PMID: 35446327 DOI: 10.1039/d2bm00190j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermoplastic elastomers are widely used in the medical industry for advanced medical and healthcare products, helping millions of patients achieve a better quality of life. Yet, microbial contamination and material-associated biofilms on devices remain a critical challenge because it is challenging for currently available materials to provide critical antifouling properties, thermoplasticity, and elastic properties simultaneously. We developed a highly flexible zwitterionic thermoplastic polyurethane with critical antifouling properties. A series of poly((diethanolamine ethyl acetate)-co-poly(tetrahydrofuran)-co-(1,6-diisocyanatohexane)) (PCB-PTHFUs) were synthesized. The PCB-PTHFUs exhibit a breaking strain of more than 400%, a high resistance to fibroblast cells for 24 h, and the excellent ability to prevent biofilm formation for up to three weeks. This study lays a foundation for clarifying the structure-function relationships of zwitterionic polymers. This thermoplastic PCB-PTHFU platform, with its unmatched antifouling properties and high elasticity, has potential for implanted medical devices and a broad spectrum of applications that suffer from biofouling, such as material-associated infection.
Collapse
Affiliation(s)
- Kun Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Theo Arado
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Ardith Huner
- University of Chicago Laboratory Schools, Chicago, IL 60637, USA
| | - Hyang Seol
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Xuan Liu
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Lena Hassan
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Karthika Suresh
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Sangil Kim
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|