1
|
Samiotaki C, Koumentakou I, Christodoulou E, Bikiaris ND, Vlachou M, Karavas E, Tourlouki K, Kehagias N, Barmpalexis P. Fabrication of PLA-Based Nanoneedle Patches Loaded with Transcutol-Modified Chitosan Nanoparticles for the Transdermal Delivery of Levofloxacin. Molecules 2024; 29:4289. [PMID: 39339284 PMCID: PMC11433958 DOI: 10.3390/molecules29184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Current transdermal drug delivery technologies, like patches and ointments, effectively deliver low molecular weight drugs through the skin. However, delivering larger, hydrophilic drugs and macromolecules remains a challenge. In the present study, we developed novel transdermal nanoneedle patches containing levofloxacin-loaded modified chitosan nanoparticles. Chitosan was chemically modified with transcutol in three ratios (1/1, 1/2, 1/3, w/w), and the optimum ratio was used for nanoparticle fabrication via the ionic gelation method. The successful modification was confirmed using ATR-FTIR spectroscopy, while DLS results revealed that only the 1/3 ratio afforded suitably sized particles of 220 nm. After drug encapsulation, the particle size increased to 435 nm, and the final formulations were examined via XRD and an in vitro dissolution test, which suggested that the nanoparticles reach 60% release in a monophasic pattern at 380 h. We then prepared transdermal patches with pyramidal geometry nanoneedles using different poly(lactic acid)/poly(ethylene adipate) (PLA/PEAd) polymer blends of varying ratios, which were characterized in terms of morphology and mechanical compressive strength. The 90/10 blend exhibited the best mechanical properties and was selected for further testing. Ex vivo permeation studies proved that the nanoneedle patches containing drug-loaded nanoparticles achieved the highest levofloxacin permeation (88.1%).
Collapse
Affiliation(s)
- Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos D Bikiaris
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, 15351 Athens, Greece
| | | | - Nikolaos Kehagias
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Paraskevi, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
2
|
Giner-Grau S, Lazaro-Hdez C, Pascual J, Fenollar O, Boronat T. Enhancing Polylactic Acid Properties with Graphene Nanoplatelets and Carbon Black Nanoparticles: A Study of the Electrical and Mechanical Characterization of 3D-Printed and Injection-Molded Samples. Polymers (Basel) 2024; 16:2449. [PMID: 39274081 PMCID: PMC11398012 DOI: 10.3390/polym16172449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
This study investigates the enhancement of polylactic acid (PLA) properties through the incorporation of graphene nanoplatelets (GNPs) and carbon black (CB) for applications in 3D printing and injection molding. The research reveals that GNPs and CB improve the electrical conductivity of PLA, although conductivity remains within the insulating range, even with up to 10% wt of nanoadditives. Mechanical characterization shows that nanoparticle addition decreases tensile strength due to stress concentration effects, while dispersants like polyethylene glycol enhance ductility and flexibility. This study compares the properties of materials processed by injection molding and 3D printing, noting that injection molding yields isotropic properties, resulting in better mechanical properties. Thermal analysis indicates that GNPs and CB influence the crystallization behavior of PLA with small changes in the melting behavior. Dynamic Mechanical Thermal Analysis (DMTA) results show how the glass transition temperature and crystallization behavior fluctuate. Overall, the incorporation of nanoadditives into PLA holds potential for enhanced performance in specific applications, though achieving optimal conductivity, mechanical strength, and thermal properties requires careful optimization of nanoparticle type, concentration, and dispersion methods.
Collapse
Affiliation(s)
- Salvador Giner-Grau
- Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain
| | - Carlos Lazaro-Hdez
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Javier Pascual
- Textile Industry Research Association (AITEX), Plaza Emilio Sala, 1, 03801 Alcoy, Spain
| | - Octavio Fenollar
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| | - Teodomiro Boronat
- Instituto Universitario de Investigación de Tecnología de Materiales (IUITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain
| |
Collapse
|
3
|
Guan Y, Li F, Wang Y, Guo M, Hou J. "Reservoir-law" synergistic reinforcement of electrostatic spun polylactic acid composites with cellulose nanocrystals and 2-hydroxypropyl-β-cyclodextrin for intelligent bioactive food packaging. Int J Biol Macromol 2024; 274:133405. [PMID: 38925186 DOI: 10.1016/j.ijbiomac.2024.133405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Cellulose nanocrystals (CNCs) were obtained from the extraction and bleaching of jute cellulose as the enhancer, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) as the carrier, the flavonoids-anthocyanidins and cinnamaldehyde as the bioactive agent, and finally a novel kind of polylactic acid (PLA)-based composite membrane was derived by electrostatic spun method. With the increasing concentration, HP-β-CDs cooperated with CNCs to regulate or control the release rate of bioactive compounds, which had a synergistic effect on the performance of the PLA matrix. The mechanical strength of PLA-3.2 composite with tannic acid (TA) surface cross-linking was 29.6 % higher than neat PLA, and could also continuously protect cells from oxidative stress and free radicals. In addition, excellent cell biocompatibility was found, and attributed to the interaction between bioactive compounds and cell membrane. In addition, we also found two excellent properties from our experimental results: obvious intelligent color reaction and good antibacterial ability. Finally, PLA-3.2 composites could be degraded by soil and are conducive to plant root growth. Hence, this work could solve many of the current problems of biodegradability and functionality of biopolymers for potential applications in areas such as intelligent bioactive food packaging.
Collapse
Affiliation(s)
- Ying Guan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Hangzhou 311300, China.
| | - Fang Li
- Shaoxing Institute of Zhejiang University, Shaoxing 312000, China
| | - Yangyang Wang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310000, China.
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Hangzhou 311300, China
| | - Junfeng Hou
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Hangzhou 311300, China
| |
Collapse
|
4
|
Bouyahya C, Klonos PA, Zamboulis A, Xanthopoulou E, Ainali NM, Majdoub M, Kyritsis A, Bikiaris DN. Preparation and Structural-Thermodynamical Investigation of Renewable Copolyesters Based on Poly (Ethylene Succinate) and Polyisosorbide. Polymers (Basel) 2024; 16:2173. [PMID: 39125197 PMCID: PMC11314190 DOI: 10.3390/polym16152173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
A series of novel renewable copolymers based on poly(ethylene succinate) (PESu) and poly(isosorbide succinate) (PISSu), with the Isosorbide (Is)/PESu molar ratio varying from 5/95 to 75/25, were synthesized in-situ and studied in this work. A sum of characterization techniques was employed here for the structural and thermo-dynamical characterization. The sophisticated technique of dielectric spectroscopy, along with proper analysis, enabled the molecular dynamics mapping of both the local and segmental types, which is presented for such materials for the first time. With increasing the Is fraction, shorter copolymeric entities were gradually formed. Based on the overall findings, the systems were found to be homogeneous, e.g., exhibiting single glass transitions, with the two polymer segments being found to be excellently distributed. The latter is indirect, although strong, evidence for the successful copolymerization. The thermal degradation mechanism for the copolymers was exhaustingly explored employing analytical pyrolysis. The systems exhibited, in general, good thermal stability, according to the thermogravimetric analysis. Confirming one of the initial scopes for the present systems, isosorbide plays here the role of hardener (PISSu) over the soft polymer (PESu), and this is reflected in the monotonic increase of the glass transition temperature, Tg, from -16 to ~56 °C. The introduction of Is results in an increase in constraints (hardening of the matrix), while there seems to be an overall densification of the polymer (decrease of the free volume).
Collapse
Affiliation(s)
- Chaima Bouyahya
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir 5000, Tunisia;
| | - Panagiotis A. Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
- Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece;
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
| | - Eleftheria Xanthopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
| | - Nina Maria Ainali
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, Monastir 5000, Tunisia;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 157 80 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (C.B.); (A.Z.); (N.M.A.)
| |
Collapse
|
5
|
Rezaei A, Izadi R, Fantuzzi N. A Hierarchical Nano to Micro Scale Modelling of 3D Printed Nano-Reinforced Polylactic Acid: Micropolar Modelling and Molecular Dynamics Simulation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1113. [PMID: 38998718 PMCID: PMC11243012 DOI: 10.3390/nano14131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Fused deposition modelling (FDM) is an additive manufacturing technique widely used for rapid prototyping. This method facilitates the creation of parts with intricate geometries, making it suitable for advanced applications in fields such as tissue engineering, aerospace, and electronics. Despite its advantages, FDM often results in the formation of voids between the deposited filaments, which can compromise mechanical properties. However, in some cases, such as the design of scaffolds for bone regeneration, increased porosity can be advantageous as it allows for better permeability. On the other hand, the introduction of nano-additives into the FDM material enhances design flexibility and can significantly improve the mechanical properties. Therefore, modelling FDM-produced components involves complexities at two different scales: nanoscales and microscales. Material deformation is primarily influenced by atomic-scale phenomena, especially with nanoscopic constituents, whereas the distribution of nano-reinforcements and FDM-induced heterogeneities lies at the microscale. This work presents multiscale modelling that bridges the nano and microscales to predict the mechanical properties of FDM-manufactured components. At the nanoscale, molecular dynamic simulations unravel the atomistic intricacies that dictate the behaviour of the base material containing nanoscopic reinforcements. Simulations are conducted on polylactic acid (PLA) and PLA reinforced with silver nanoparticles, with the properties derived from MD simulations transferred to the microscale model. At the microscale, non-classical micropolar theory is utilised, which can account for materials' heterogeneity through internal scale parameters while avoiding direct discretization. The developed mechanical model offers a comprehensive framework for designing 3D-printed PLA nanocomposites with tailored mechanical properties.
Collapse
Affiliation(s)
- AbdolMajid Rezaei
- Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Razie Izadi
- Department of Structural and Geotechnical Engineering, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Nicholas Fantuzzi
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| |
Collapse
|
6
|
Makri SP, Klonos PA, Marra G, Karathanasis AZ, Deligkiozi I, Valera MÁ, Mangas A, Nikolaidis N, Terzopoulou Z, Kyritsis A, Bikiaris DN. Structure-property relationships in renewable composites of poly(lactic acid) reinforced by low amounts of micro- and nano-kraft-lignin. SOFT MATTER 2024; 20:5014-5027. [PMID: 38885039 DOI: 10.1039/d4sm00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
We investigate the direct and indirect effects of micro- and nano-kraft lignin, kL and NkL, respectively, at a quite low amount of 0.5 wt%, in poly(lactic acid) (PLA)-based composites. These renewable composites were prepared via two routes, either simple melt compounding or in situ reactive extrusion. The materials are selected and prepared using targeted methods in order to vary two variables, i.e., the size of kL and the synthetic method, while maintaining constant polymer chain lengths, L-/D-lactide isomer ratio and filler amounts. The direct/indirect effects were respectively investigated in the amorphous/semicrystalline state, as crystallinity plays in general a dominant role in polymers. The investigation involves structural, thermal and molecular mobility aspects. Non-extensive polymer-lignin interactions were recorded here, whereas the presence of the fillers led to both enhancements and suppressions of properties, e.g., glass transition, crystallization, melting temperatures, etc. The local and segmental molecular dynamics map of the said systems was constructed and is shown here for the first time, demonstrating both expected and unexpected trends. An interesting discrepancy between the trends in the calorimetric measurement against the dielectric Tg is revealed, providing indications for 'dynamical heterogeneities' in the composites as compared to neat PLA. The reactive extrusion as compared to compounding-based systems was found to exhibit stronger effects on crystallizability and mobility, most, probably due to the severe enhancement of the chains' diffusion. In general, the effects are more pronounced when employing nano-lignin compared to micro-lignin, which is the expected beneficial behaviour of nanocomposites vs. conventional composites. Interestingly, the variety of these effects can be easily manipulated by the proper selection of the preparation method and/or the thermal treatment under relatively mild conditions. The latter capability is actually desirable for processing and targeted applications and is proved here, once again, as an advantage of biobased polyesters such as PLA.
Collapse
Affiliation(s)
- Sofia P Makri
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
| | - Panagiotis A Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | | | | | - Miguel Ángel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Mechanochemistry & Reactive Extrusion, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Nikolaos Nikolaidis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Dielectrics Group, Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| |
Collapse
|
7
|
Cherubini F, Riberti N, Schiavone AM, Davì F, Furlani M, Giuliani A, Barucca G, Cassani MC, Rinaldi D, Montalto L. Production of Composite Zinc Oxide-Polylactic Acid Radiopaque Filaments for Fused Deposition Modeling: First Stage of a Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2892. [PMID: 38930261 PMCID: PMC11204736 DOI: 10.3390/ma17122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Three-dimensional printing technologies are becoming increasingly attractive for their versatility; the geometrical customizability and manageability of the final product properties are the key points. This work aims to assess the feasibility of producing radiopaque filaments for fused deposition modeling (FDM), a 3D printing technology, starting with zinc oxide (ZnO) and polylactic acid (PLA) as the raw materials. Indeed, ZnO and PLA are promising materials due to their non-toxic and biocompatible nature. Pellets of PLA and ZnO in the form of nanoparticles were mixed together using ethanol; this homogenous mixture was processed by a commercial extruder, optimizing the process parameters for obtaining mechanically stable samples. Scanning electron microscopy analyses were used to assess, in the extruded samples, the homogenous distribution of the ZnO in the PLA matrix. Moreover, X-ray microtomography revealed a certain homogenous radiopacity; this imaging technique also confirmed the correct distribution of the ZnO in the PLA matrix. Thus, our tests showed that mechanically stable radiopaque filaments, ready for FDM systems, were obtained by homogenously loading the PLA with a maximum ZnO content of 6.5% wt. (nominal). This study produced multiple outcomes. We demonstrated the feasibility of producing radiopaque filaments for additive manufacturing using safe materials. Moreover, each phase of the process is cost-effective and green-oriented; in fact, the homogenous mixture of PLA and ZnO requires only a small amount of ethanol, which evaporates in minutes without any temperature adjustment. Finally, both the extruding and the FDM technologies are the most accessible systems for the additive manufacturing commercial apparatuses.
Collapse
Affiliation(s)
- Francesca Cherubini
- Department of Construction, Civil Engineering and Architecture, Università Politecnica delle Marche, 60100 Ancona, Italy; (F.C.); (F.D.)
| | - Nicole Riberti
- Department of Neurosciences, Imaging and Clinical Sciences, Università Gabriele D’Annunzio Chieti-Pescara, 66100 Chieti, Italy;
| | - Anna Maria Schiavone
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Fabrizio Davì
- Department of Construction, Civil Engineering and Architecture, Università Politecnica delle Marche, 60100 Ancona, Italy; (F.C.); (F.D.)
| | - Michele Furlani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Alessandra Giuliani
- Department of Odontostomatologic and Specialized Clinical Sciences, Università Politecnica delle Marche, 60100 Ancona, Italy;
| | - Gianni Barucca
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
| | - Daniele Rinaldi
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| | - Luigi Montalto
- Department of Science and Engineering of Materials, Environment and Urban Planning, Università Politecnica delle Marche, 60100 Ancona, Italy; (A.M.S.); (G.B.); (D.R.); (L.M.)
| |
Collapse
|
8
|
Habibullah S, Swain R, Nandi S, Das M, Rout T, Mohanty B, Mallick S. Nanocrystalline cellulose as a reinforcing agent for poly (vinyl alcohol)/ gellan-gum-based composite film for moxifloxacin ocular delivery. Int J Biol Macromol 2024; 270:132302. [PMID: 38744357 DOI: 10.1016/j.ijbiomac.2024.132302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Nanocrystalline cellulose (NCC) is a star material in drug delivery applications due to its good biocompatibility, large specific surface area, high tensile strength (TS), and high hydrophilicity. Poly(Vinyl Alcohol)/Gellan-gum-based innovative composite film has been prepared using nanocrystalline cellulose (PVA/GG/NCC) as a strengthening agent for ocular delivery of moxifloxacin (MOX) via solvent casting method. Impedance analysis was studied using the capacitive sensing technique for examining new capacitance nature of the nanocomposite MOX film. Antimicrobial properties of films were evaluated using Pseudomonas aeruginosa and Staphylococcus aureus as gram-negative and gram-positive bacteria respectively by disc diffusion technique. XRD revealed the characteristic peak of NCC and the amorphous form of the drug. Sustained in vitro release and enhanced corneal permeation of drug were noticed in the presence of NCC. Polymer matrix enhanced the mechanical properties (tensile strength 22.05 to 28.41 MPa) and impedance behavior (resistance 59.23 to 213.23 Ω) in the film due to the presence of NCC rather than its absence (16.78 MPa and 39.03 Ω respectively). Occurrence of NCC brought about good antimicrobial behavior (both gram-positive and gram-negative) of the film. NCC incorporated poly(vinyl alcohol)/gellan-gum-based composite film exhibited increased mechanical properties and impedance behavior for improved ocular delivery of moxifloxacin.
Collapse
Affiliation(s)
- Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Rakesh Swain
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Souvik Nandi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Mouli Das
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
| | - Tanmaya Rout
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, Institute of Pharmacy and Technology, Salipur, 754202 Cuttack, Odisha, India.
| | - Subrata Mallick
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
9
|
Rai P, Mehrotra S, Gautam K, Verma R, Anbumani S, Patnaik S, Priya S, Sharma SK. A polylactic acid-carbon nanofiber-based electro-conductive sensing material and paper-based colorimetric sensor for detection of nitrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 38712986 DOI: 10.1039/d3ay02069j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Plastics are ubiquitous in today's lifestyle, and their indiscriminate use has led to the accumulation of plastic waste in landfills and oceans. The waste accumulates and breaks into micro-particles that enter the food chain, causing severe threats to human health, wildlife, and the ecosystem. Environment-friendly and bio-based degradable materials offer a sustainable alternative to the vastly used synthetic materials. Here, a polylactic acid and carbon nanofiber-based membrane and a paper-based colorimetric sensor have been developed. The membrane had a surface area of 3.02 m2 g-1 and a pore size of 18.77 nm. The pores were evenly distributed with a pore volume of 0.0137 cm3 g-1. The membrane was evaluated in accordance with OECD guidelines and was found to be safe for tested aquatic and terrestrial models. The activated PLA-CNF membrane was further used as a bio-based electrode for the electrochemical detection of nitrates (NO3-) in water samples with a detection limit of 0.046 ppm and sensitivity of 1.69 × 10-4 A ppm-1 mm-2, whereas the developed paper-based colorimetric sensor had a detection limit of 156 ppm for NO3-. This study presents an environment-friendly, low-carbon footprint disposable material for sensing applications as a sustainable alternative to plastics.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| | - Srishti Mehrotra
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Krishna Gautam
- Environmental Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Verma
- Drug & Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Environmental Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Satyakam Patnaik
- Drug & Chemical Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- Systems Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Sandeep K Sharma
- Food Toxicology Group, CSIR - Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Diaz Varela JY, Burciaga Jurado LG, Olivas Armendáriz I, Martínez Pérez CA, Chapa González C. The role of multi-walled carbon nanotubes in enhancing the hydrolysis and thermal stability of PLA. Sci Rep 2024; 14:8405. [PMID: 38600178 PMCID: PMC11006862 DOI: 10.1038/s41598-024-58755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Polylactic acid (PLA) is a bioresorbable and biodegradable polymer extensively used in various biomedical and engineering applications. In this study, we investigated the mass loss and thermal properties of PLA-multi-walled carbon nanotube (MWCNT) composites under simulated physiological conditions. The composites were prepared by melting PLA with 0.1, 0.5, 1.0, and 5.0 wt% MWCNTs using an ultrasonic agitator, and FTIR analysis confirmed composite formation. Subsequently, the composites were subjected to hydrolysis under simulated physiological conditions (pH 7.4 and 37 °C) for up to 60 days. The results revealed that the mass loss of the composites decreased with increasing MWCNT content, suggesting that the presence of MWCNTs decelerated the hydrolysis process. On day 58, the mass loss of pure PLA was 12.5%, decreasing to 8.34% with 0.1% MWCNT, 5.94% with 0.5% MWCNT, 4.59% with 1% MWCNT, and 3.54% with 5.0% MWCNT. This study offers valuable insights into the behavior of PLA-MWCNT composites under physiologically simulated conditions, facilitating the development of new polymer composites with enhanced thermal stability and degradation resistance for biomedical applications.
Collapse
Affiliation(s)
- Judith Yareli Diaz Varela
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
- Grupo de Nanomedicina, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Lucero Guadalupe Burciaga Jurado
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Imelda Olivas Armendáriz
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Carlos Alberto Martínez Pérez
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico
| | - Christian Chapa González
- Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
- Grupo de Nanomedicina, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
| |
Collapse
|
11
|
Morici E, Pecoraro G, Carroccio SC, Bruno E, Scarfato P, Filippone G, Dintcheva NT. Understanding the Effects of Adding Metal Oxides to Polylactic Acid and Polylactic Acid Blends on Mechanical and Rheological Behaviour, Wettability, and Photo-Oxidation Resistance. Polymers (Basel) 2024; 16:922. [PMID: 38611180 PMCID: PMC11013447 DOI: 10.3390/polym16070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Biopolymers are of growing interest, but to improve some of their poor properties and performance, the formulation of bio-based blends and/or adding of nanoparticles is required. For this purpose, in this work, two different metal oxides, namely zinc oxide (ZnO) and titanium dioxide (TiO2), at different concentrations (0.5, 1, and 2%wt.) were added in polylactic acid (PLA) and polylactic acid/polyamide 11 (PLA/PA11) blends to establish their effects on solid-state properties, morphology, melt behaviour, and photo-oxidation resistance. It seems that the addition of ZnO in PLA leads to a significant reduction in its rigidity, probably due to an inefficient dispersion in the melt state, while the addition of TiO2 does not penalize PLA rigidity. Interestingly, the addition of both ZnO and TiO2 in the PLA/PA11 blend has a positive effect on the rigidity because of blend morphology refinement and leads to a slight increase in film hydrophobicity. The photo-oxidation resistance of the neat PLA and PLA/PA11 blend is significantly reduced due to the presence of both metal oxides, and this must be considered when designing potential applications. The last results suggest that both metal oxides could be considered photo-sensitive degradant agents for biopolymer and biopolymer blends.
Collapse
Affiliation(s)
- Elisabetta Morici
- ATEN Center, Università di Palermo, Viale delle Scienze, Ed. 18, 90128 Palermo, Italy
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Giuseppe Pecoraro
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | - Sabrina Carola Carroccio
- CNR-IPCB, Unit of Catania, Via P. Gaifami 18, 95126 Catania, Italy;
- CNR-IMM, Via Santa Sofia 64, 95123 Catania, Italy;
| | - Elena Bruno
- CNR-IMM, Via Santa Sofia 64, 95123 Catania, Italy;
- Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, 95124 Catania, Italy
| | - Paola Scarfato
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano (SA), Italy;
| | - Giovanni Filippone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, 80125 Naples, Italy;
| | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
- CNR-IPCB, Unit of Catania, Via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
12
|
Bovi J, Delgado JF, de la Osa O, Peltzer MA, Bernal CR, Foresti ML. Biobased Composites of Poly(Lactic Acid) Melt Compounded with Bacterial and Vegetal Nanocelluloses Incorporated through Different Strategies. Polymers (Basel) 2024; 16:898. [PMID: 38611155 PMCID: PMC11013919 DOI: 10.3390/polym16070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
In the current contribution, bacterial nanocellulose obtained from a by-product of Kombucha tea production and vegetal nanocellulose isolated from milled rice husks were employed as fillers of PLA-based composites prepared by intensive mixing followed by compression molding. Given the challenges associated with the incorporation of nanocelluloses-initially obtained as aqueous suspensions-into melt compounding processes, and also with achieving a proper dispersion of the hydrophilic nanofillers within PLA, three different nanofibrils incorporation strategies were studied: i.e., direct mixing of dried milled nanocelluloses and PLA; masterbatching by solvent casting of native nanocelluloses followed by melt compounding; and masterbatching by solvent casting of acetylated nanocelluloses followed by melt compounding. Composites with varying filler content (from 0.5 wt.% to 7 wt.%) were characterized in terms of morphology, optical properties, and mechanical performance. Results revealed the relative suitability of each strategy employed to promote nanocelluloses dispersion within the PLA matrix. PLA/nanocellulose masterbatches prepared by solvent casting proved to be particularly useful for feeding the nanocelluloses into the processing equipment in a dry state with limited hornification. Acetylation also contributed to a better dispersion of both nanocelluloses within the PLA matrix, although no clear positive impact on the mechanical properties of the films was observed. Finally, filler loading played an important role in the films' properties by increasing their stiffness while reducing their translucency.
Collapse
Affiliation(s)
- Jimena Bovi
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires C1127AAR, Argentina; (J.B.); (J.F.D.); (C.R.B.)
- CONICET—Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires C1127AAR, Argentina
| | - Juan Francisco Delgado
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires C1127AAR, Argentina; (J.B.); (J.F.D.); (C.R.B.)
- CONICET—Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires C1127AAR, Argentina
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Obtención, Modificación, Caracterización y Evaluación de Materiales (LOMCEM), Quilmes B1876BXD, Argentina; (O.d.l.O.); (M.A.P.)
| | - Orlando de la Osa
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Obtención, Modificación, Caracterización y Evaluación de Materiales (LOMCEM), Quilmes B1876BXD, Argentina; (O.d.l.O.); (M.A.P.)
| | - Mercedes Ana Peltzer
- Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, Laboratorio de Obtención, Modificación, Caracterización y Evaluación de Materiales (LOMCEM), Quilmes B1876BXD, Argentina; (O.d.l.O.); (M.A.P.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Celina Raquel Bernal
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires C1127AAR, Argentina; (J.B.); (J.F.D.); (C.R.B.)
- CONICET—Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires C1127AAR, Argentina
| | - María Laura Foresti
- Universidad de Buenos Aires, Facultad de Ingeniería, Buenos Aires C1127AAR, Argentina; (J.B.); (J.F.D.); (C.R.B.)
- CONICET—Universidad de Buenos Aires, Instituto de Tecnología en Polímeros y Nanotecnología (ITPN), Buenos Aires C1127AAR, Argentina
| |
Collapse
|
13
|
Yaman M, Yildiz S, Özdemir A, Yemiş GP. Multicomponent system for development of antimicrobial PLA-based films with enhanced physical characteristics. Int J Biol Macromol 2024; 262:129832. [PMID: 38331069 DOI: 10.1016/j.ijbiomac.2024.129832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
This study aims to develop polylactic acid (PLA)-based packaging films with imparted antimicrobial properties and enhanced physical characteristics by evaluating the likely interaction among multiple film components. For this purpose; epoxidized soybean oil (ES) (20 %) serves as a plasticizer, spruce resin (SR) (15 %) functions as both a plasticizer and antimicrobial agent, ZnO (0.1 %) acts as a nanofiller and antimicrobial, and finally thyme and clove essential oil mixture (5 % and 10 %) serves as an antimicrobial agent were incorporated to PLA film formulation. Composite materials were prepared by the solvent casting method using methylene chloride as the solvent. The developed films were characterized in terms of physical, mechanical, thermal, and antimicrobial properties. Tensile strength (59 MPa) and elastic modulus (2625 MPa) of the neat PLA film gradually decreased to 8.99 MPa and 725.4 MPa, respectively, with the sequential addition of all components, indicating enhanced flexibility. SR, ZnO, and EOs significantly imparted antimicrobial property to the PLA film as demonstrated by the inhibition zone of 13.83 mm and 15.67 mm observed for E. coli and S. aureus, respectively. The barrier properties of the films were enhanced by the addition of SR and ZnO; however, EOs increased the water vapor permeability from 0.080 to 0.090 g.mm/m2.day.kPa compared to the neat PLA film. Principal component and hierarchical cluster analysis enabled the successful discrimination of the films, demonstrating how the film properties are affected by the film components. Therefore, this study suggests that selection of a proper combination is essential to highly benefit from the multicomponent film systems for designing alternative food packaging materials with desired properties.
Collapse
Affiliation(s)
- Merve Yaman
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey
| | - Semanur Yildiz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey.
| | - Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
14
|
Ullah M, Bibi A, Wahab A, Hamayun S, Rehman MU, Khan SU, Awan UA, Riaz NUA, Naeem M, Saeed S, Hussain T. Shaping the Future of Cardiovascular Disease by 3D Printing Applications in Stent Technology and its Clinical Outcomes. Curr Probl Cardiol 2024; 49:102039. [PMID: 37598773 DOI: 10.1016/j.cpcardiol.2023.102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. In recent years, 3D printing technology has ushered in a new era of innovation in cardiovascular medicine. 3D printing in CVD management encompasses various aspects, from patient-specific models and preoperative planning to customized medical devices and novel therapeutic approaches. In-stent technology, 3D printing has revolutionized the design and fabrication of intravascular stents, offering tailored solutions for complex anatomies and individualized patient needs. The advantages of 3D-printed stents, such as improved biocompatibility, enhanced mechanical properties, and reduced risk of in-stent restenosis. Moreover, the clinical trials and case studies that shed light on the potential of 3D printing technology to improve patient outcomes and revolutionize the field has been comprehensively discussed. Furthermore, regulatory considerations, and challenges in implementing 3D-printed stents in clinical practice are also addressed, underscoring the need for standardization and quality assurance to ensure patient safety and device reliability. This review highlights a comprehensive resource for clinicians, researchers, and policymakers seeking to harness the full potential of 3D printing technology in the fight against CVD.
Collapse
Affiliation(s)
- Muneeb Ullah
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Ayisha Bibi
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wahab
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shah Hamayun
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Mahboob Ur Rehman
- Department of Cardiology, Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, Khyber Pakhtunkhwa, Pakistan.
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan
| | - Noor-Ul-Ain Riaz
- Department of Pharmacy, Kohat University of Science, and technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences (NUMS) Rawalpindi, Rawalpindi, Punjab, Pakistan.
| | - Sumbul Saeed
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - Talib Hussain
- Women Dental College Abbottabad, Abbottabad, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
15
|
Nath PC, Sharma R, Debnath S, Sharma M, Inbaraj BS, Dikkala PK, Nayak PK, Sridhar K. Recent trends in polysaccharide-based biodegradable polymers for smart food packaging industry. Int J Biol Macromol 2023; 253:127524. [PMID: 37865365 DOI: 10.1016/j.ijbiomac.2023.127524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Artificial packaging materials, such as plastic, can cause significant environmental problems. Thus, the use of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate) has the potential in the field of environmental sustainability, reprocessing, or protection of the environment. Morphological and structural alterations caused by material degradation have a substantial impact on polymer material characteristics. To avoid degradation during storage, it is critical to evaluate and comprehend the structure, characteristics, and behavior of modern bio-based materials for potential food packaging applications. Hence, this review focused on the various types of polysaccharide-based biodegradable polymers (cellulose, starch, and alginate), their properties, and their commercial potential for food packaging applications. In addition, we overviewed the recent development of polysaccharide-based biodegradable polymer (cellulose, starch, and alginate) packaging for food products. The review concluded that the membrane and chromatographics are widely used in production of cellulose, starch, and alginate-based biodegradable polymers. Also, nanotechnology-based food packaging is widely used to improve the properties of cellulose, starch, and alginate biodegradable polymers and the incorporation of active agents to enhance the shelf life of food products. Overall, the review highlighted the potential of cellulose, starch, and alginate biodegradable polymers in the food packaging industry and the need for potential research and development to improve their properties and commercial viability.
Collapse
Affiliation(s)
- Pinku Chandra Nath
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | - Ramesh Sharma
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Shubhankar Debnath
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India
| | | | - Praveen Kumar Dikkala
- College of Food Science and Technology, Acharya NG Ranga Agricultural University, Pulivendula 516390, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India.
| |
Collapse
|
16
|
De Angelis N, Amaroli A, Lagazzo A, Barberis F, Zarro PR, Cappelli A, Sabbieti MG, Agas D. Multipotent Mesenchymal Cells Homing and Differentiation on Poly(ε-caprolactone) Blended with 20% Tricalcium Phosphate and Polylactic Acid Incorporating 10% Hydroxyapatite 3D-Printed Scaffolds via a Commercial Fused Deposition Modeling 3D Device. BIOLOGY 2023; 12:1474. [PMID: 38132300 PMCID: PMC10740731 DOI: 10.3390/biology12121474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
As highlighted by the 'Global Burden of Disease Study 2019' conducted by the World Health Organization, ensuring fair access to medical care through affordable and targeted treatments remains crucial for an ethical global healthcare system. Given the escalating demand for advanced and urgently needed solutions in regenerative bone procedures, the critical role of biopolymers emerges as a paramount necessity, offering a groundbreaking avenue to address pressing medical needs and revolutionize the landscape of bone regeneration therapies. Polymers emerge as excellent solutions due to their versatility, making them reliable materials for 3D printing. The development and widespread adoption of this technology would impact production costs and enhance access to related healthcare services. For instance, in dentistry, the use of commercial polymers blended with β-tricalcium phosphate (TCP) is driven by the need to print a standardized product with osteoconductive features. However, modernization is required to bridge the gap between biomaterial innovation and the ability to print them through commercial printing devices. Here we showed, for the first time, the metabolic behavior and the lineage commitment of bone marrow-derived multipotent mesenchymal cells (MSCs) on the 3D-printed substrates poly(e-caprolactone) combined with 20% tricalcium phosphate (PCL + 20% β-TCP) and L-polylactic acid (PLLA) combined with 10% hydroxyapatite (PLLA + 10% HA). Although there are limitations in printing additive-enriched polymers with a predictable and short half-life, the tested 3D-printed biomaterials were highly efficient in supporting osteoinductivity. Indeed, considering different temporal sequences, both 3D-printed biomaterials resulted as optimal scaffolds for MSCs' commitment toward mature bone cells. Of interest, PLLA + 10% HA substrates hold the confirmation as the finest material for osteoinduction of MSCs.
Collapse
Affiliation(s)
- Nicola De Angelis
- Department of Surgical and Diagnostic Sciences (DISC), Unit of Implant and Prosthodontics, University of Genoa, 16132 Genoa, Italy;
- Department of Dentistry, University Trisakti, Jakarta 10110, Indonesia
| | - Andrea Amaroli
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa, 16132 Genoa, Italy
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy; (A.L.); (F.B.)
| | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, 16100 Genoa, Italy; (A.L.); (F.B.)
| | - Pier Raffaele Zarro
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (P.R.Z.); (A.C.); (D.A.)
| |
Collapse
|
17
|
Seyyedi SR, Kowsari E, Ramakrishna S, Gheibi M, Chinnappan A. Marine plastics, circular economy, and artificial intelligence: A comprehensive review of challenges, solutions, and policies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118591. [PMID: 37423188 DOI: 10.1016/j.jenvman.2023.118591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/09/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Global plastic production is rapidly increasing, resulting in significant amounts of plastic entering the marine environment. This makes marine litter one of the most critical environmental concerns. Determining the effects of this waste on marine animals, particularly endangered organisms, and the health of the oceans is now one of the top environmental priorities. This article reviews the sources of plastic production, its entry into the oceans and the food chain, the potential threat to aquatic animals and humans, the challenges of plastic waste in the oceans, the existing laws and regulations in this field, and strategies. Using conceptual models, this study looks at a circular economy framework for energy recovery from ocean plastic wastes. It does this by drawing on debates about AI-based systems for smart management. In the last sections of the present research, a novel soft sensor is designed for the prediction of accumulated ocean plastic waste based on social development features and the application of machine learning computations. Plus, the best scenario of ocean plastic waste management with a concentration on both energy consumption and greenhouse gas emissions is discussed using USEPA-WARM modeling. Finally, a circular economy concept and ocean plastic waste management policies are modeled based on the strategies of different countries. We deal with green chemistry and the replacement of plastics derived from fossil sources.
Collapse
Affiliation(s)
- Seyed Reza Seyyedi
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore.
| | - Mohammad Gheibi
- Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amutha Chinnappan
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|
18
|
Pemas S, Xanthopoulou E, Terzopoulou Z, Konstantopoulos G, Bikiaris DN, Kottaridi C, Tzovaras D, Pechlivani EM. Exploration of Methodologies for Developing Antimicrobial Fused Filament Fabrication Parts. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6937. [PMID: 37959534 PMCID: PMC10649695 DOI: 10.3390/ma16216937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Composite 3D printing filaments integrating antimicrobial nanoparticles offer inherent microbial resistance, mitigating contamination and infections. Developing antimicrobial 3D-printed plastics is crucial for tailoring medical solutions, such as implants, and cutting costs when compared with metal options. Furthermore, hospital sustainability can be enhanced via on-demand 3D printing of medical tools. A PLA-based filament incorporating 5% TiO2 nanoparticles and 2% Joncryl as a chain extender was formulated to offer antimicrobial properties. Comparative analysis encompassed PLA 2% Joncryl filament and a TiO2 coating for 3D-printed specimens, evaluating mechanical and thermal properties, as well as wettability and antimicrobial characteristics. The antibacterial capability of the filaments was explored after 3D printing against Gram-positive Staphylococcus aureus (S. aureus, ATCC 25923), as well as Gram-negative Escherichia coli (E. coli, ATCC 25922), and the filaments with 5 wt.% embedded TiO2 were found to reduce the viability of both bacteria. This research aims to provide the optimal approach for antimicrobial and medical 3D printing outcomes.
Collapse
Affiliation(s)
- Sotirios Pemas
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| | - Eleftheria Xanthopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Georgios Konstantopoulos
- Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (C.K.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Colors, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.X.); (D.N.B.)
| | - Christine Kottaridi
- Laboratory of General Microbiology, Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (G.K.); (C.K.)
| | - Dimitrios Tzovaras
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| | - Eleftheria Maria Pechlivani
- Centre for Research and Technology Hellas, Information Technologies Institute, 6th km Charilaou-Thermi Road, 57001 Thessaloniki, Greece; (S.P.); (D.T.)
| |
Collapse
|
19
|
Li N, Khan SB, Chen S, Aiyiti W, Zhou J, Lu B. Promising New Horizons in Medicine: Medical Advancements with Nanocomposite Manufacturing via 3D Printing. Polymers (Basel) 2023; 15:4122. [PMID: 37896366 PMCID: PMC10610836 DOI: 10.3390/polym15204122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Three-dimensional printing technology has fundamentally revolutionized the product development processes in several industries. Three-dimensional printing enables the creation of tailored prostheses and other medical equipment, anatomical models for surgical planning and training, and even innovative means of directly giving drugs to patients. Polymers and their composites have found broad usage in the healthcare business due to their many beneficial properties. As a result, the application of 3D printing technology in the medical area has transformed the design and manufacturing of medical devices and prosthetics. Polymers and their composites have become attractive materials in this industry because of their unique mechanical, thermal, electrical, and optical qualities. This review article presents a comprehensive analysis of the current state-of-the-art applications of polymer and its composites in the medical field using 3D printing technology. It covers the latest research developments in the design and manufacturing of patient-specific medical devices, prostheses, and anatomical models for surgical planning and training. The article also discusses the use of 3D printing technology for drug delivery systems (DDS) and tissue engineering. Various 3D printing techniques, such as stereolithography, fused deposition modeling (FDM), and selective laser sintering (SLS), are reviewed, along with their benefits and drawbacks. Legal and regulatory issues related to the use of 3D printing technology in the medical field are also addressed. The article concludes with an outlook on the future potential of polymer and its composites in 3D printing technology for the medical field. The research findings indicate that 3D printing technology has enormous potential to revolutionize the development and manufacture of medical devices, leading to improved patient outcomes and better healthcare services.
Collapse
Affiliation(s)
- Nan Li
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- School of Education (Normal School), Dongguan University of Technology, Dongguan 523808, China
| | - Sadaf Bashir Khan
- School of Manufacturing Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shenggui Chen
- School of Art and Design, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Jianping Zhou
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| | - Bingheng Lu
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, China; (N.L.); (B.L.)
| |
Collapse
|
20
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
21
|
Leonés A, Peponi L, García-Martínez JM, Collar EP. Study on the Tensile Behavior of Woven Non-Woven PLA/OLA/MgO Electrospun Fibers. Polymers (Basel) 2023; 15:3973. [PMID: 37836022 PMCID: PMC10574995 DOI: 10.3390/polym15193973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The present work deeply studied the mechanical behavior of woven non-woven PLA/OLA/MgO electrospun fibers, efibers, by using Box-Wilson surface response methodology. This work follows up a previous one where both the diameters and the thermal response of such efibers were discussed in terms of both the different amounts of magnesium oxide nanoparticles, MgO, as well as of the oligomer (lactic acid), OLA, used as plasticizer. The results of both works, in term of diameters, degree of crystallinity, and mechanical response, can be strongly correlated to each other, as reported here. In particular, the strain mechanism of PLA/OLA/MgO efibers was studied, showing an orientation of efibers parallel to the applied stress and identifying the mechanically weakest points that yielded the start of the breakage of efibers. Moreover, we identified 1.5 wt% as the critical amount of MgO, above which the plasticizing effect of OLA was weaker as the amount of both components increased. Moreover, the minimum elastic modulus value took place at 15 wt% of OLA, in agreement with the previously reported convergence point in the evolution of the degree of crystallinity. Regarding the yield point, a concentration of OLA between 20 and 30 wt% led to a slight improvement in the yielding capability in terms of tensile strength in comparison with neat PLA efibers. Therefore, the approach presented here permits the design of tailor-made electrospun nanocomposites with specific mechanical requirements.
Collapse
Affiliation(s)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| | | | | |
Collapse
|
22
|
Bhatt P, Kumar V, Subramaniyan V, Nagarajan K, Sekar M, Chinni SV, Ramachawolran G. Plasma Modification Techniques for Natural Polymer-Based Drug Delivery Systems. Pharmaceutics 2023; 15:2066. [PMID: 37631280 PMCID: PMC10459779 DOI: 10.3390/pharmaceutics15082066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polymers have attracted significant attention in drug delivery applications due to their biocompatibility, biodegradability, and versatility. However, their surface properties often limit their use as drug delivery vehicles, as they may exhibit poor wettability, weak adhesion, and inadequate drug loading and release. Plasma treatment is a promising surface modification technique that can overcome these limitations by introducing various functional groups onto the natural polymer surface, thus enhancing its physicochemical and biological properties. This review provides a critical overview of recent advances in the plasma modification of natural polymer-based drug delivery systems, with a focus on controllable plasma treatment techniques. The review covers the fundamental principles of plasma generation, process control, and characterization of plasma-treated natural polymer surfaces. It discusses the various applications of plasma-modified natural polymer-based drug delivery systems, including improved biocompatibility, controlled drug release, and targeted drug delivery. The challenges and emerging trends in the field of plasma modification of natural polymer-based drug delivery systems are also highlighted. The review concludes with a discussion of the potential of controllable plasma treatment as a versatile and effective tool for the surface functionalization of natural polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Pankaj Bhatt
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vipin Kumar
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar 249404, Uttarakhand, India;
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India; (P.B.)
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602117, Tamil Nadu, India
| | - Gobinath Ramachawolran
- Department of Foundation, RCSI & UCD Malaysia Campus, No. 4, Jalan Sepoy Lines, Georgetown 10450, Pulau Pinang, Malaysia
| |
Collapse
|
23
|
Alshammari MH, Alshammari AO, Elabbasy MT, Zreiq R, El-Morsy M, Menazea A, Abd El-Kader M. Physicochemical characterization tungsten oxide modified hydroxyapatite embedded into polylactic acid nanocomposite for biomedical applications. RESULTS IN PHYSICS 2023; 49:106446. [DOI: 10.1016/j.rinp.2023.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Makri SP, Xanthopoulou E, Valera MA, Mangas A, Marra G, Ruiz V, Koltsakidis S, Tzetzis D, Zoikis Karathanasis A, Deligkiozi I, Nikolaidis N, Bikiaris D, Terzopoulou Z. Poly(Lactic Acid) Composites with Lignin and Nanolignin Synthesized by In Situ Reactive Processing. Polymers (Basel) 2023; 15:polym15102386. [PMID: 37242959 DOI: 10.3390/polym15102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Poly(lactic acid) (PLA) composites with 0.5 wt% lignin or nanolignin were prepared with two different techniques: (a) conventional melt-mixing and (b) in situ Ring Opening Polymerization (ROP) by reactive processing. The ROP process was monitored by measuring the torque. The composites were synthesized rapidly using reactive processing that took under 20 min. When the catalyst amount was doubled, the reaction time was reduced to under 15 min. The dispersion, thermal transitions, mechanical properties, antioxidant activity, and optical properties of the resulting PLA-based composites were evaluated with SEM, DSC, nanoindentation, DPPH assay, and DRS spectroscopy. All reactive processing-prepared composites were characterized by means of SEM, GPC, and NMR to assess their morphology, molecular weight, and free lactide content. The benefits of the size reduction of lignin and the use of in situ ROP by reactive processing were demonstrated, as the reactive processing-produced nanolignin-containing composites had superior crystallization, mechanical, and antioxidant properties. These improvements were attributed to the participation of nanolignin in the ROP of lactide as a macroinitiator, resulting in PLA-grafted nanolignin particles that improved its dispersion.
Collapse
Affiliation(s)
- Sofia P Makri
- Creative Nano PC, 43 Tatoiou, Metamorfosi, 14451 Athens, Greece
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftheria Xanthopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Miguel Angel Valera
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Ana Mangas
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Giacomo Marra
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Víctor Ruiz
- AIMPLAS, Asociación de Investigación de Materiales Plásticos Y Conexas, Carrer de Gustave Eiffel, 4, 46980 Valencia, Spain
| | - Savvas Koltsakidis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 14 km Thessaloniki, 57001 N. Moudania, Greece
| | | | | | - Nikolaos Nikolaidis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Kanak NA, Shahruzzaman M, Islam MS, Takafuji M, Rahman MM, Kabir SF. Fabrication of Electrospun PLA-nHAp Nanocomposite for Sustained Drug Release in Dental and Orthopedic Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103691. [PMID: 37241318 DOI: 10.3390/ma16103691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 05/28/2023]
Abstract
This study describes the fabrication of nanocomposites using electrospinning technique from poly lactic acid (PLA) and nano-hydroxyapatite (n-HAp). The prepared electrospun PLA-nHAP nanocomposite is intended to be used for drug delivery application. A hydrogen bond in between nHAp and PLA was confirmed by Fourier transform infrared (FT-IR) spectroscopy. Degradation study of the prepared electrospun PLA-nHAp nanocomposite was conducted for 30 days both in phosphate buffer solution (PBS) of pH 7.4 and deionized water. The degradation of the nanocomposite occurred faster in PBS in comparison to water. Cytotoxicity analysis was conducted on both Vero cells and BHK-21 cells and the survival percentage of both cells was found to be more than 95%, which indicates that the prepared nanocomposite is non-toxic and biocompatible. Gentamicin was loaded in the nanocomposite via an encapsulation process and the in vitro drug delivery process was investigated in phosphate buffer solution at different pHs. An initial burst release of the drug was observed from the nanocomposite after 1 to 2 weeks for all pH media. After that, a sustained drug release behavior was observed for the nanocomposite for 8 weeks with a release of 80%, 70% and 50% at pHs 5.5, 6.0 and 7.4, respectively. It can be suggested that the electrospun PLA-nHAp nanocomposite can be used as a potential antibacterial drug carrier for sustained drug release in dental and orthopedic sector.
Collapse
Affiliation(s)
- Nishat Anzum Kanak
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Md Shahruzzaman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Sazedul Islam
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 860-8555, Japan
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumaya F Kabir
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|