1
|
Papadopoulou K, Ainali NM, Mašek O, Bikiaris DN. Biochar as a UV Stabilizer: Its Impact on the Photostability of Poly(butylene succinate) Biocomposites. Polymers (Basel) 2024; 16:3080. [PMID: 39518286 PMCID: PMC11548502 DOI: 10.3390/polym16213080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
In the present study, biocomposite materials were created by incorporating biochar (BC) at rates of 1, 2.5, and 5 wt.% into a poly(butylene succinate) (PBSu) matrix using a two-stage melt polycondensation procedure in order to provide understanding of the aging process. The biocomposites in film form were exposed to UV irradiation for 7, 14, and 21 days. Photostability was examined by several methods, such as Fourier transform infrared spectroscopy (FTIR), which proved that new carbonyl and hydroxyl groups were formed during UV exposure. Moreover, Differential Scanning Calorimetry (DSC) measurements were employed to record the apparent UV effect in their crystalline morphology and thermal transitions. According to the molecular weight measurements of composites, it was apparent that by increasing the biochar content, the molecular weight decreased at a slower rate. Tensile strength tests were performed to evaluate the deterioration of their mechanical properties during UV exposure, while Scanning Electron Microscopy (SEM) images illustrated the notable surface alternations. Cracks were formed at higher UV exposure times, to a lesser extent in PBSu/BC composites than in neat PBSu. Furthermore, the mechanism of the thermal degradation of neat PBSu and its biocomposites prior to and upon UV exposure was studied by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). From all the obtained results it was proved that biochar can be considered as an efficient UV-protective additive to PBSu, capable of mitigating photodegradation.
Collapse
Affiliation(s)
- Katerina Papadopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (K.P.); (N.M.A.)
| |
Collapse
|
2
|
Biagi F, Giubilini A, Veronesi P, Nigro G, Messori M. Valorization of Winery By-Products as Bio-Fillers for Biopolymer-Based Composites. Polymers (Basel) 2024; 16:1344. [PMID: 38794538 PMCID: PMC11125358 DOI: 10.3390/polym16101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Grape seeds (GS), wine lees (WL), and grape pomace (GP) are common winery by-products, used as bio-fillers in this research with two distinct biopolymer matrices-poly(butylene adipate-co-terephthalate) (PBAT) and polybutylene succinate (PBS)-to create fully bio-based composite materials. Each composite included at least 30 v% bio-filler, with a sample reaching 40 v%, as we sought to determine a composition that could be economically and environmentally effective as a substitute for a pure biopolymer matrix. The compounding process employed a twin-screw extruder followed by an injection molding procedure to fabricate the specimens. An acetylation treatment assessed the specimen's efficacy in enhancing matrix-bio-filler affinity, particularly for WL and GS. The fabricated bio-composites underwent an accurate characterization, revealing no alteration in thermal properties after compounding with bio-fillers. Moreover, hygroscopic measurements indicated increased water-affinity in bio-composites compared to neat biopolymer, most significantly with GP, which exhibited a 7-fold increase. Both tensile and dynamic mechanical tests demonstrated that bio-fillers not only preserved, but significantly enhanced, the stiffness of the neat biopolymer across all samples. In this regard, the most promising results were achieved with the PBAT and acetylated GS sample, showing a 162% relative increase in Young's modulus, and the PBS and WL sample, which exhibited the highest absolute values of Young's modulus and storage modulus, even at high temperatures. These findings underscore the scientific importance of exploring the interaction between bio-fillers derived from winery by-products and three different biopolymer matrices, showcasing their potential for sustainable material development, and advancing polymer science and bio-sourced material processing. From a practical standpoint, the study highlighted the tangible benefits of using by-product bio-fillers, including cost savings, waste reduction, and environmental advantages, thus paving the way for greener and more economically viable material production practices.
Collapse
Affiliation(s)
- Filippo Biagi
- Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, Via Zamboni 33, 40126 Bologna, Italy;
| | - Alberto Giubilini
- Department of Management and Production Engineering (DIGEP), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Paolo Veronesi
- Department of Engineering “Enzo Ferrari” (DIEF), University of Modena and Reggio Emilia, Via Pietro Vivarelli 10, 41125 Modena, Italy;
| | - Giovanni Nigro
- Ri.Nova—Filiera Vitivinicola ed Olivo-Oleicola, Via Tebano 45, 48018 Faenza, Italy;
| | - Massimo Messori
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
3
|
Hernandez-Charpak YD, Mozrall AM, Williams NJ, Trabold TA, Diaz CA. Biochar as a sustainable alternative to carbon black in agricultural mulch films. ENVIRONMENTAL RESEARCH 2024; 246:117916. [PMID: 38147918 DOI: 10.1016/j.envres.2023.117916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Examples of biochar as an alternative to traditional plastic fillers, like carbon black, are numerous and growing. However, in the agricultural mulch film application, both the polymer and its fillers are pushed to their mechanical limit to obtain an effective product, using the least amount of plastic. Through a combined techno-economic analysis (TEA) and life cycle assessment (LCA), this study characterizes the use of carbon-negative biochar as an opacity filler in mulch film applications. Due to its larger particle size, the biochar demands additional thickness to achieve equivalent opacity as carbon black in films. A thicker film translates to additional polymer demand, and a significant increase in price and environmental impact. A comparable formulation for an equal price ($623 per mulched ha) as a 2.6 wt % carbon black with 25 μm thickness was derived, needing 15 wt % biochar and a thickness of 30 μm. The biochar formulation resulted in a slightly higher global warming potential (3% increase), but much larger impact in the land use category (+339%), and the sample was deemed not fit for use in the intended mulch application. These results indicate that in applications where the polymeric matrix and its fillers are pushed to their mechanical limit, the displacement of traditional fillers by biochar is challenging. However, biochar derived from waste biomass (thus reducing land use impact) remains a valid, environmentally beneficial solution to displace traditional fillers for non-extreme plastic uses (commodity plastics) and thicker composites.
Collapse
Affiliation(s)
- Y D Hernandez-Charpak
- Golisano Institute for Sustainability, Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
| | - A M Mozrall
- Department of Packaging and Graphic Media Science, RIT, Rochester, NY, 14623, USA
| | - N J Williams
- Golisano Institute for Sustainability, Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
| | - T A Trabold
- Golisano Institute for Sustainability, Rochester Institute of Technology (RIT), Rochester, NY, 14623, USA
| | - C A Diaz
- Department of Packaging and Graphic Media Science, RIT, Rochester, NY, 14623, USA.
| |
Collapse
|
4
|
Stoyanova N, Nachev N, Spasova M. Innovative Bioactive Nanofibrous Materials Combining Medicinal and Aromatic Plant Extracts and Electrospinning Method. MEMBRANES 2023; 13:840. [PMID: 37888012 PMCID: PMC10608671 DOI: 10.3390/membranes13100840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Since antiquity, humans have known about plants as a medicinal cure. Recently, plant extracts are attracting more attention as a result of their natural origin and wide range of desirable features. Nanotechnology's progress and innovations enable the production of novel materials with enhanced properties for a broad range of applications. Electrospinning is a cutting-edge, flexible and economical technique that allows the creation of continuous nano- and microfibrous membranes with tunable structure, characteristics and functionalities. Electrospun fibrous materials are used in drug delivery, tissue engineering, wound healing, cosmetics, food packaging, agriculture and other fields due to their useful properties such as a large surface area to volume ratio and high porosity with small pore size. By encapsulating plant extracts in a suitable polymer matrix, electrospinning can increase the medicinal potential of these extracts, thus improving their bioavailability and maintaining the required concentration of bioactive compounds at the target site. Moreover, the created hybrid fibrous materials could possess antimicrobial, antifungal, antitumor, anti-inflammatory and antioxidant properties that make the obtained structures attractive for biomedical and pharmaceutical applications. This review summarizes the known approaches that have been applied to fabricate fibrous materials loaded with diverse plant extracts by electrospinning. Some potential applications of the extract-containing micro- and nanofibers such as wound dressings, drug delivery systems, scaffolds for tissue engineering and active food packaging systems are discussed.
Collapse
Affiliation(s)
| | | | - Mariya Spasova
- Laboratory of Bioactive Polymers (LBAP), Institute of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl. 103A, BG-1113 Sofia, Bulgaria; (N.S.); (N.N.)
| |
Collapse
|
5
|
Delatorre FM, Cupertino GFM, Pereira AKS, de Souza EC, da Silva ÁM, Ucella Filho JGM, Saloni D, Profeti LPR, Profeti D, Dias Júnior AF. Photoluminous Response of Biocomposites Produced with Charcoal. Polymers (Basel) 2023; 15:3788. [PMID: 37765642 PMCID: PMC10536408 DOI: 10.3390/polym15183788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Due to the possible effects of global warming, new materials that do not have a negative impact on the environment are being studied. To serve a variety of industries and outdoor applications, it is necessary to consider the impact of photoluminosity on the performance of biocomposites in order to accurately assess their durability characteristics and prevent substantial damage. Exposure to photoluminosity can result in adverse effects such as discoloration, uneven surface, loss of mass, and manipulation of the intrinsic mechanical properties of biocomposites. This study aims to evaluate general charcoal from three pyrolysis temperatures to understand which charcoal is most suitable for photoluminosity and whether higher pyrolysis temperatures have any significant effect on photoluminosity. Porosity, morphology, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy of charcoal were analyzed. Charcoal obtained at a temperature of 800 °C demonstrates remarkable potential as a bioreinforcement in polymeric matrices, attributable to its significantly higher porosity (81.08%) and hydrophobic properties. The biocomposites were characterized for flexural strength, tensile strength, scanning electron microscopy (SEM), FTIR, and x-ray diffraction (XRD). The results showed an improvement in tensile strength after exposure to photoluminosity, with an increase of 69.24%, 68.98%, and 54.38% at temperatures of 400, 600, and 800 °C, respectively, in relation to the treatment control. It is notorious that the tensile strength and modulus of elasticity after photoluminosity initially had a negative impact on mechanical strength, the incorporation of charcoal from higher pyrolysis temperatures showed a substantial increase in mechanical strength after exposure to photoluminosity, especially at 800 °C with breaking strength of 53.40 MPa, and modulus of elasticity of 4364.30 MPA. Scanning electron microscopy revealed an improvement in morphology, with a decrease in roughness at 800 °C, which led to greater adhesion to the polyester matrix. These findings indicate promising prospects for a new type of biocomposite, particularly in comparison with other polymeric compounds, especially in engineering applications that are subject to direct interactions with the weather.
Collapse
Affiliation(s)
- Fabíola Martins Delatorre
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Gabriela Fontes Mayrinck Cupertino
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Allana Katiussya Silva Pereira
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - Elias Costa de Souza
- Institute of Xingu Studies, Federal University of South and Southeast Pará (UNIFESSPA), Subdivision Cidade nova, QD 15, Sector 15, São Félix do Xingu 68380-000, PA, Brazil
| | - Álison Moreira da Silva
- Department of Forest Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP). Av. Pádua Dias, 11, Piracicaba 13418-900, SP, Brazil
| | - João Gilberto Meza Ucella Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| | - Daniel Saloni
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Demetrius Profeti
- Department of Chemistry and Physics, Federal University of Espírito Santo (UFES), Alegre 29500-000, ES, Brazil
| | - Ananias Francisco Dias Júnior
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo (UFES), Av. Governador Lindemberg, 316, Jerônimo Monteiro 29550-000, ES, Brazil
| |
Collapse
|
6
|
Papadopoulou K, Tarani E, Ainali NM, Chrissafis K, Wurzer C, Mašek O, Bikiaris DN. The Effect of Biochar Addition on Thermal Stability and Decomposition Mechanism of Poly(butylene succinate) Bionanocomposites. Molecules 2023; 28:5330. [PMID: 37513203 PMCID: PMC10384878 DOI: 10.3390/molecules28145330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
In the present study, poly(butylene succinate) (PBSu) and its bionanocomposites containing 1, 2.5, and 5 wt.% biochar (MSP700) were prepared via in situ melt polycondensation in order to investigate the thermal stability and decomposition mechanism of the materials. X-ray photoelectron spectroscopy (XPS) measurements were carried out to analyze the surface area of a biochar sample and PBSu/biochar nanocomposites. From XPS, it was found that only physical interactions were taking place between PBSu matrix and biochar nanoadditive. Thermal stability, decomposition kinetics, and the decomposition mechanism of the pristine PBSu and PBSu/biochar nanocomposites were thoroughly studied by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). TGA thermograms depicted that all materials had high thermal stability, since their decomposition started at around 300 °C. However, results indicated a slight reduction in the thermal stability of the PBSu biochar nanocomposites because of the potential catalytic impact of biochar. Py-GC/MS analysis was employed to examine, in more detail, the thermal degradation mechanism of PBSu nanocomposites filled with biochar. From the decomposition products identified by Py-GC/MS after pyrolysis at 450 °C, it was found that the decomposition pathway of the PBSu/biochar nanocomposites took place mainly via β-hydrogen bond scission, which is similar to that which took place for neat PBSu. However, at higher biochar content (5 wt.%), some localized differences in the intensity of the peaks of some specific thermal degradation products could be recognized, indicating that α-hydrogen bond scission was also taking place. A study of the thermal stability and decomposition pathway of PBSu/biochar bionanocomposites is crucial to examine if the new materials fulfill the requirements for further investigation for mulch films in agriculture or in electronics as possible applications.
Collapse
Affiliation(s)
- Katerina Papadopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Evangelia Tarani
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Laboratory of Advanced Materials and Devices, Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christian Wurzer
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Lee J, Yeasmin S, Jung JH, Kim TY, Kwon TY, Kwon DY, Yeum JH. Preparation and Characterization of Thermal-Insulating Microporous Breathable Al/LLDPE/CaCO 3 Composite Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4230. [PMID: 37374413 DOI: 10.3390/ma16124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
Breathable films were prepared based on linear low-density polyethylene (LLDPE), calcium carbonate (CaCO3), and aluminum (Al; 0, 2, 4, and 8 wt.%) using extrusion molding at a pilot scale. These films must generally be able to transmit moist vapor through pores (breathability) while maintaining a barrier to liquids; this was accomplished using properly formulated composites containing spherical CaCO3 fillers. The presence of LLDPE and CaCO3 was confirmed by X-ray diffraction characterization. Fourier-transform infrared spectroscopy results revealed the formation of Al/LLDPE/CaCO3 composite films. The melting and crystallization behaviors of the Al/LLDPE/CaCO3 composite films were investigated using differential scanning calorimetry. Thermogravimetric analysis results show that the prepared composites exhibited high thermal stability up to 350 °C. Moreover, the results demonstrate that surface morphology and breathability were both influenced by the presence of various Al contents, and their mechanical properties improved with increasing Al concentration. In addition, the results show that the thermal insulation capacity of the films increased after the addition of Al. The composite with 8 wt.% Al showed the highest thermal insulation capacity (34.6%), indicating a new approach to transform composite films into novel advanced materials for use in the fields of wooden house wrapping, electronics, and packaging.
Collapse
Affiliation(s)
- Jungeon Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sabina Yeasmin
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae Hoon Jung
- Department of Carbon Hybrid Fiber Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tae Young Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | | | - Da Yeong Kwon
- Hans Intech Co., Ltd., Daegu 41243, Republic of Korea
| | - Jeong Hyun Yeum
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Carbon Hybrid Fiber Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Papadopoulou K, Klonos PA, Kyritsis A, Mašek O, Wurzer C, Tsachouridis K, Anastasiou AD, Bikiaris DN. Synthesis and Study of Fully Biodegradable Composites Based on Poly(butylene succinate) and Biochar. Polymers (Basel) 2023; 15:polym15041049. [PMID: 36850331 PMCID: PMC9960386 DOI: 10.3390/polym15041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Biodegradable polymers offer a promising alternative to the global plastic problems and especially in the last decade, to the microplastics problems. For the first time, samples of poly(butylene succinate) (PBSu) biocomposites containing 1, 2.5, and 5 wt% biochar (BC) were prepared by in situ polymerization via the two-stage melt polycondensation procedure. BC was used as a filler for the PBSu to improve its mechanical properties, thermal transitions, and biodegradability. The structure of the synthesized polymers was examined by 1H and 13C nuclear magnetic resonance (NMR) and X-Ray diffraction (XRD) along with an estimation of the molecular weights, while differential scanning calorimetry (DSC) and light flash analysis (LFA) were also employed to record the thermal transitions and evaluate the thermal conductivity, respectively. It was found that the amount of BC does not affect the molecular weight of PBSu biocomposites. The fine dispersion of BC, as well as the increase in BC content in the polymeric matrix, significantly improves the tensile and impact strengths. The DSC analysis results showed that BC facilitates the crystallization of PBSu biocomposites. Due to the latter, a mild and systematic increase in thermal diffusivity and conductivity was recorded indicating that BC is a conductive material. The molecular mobility of PBSu, local and segmental, does not change significantly in the biocomposites, whereas the BC seems to cause an increase in the overall dielectric permittivity. Finally, it was found that the enzymatic hydrolysis degradation rate of biocomposites increased with the increasing BC content.
Collapse
Affiliation(s)
- Katerina Papadopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis A. Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece
- Correspondence: (P.A.K.); (D.N.B.); Tel.: +30-2310997812 (D.N.B.)
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece
| | - Ondřej Mašek
- UK BC Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Christian Wurzer
- UK BC Research Centre, School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (P.A.K.); (D.N.B.); Tel.: +30-2310997812 (D.N.B.)
| |
Collapse
|
9
|
Wang W, Shi J, Qu K, Zhang X, Jiang W, Huang Z, Guo Z. Composite film with adjustable number of layers for slow release of humic acid and soil remediation. ENVIRONMENTAL RESEARCH 2023; 218:114949. [PMID: 36495960 DOI: 10.1016/j.envres.2022.114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In this study, to improve the soil amendment performance of film materials, composite films with the adjustable number of layers and controlled slow-release time were prepared using sodium alginate (SA), chitosan (CS) and activated charcoal (AC) as raw materials. The prepared multilayer films exhibited a wide pH response range and excellent slow-release time. The cumulative release of humic acid (HA) increased from 19.87 ± 0.98% to 66.72 ± 1.06% with increasing the pH from 4.0 to 10.0 after 700 h of slow-release. In addition, after 50 d of remediation in red soil, plantation soil, and saline soil, the NH4+-N, Olsen-P, Olsen-K, and organic matter contents in the three soils were increased by 2.91-28.62 mg/kg, 46.97-70.43 mg/kg, 55.89-77.01 mg/kg, and 12.47-22.52 g/kg, respectively, and were able to provide sustained crop growth promotion effect. This study demonstrates the promising application of multilayer film in soil remediation and agricultural production.
Collapse
Affiliation(s)
- Weicong Wang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Junming Shi
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Keqi Qu
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Xinrui Zhang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wenjing Jiang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China
| | - Zhanhua Huang
- Key Laboratory of Bio-based Material Science & Technology (Northeast Forestry University), Ministry of Education, Harbin 150040, China; Engineering Research Center of Advanced Wooden Materials, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Zhanhu Guo
- Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA; Integrated Composites Lab (ICL), Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
10
|
Sustainable Materials Containing Biochar Particles: A Review. Polymers (Basel) 2023; 15:polym15020343. [PMID: 36679224 PMCID: PMC9863687 DOI: 10.3390/polym15020343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The conversion of polymer waste, food waste, and biomasses through thermochemical decomposition to fuels, syngas, and solid phase, named char/biochar particles, gives a second life to these waste materials, and this process has been widely investigated in the last two decades. The main thermochemical decomposition processes that have been explored are slow, fast, and flash pyrolysis, torrefaction, gasification, and hydrothermal liquefaction, which produce char/biochar particles that differ in their chemical and physical properties, i.e., their carbon-content, CHNOS compositions, porosity, and adsorption ability. Currently, the main proposed applications of the char/biochar particles are in the agricultural sector as fertilizers for soil retirement and water treatment, as well as use as high adsorption particles. Therefore, according to recently published papers, char/biochar particles could be successfully considered for the formulation of sustainable polymer and biopolymer-based composites. Additionally, in the last decade, these particles have also been proposed as suitable fillers for asphalts. Based on these findings, the current review gives a critical overview that highlights the advantages in using these novel particles as suitable additives and fillers, and at the same time, it shows some drawbacks in their use. Adding char/biochar particles in polymers and biopolymers significantly increases their elastic modulus, tensile strength, and flame and oxygen resistance, although composite ductility is significantly penalized. Unfortunately, due to the dark color of the char/biochar particles, all composites show brown-black coloration, and this issue limits the applications.
Collapse
|
11
|
Cappello M, Rossi D, Filippi S, Cinelli P, Seggiani M. Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate- co-adipate) Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:570. [PMID: 36676307 PMCID: PMC9863910 DOI: 10.3390/ma16020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
This study focused on the development of a novel biocomposite material formed by a thermoplastic biodegradable polyester, poly(butylene succinate-co-adipate) (PBSA), and a carbonaceous filler as biochar (BC) derived by the pyrolysis of woody biomass waste. Composites with various BC contents (5, 10, 15, and 20 wt.%) were obtained by melt extrusion and investigated in terms of their processability, thermal, rheological, and mechanical properties. In all the composites, BC lowered melt viscosity, behaving as a lubricant, and enhancing composite extrudability and injection moulding at high temperatures up to 20 wt.% of biochar. While the use of biochar did not significantly change composite thermal stability, it increased its stiffness (Young modulus). Differential scanning calorimeter (DSC) revealed the presence of a second crystal phase induced by the filler addition. Furthermore, results suggest that biochar may form a particle network that hinders polymer chain disentanglement, reducing polymer flexibility. A biochar content of 10 wt.% was selected as the best trade-off concentration to improve the composite processability and cost competitiveness without compromising excessively the tensile properties. The findings support the use of biochar as a sustainable renewable filler and pigment for PBSA. Biochar is a suitable candidate to replace more traditional carbon black pigments for the production of biodegradable and inexpensive innovative PBSA composites with potential fertilizing properties to be used in agricultural applications.
Collapse
|
12
|
Andrzejewski J, Michałowski S. Development of a New Type of Flame Retarded Biocomposite Reinforced with a Biocarbon/Basalt Fiber System: A Comparative Study between Poly(lactic Acid) and Polypropylene. Polymers (Basel) 2022; 14:polym14194086. [PMID: 36236034 PMCID: PMC9572391 DOI: 10.3390/polym14194086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
A new type of partially biobased reinforcing filler system was developed in order to be used as a flame retardant for polylactic acid (PLA) and polypropylene (PP)-based composites. The prepared materials intended for injection technique processing were melt blended using the novel system containing ammonium polyphosphate (EX), biocarbon (BC), and basalt fibers (BF). All of the prepared samples were subjected to a detailed analysis. The main criterion was the flammability of composites. For PLA-based composites, the flammability was significantly reduced, up to V-0 class. The properties of PLA/EX/BC and PLA/EX/(BC-BF) composites were characterized by their improved mechanical properties. The conducted analysis indicates that the key factor supporting the effectiveness of EX flame retardants is the addition of BC, while the use of BF alone increases the flammability of the samples to the reference level. The results indicate that the developed materials can be easily applied in industrial practice as effective and sustainable flame retardants.
Collapse
Affiliation(s)
- Jacek Andrzejewski
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, Piotrowo 3 Stree, 61-138 Poznan, Poland
- Correspondence: ; Tel.: +48-61-665-5858
| | - Sławomir Michałowski
- Department of Chemistry and Technology of Polymers, Cracow University of Technology, 24 Warszawska Street, 31-155 Kraków, Poland
| |
Collapse
|
13
|
Blown Composite Films of Low-Density/Linear-Low-Density Polyethylene and Silica Aerogel for Transparent Heat Retention Films and Influence of Silica Aerogel on Biaxial Properties. MATERIALS 2022; 15:ma15155314. [PMID: 35955248 PMCID: PMC9369760 DOI: 10.3390/ma15155314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022]
Abstract
Blown films based on low-density polyethylene (LDPE)/linear low-density polyethylene (LLDPE) and silica aerogel (SA; 0, 0.5, 1, and 1.5 wt.%) were obtained at the pilot scale. Good particle dispersion and distribution were achieved without thermo oxidative degradation. The effects of different SA contents (0.5–1.5 wt.%) were studied to prepare transparent-heat-retention LDPE/LLDPE films with improved material properties, while maintaining the optical performance. The optical characteristics of the composite films were analyzed using methods such as ultraviolet–visible spectroscopy and electron microscopy. Their mechanical characteristics were examined along the machine and transverse directions (MD and TD, respectively). The MD film performance was better, and the 0.5% composition exhibited the highest stress at break. The crystallization kinetics of the LDPE/LLDPE blends and their composites containing different SA loadings were investigated using differential scanning calorimetry, which revealed that the crystallinity of LDPE/LLDPE was increased by 0.5 wt.% of well-dispersed SA acting as a nucleating agent and decreased by agglomerated SA (1–1.5 wt.%). The LDPE/LLDPE/SA (0.5–1.5 wt.%) films exhibited improved infrared retention without compromising the visible light transmission, proving the potential of this method for producing next-generation heat retention films. Moreover, these films were biaxially drawn at 13.72 MPa, and the introduction of SA resulted in lower draw ratios in both the MD and TD. Most of the results were explained in terms of changes in the biaxial crystallization caused by the process or the influence of particles on the process after a systematic experimental investigation. The issues were strongly related to the development of blown nanocomposites films as materials for the packaging industry.
Collapse
|
14
|
Ye C, Yu F, Huang Y, Hua M, Zhang S, Feng J. Hydrochar as an environment-friendly additive to improve the performance of biodegradable plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155124. [PMID: 35405227 DOI: 10.1016/j.scitotenv.2022.155124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Plastic additives affect the properties of plastics, which further determine the application range of plastics. However, most plastic additives have environmental friendliness or performance issues limiting their application. Hydrochar (HC) from waste biomass by hydrothermal carbonization has been proved to contain organic matter as function substances, like a binder, and is environment-friendly material. Currently, hydrochar as a plastic additive has not been previously reported. In this study, the HC/PBAT composites were produced by hydrochar blending with poly (butylene adipate-co-terephthalate) (PBAT) which is a biodegradable polymer. The hydrochar produced at different hydrothermal carbonization temperatures (180 °C, 210 °C, 240 °C, 270 °C, and 300 °C) and the addition of hydrochar (10 wt%, 20 wt%) were investigated. The results showed that the elastic modulus of the composites was increased by 27.4 MPa and 32.5 MPa compared with virgin PBAT while adding 10 wt% and 20 wt% hydrochar, respectively. Moreover, the stiffness of the composite was improved, and the balance of stiffness and toughness of the composites was effectively maintained when adding 10 wt% hydrochar treated at 300 °C. The elongation at break, tensile strength, and the elastic modulus of its composites were 630.8 ± 13.7%, 23.0 ± 0.4 MPa, and 100.5 ± 2.7 MPa, respectively. Furthermore, the crystallization temperature of the composites was increased after hydrochar was added into PBAT, and the maximum was 87.9 °C. It also means that hydrochar has a great nucleation effect during plastic processing. Therefore, hydrochar can be used as an environment-friendly additive to promote the performance of biodegradable plastic and promise to be applied in the field of biodegradable plastics.
Collapse
Affiliation(s)
- Cheng Ye
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fengbo Yu
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanqin Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Mingda Hua
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jiachun Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
15
|
Infurna G, Botta L, Maniscalco M, Morici E, Caputo G, Marullo S, D’Anna F, Dintcheva NT. Biochar Particles Obtained from Agricultural Carob Waste as a Suitable Filler for Sustainable Biocomposite Formulations. Polymers (Basel) 2022; 14:polym14153075. [PMID: 35956588 PMCID: PMC9370289 DOI: 10.3390/polym14153075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
In the context of sustainable and circular economy, the recovery of biowaste for sustainable biocomposites formulation is a challenging issue. The aim of this work is to give a new life to agricultural carob waste after glucose extraction carried out by a local factory for carob candy production. A pyrolysis process was carried out on bio-waste to produce biofuel and, later, the solid residual fraction of pyrolysis process was used as interesting filler for biocomposites production. In this work, biochar particles (BC) as a pyrolysis product, after fuels recovery of organic biowaste, specifically, pyrolyzed carobs after glucose extraction, were added on poly(butylene-adipate-co-terephthalate), (PBAT), at two different concentrations, i.e., 10 and 20 wt%. The BC have been produced using three pyrolysis processing temperatures (i.e., 280, 340 and 400 °C) to optimize the compositions of produced solid fractions and biofuels. The resulting particles from the pyrolysis process (BC280, BC340 and BC400) were considered as suitable fillers for PBAT. Firstly, the BC particles properties were characterized by elemental composition and spectroscopy analysis, particle size measurements and evaluation of radical scavenging activity and efficiency. Moreover, PBAT/BC composites were subjected to analysis of their rheological and thermal behavior, morphologies and mechanical properties. In addition, accelerated weathering, monitored by both tensile test and spectroscopic analysis, was carried out, and obtained results show that the biochar particles can exert a beneficial effect on photo-oxidation delay of PBAT matrix.
Collapse
Affiliation(s)
- Giulia Infurna
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
| | - Luigi Botta
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
- Correspondence: (L.B.); (N.T.D.); Tel.: +39-09123863709 (L.B.); +39-09123862658 (N.T.D.)
| | - Marco Maniscalco
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
| | - Elisabetta Morici
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
- ATeN Center, Università di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
| | - Giuseppe Caputo
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
| | - Salvatore Marullo
- Dipartimento STEBICEF, Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (S.M.); (F.D.)
| | - Francesca D’Anna
- Dipartimento STEBICEF, Sez. Chimica, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (S.M.); (F.D.)
| | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy; (G.I.); (M.M.); (E.M.); (G.C.)
- Correspondence: (L.B.); (N.T.D.); Tel.: +39-09123863709 (L.B.); +39-09123862658 (N.T.D.)
| |
Collapse
|
16
|
Botta L, Titone V, Teresi R, Scarlata MC, Lo Re G, La Mantia FP, Lopresti F. Biocomposite PBAT/lignin blown films with enhanced photo-stability. Int J Biol Macromol 2022; 217:161-170. [PMID: 35820487 DOI: 10.1016/j.ijbiomac.2022.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 07/07/2022] [Indexed: 01/17/2023]
Abstract
Lignin can be obtained as a byproduct during cellulose-rich pulp fibers production and it is habitually treated as waste or intended for low-value destinations. However, due to UV absorption and mechanical properties, lignin can contribute to the fabrication of biodegradable blown films with superior performances. In this study, it was established the suitability of lignin for manufacturing biocomposite PBAT blown films with higher stiffness and photo-oxidation resistance. The effect of the filler concentration on the melt rheological behavior in non-isothermal elongational flow was investigated. The results allowed us to choose the correct filler concentration for producing films through a film blowing operation. The PBAT/lignin blown film composites displayed an increase of the elastic modulus if compared to neat PBAT films without affecting their elongation at break. Furthermore, the filler delayed the photo-oxidative degradation of PBAT hence potentially allowing open-air applications.
Collapse
Affiliation(s)
- Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo Titone
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy; Irritec S.p.A., Via Industriale sn, 98070 Rocca di Caprileone, Italy
| | - Rosalia Teresi
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Maria Costanza Scarlata
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Francesco Paolo La Mantia
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Francesco Lopresti
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
17
|
Ceraulo M, La Mantia FP, Mistretta MC, Titone V. The Use of Waste Hazelnut Shells as a Reinforcement in the Development of Green Biocomposites. Polymers (Basel) 2022; 14:polym14112151. [PMID: 35683824 PMCID: PMC9182734 DOI: 10.3390/polym14112151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Biodegradable Mater-Bi (MB) composites reinforced with hazelnut shell (HS) powder were prepared in a co-rotating twin-screw extruder followed by compression molding and injection molding. The effects of reinforcement on the morphology, static and dynamic mechanical properties, and thermal and rheological properties of MB/HS biocomposites were studied. Rheological tests showed that the incorporation of HS significantly increased the viscosity of composites with non-Newtonian behavior at low frequencies. On the other hand, a scanning electron microscope (SEM) examination revealed poor interfacial adhesion between the matrix and the filler. The thermal property results indicated that HS could act as a nucleating agent to promote the crystallization properties of biocomposites. Furthermore, the experimental results indicated that the addition of HS led to a significant improvement in the thermomechanical stability of the composites. This paper demonstrates that the incorporation of a low-cost waste product, such as hazelnut shells, is a practical way to produce low-cost biocomposites with good properties. With a content of HS of 10%, a remarkable improvement in the elastic modulus and impact strength was observed in both compression and injection-molded samples. With a higher content of HS, however, the processability in injection molding was strongly worsened.
Collapse
Affiliation(s)
- Manuela Ceraulo
- Department of Engineering, University of Palermo, VialedelleScienze, 90128 Palermo, Italy; (F.P.L.M.); (M.C.M.); (V.T.)
- INSTM, Consortium for Materials Science and Technology, Via Giusti 9, 50125 Florence, Italy
- Correspondence:
| | - Francesco Paolo La Mantia
- Department of Engineering, University of Palermo, VialedelleScienze, 90128 Palermo, Italy; (F.P.L.M.); (M.C.M.); (V.T.)
- INSTM, Consortium for Materials Science and Technology, Via Giusti 9, 50125 Florence, Italy
| | - Maria Chiara Mistretta
- Department of Engineering, University of Palermo, VialedelleScienze, 90128 Palermo, Italy; (F.P.L.M.); (M.C.M.); (V.T.)
| | - Vincenzo Titone
- Department of Engineering, University of Palermo, VialedelleScienze, 90128 Palermo, Italy; (F.P.L.M.); (M.C.M.); (V.T.)
- Irritec S.p.A., Via Industriale sn, 98070 Rocca di Caprileone, Italy
| |
Collapse
|