1
|
Kavlak S, Kandemir AC, Can HK. Assessment of compatibility of dextran/PEMA blends by thermal, topologic and viscoelastic analysis. Carbohydr Polym 2025; 348:122846. [PMID: 39562117 DOI: 10.1016/j.carbpol.2024.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
In this study, the compatibility of polymer blends of dextran (DEX) and poly(ethylene-alt-maleic anhydride) (PEMA) was evaluated with their enhanced thermal and dynamic mechanical properties as well as structural and topological properties. Blends were prepared in various ratios via solution casting method. The effects of composition and dispersion on interactions, thermal, viscoelastic and topological properties of the blends were investigated using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), atomic force microscopy (AFM) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray diffraction (XRD) analysis. TGA results indicated that blends exhibited higher thermal stability than the individual polymers, with residue percentages increasing from 13.57 % and 11.43 % for DEX and PEMA, respectively, to 27.42 %-16.86 % for the blends at 605 °C. DMA results showed that all blends remained intact at higher temperatures compared to the polymers, with higher Tg values due to the H-bonding interactions confirmed by ATR-FTIR. AFM phase imaging enabled the visualization of miscibility distinctions, revealing that the 30/70 DEX/PEMA blend had a uniform phase distribution and minimal phase shifts, suggesting improved miscibility. In contrast, other blends exhibited more heterogeneous miscibility. These findings highlight that DEX/PEMA blends, with their enhanced thermal and dynamic mechanical properties, have significant potential for various applications.
Collapse
Affiliation(s)
- Serap Kavlak
- Hacettepe University, Faculty of Science, Department of Chemistry, Polymer Chemistry Division, 06800 Ankara, Turkey.
| | - A Cagil Kandemir
- TED University, Faculty of Engineering, Mechanical Engineering, 06420 Ankara, Turkey
| | - Hatice Kaplan Can
- Hacettepe University, Faculty of Science, Department of Chemistry, Polymer Chemistry Division, 06800 Ankara, Turkey
| |
Collapse
|
2
|
Safi SZ, Fazil S, Saeed L, Shah H, Arshad M, Alobaid HM, Rehman F, Sharif F, Selvaraj C, Orakzai AH, Tariq M, Samrot AV, Qadeer A, Ali A, Batumalaie K, Subramaniyan V, Khan SA, Ismail ISB. Chitosan- and heparin-based advanced hydrogels: their chemistry, structure and biomedical applications. CHEMICAL PAPERS 2024. [DOI: 10.1007/s11696-024-03785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
|
3
|
Aglan HA, Ahmed HH, Beherei HH, Abdel-Hady BM, Ekram B, Kishta MS. Generation of cardiomyocytes from stem cells cultured on nanofibrous scaffold: Experimental approach for attenuation of myocardial infarction. Tissue Cell 2024; 89:102461. [PMID: 38991272 DOI: 10.1016/j.tice.2024.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
The current study was constructed to fabricate polyamide based nanofibrous scaffolds (NS) and to define the most promising one for the generation of cardiomyocytes from adipose tissue derived mesenchymal stem cells (ADMSCs). This purpose was extended to assess the potentiality of the generated cardiomyocytes in relieving myocardial infarction (MI) in rats. Production and characterization of NSs were carried out. ADMSCs were cultured on NS and induced to differentiate into cardiomyocytes by specific growth factors. Molecular analysis for myocyte-specific enhancer factor 2 C (MEF2C) and alpha sarcomeric actin (α-SCA) expression was done to confirm the differentiation of ADMSCs into cardiomyocytes for further transplantation into MI induced rats. Implantation of cells in MI afflicted rats boosted heart rate, ST height and PR interval and lessened P duration, RR, QTc and QRS intervals. Also, this type of medication minified serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) enzymes activity as well as serum and cardiac troponin T (Tn-T) levels and upraised serum and cardiac α-SCA and cardiac connexin 43 (CX 43) levels. Microscopic feature of cardiac tissue sections of rats in the treated groups revealed great renovation in the cardiac microarchitecture. Conclusively, this attempt gains insight into a realistic strategy for recovery of MI through systemic employment of in vitro generated cardiomyocytes.
Collapse
Affiliation(s)
- Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt.
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Giza, Egypt
| | - Bothaina M Abdel-Hady
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Basma Ekram
- Polymers and Pigments Department, Chemical Industries Institute, National Research Centre, Giza, Egypt
| | - Mohamed S Kishta
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt; Stem Cell Lab., Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| |
Collapse
|
4
|
Treccani S, Ferruti P, Alongi J, Monti E, Zizioli D, Ranucci E. Ecotoxicity Assessment of α-Amino Acid-Derived Polyamidoamines Using Zebrafish as a Vertebrate Model. Polymers (Basel) 2024; 16:2087. [PMID: 39065404 PMCID: PMC11280761 DOI: 10.3390/polym16142087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The aquatic ecotoxicity of three α-amino acid-derived polyamidoamines (PAAs) was studied using zebrafish embryos as a viable vertebrate model organism. The PAAs examined were water-soluble amphoteric polyelectrolytes with a primarily negative charge, which were efficient flame retardants for cotton. The fish embryo acute toxicity test performed with PAA water solutions using 1.5-500 mg L-1 concentrations showed that toxicity did not statistically differ from the control. The survival rates were indeed >90%, even at the highest concentration; the hatching rates were >80%; and the numbers of morphological defects were comparable to those of the control. Tests using transgenic zebrafish lines indicated that the numbers of microscopic vascular and musculoskeletal defects were comparable to the control, with one random concentration showing doubled alterations. Sensory-motor tests in response to visual and tactile stimuli were also performed. In the presence of PAAs, embryos exposed to alternating light/dark cycles showed an insignificant mobility reduction during the dark phase. Touch-evoked response tests revealed a mild effect of PAAs on the neuromotor system at concentrations > 10 mg L-1. The cystine/glycine copolymer at 100 mg L-1 exhibited the greatest effect. Overall, the studied PAAs showed a minimal impact on aquatic systems and should be further considered as promising ecofriendly materials.
Collapse
Affiliation(s)
- Sofia Treccani
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| | - Eugenio Monti
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Daniela Zizioli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (S.T.); (P.F.); (J.A.)
| |
Collapse
|
5
|
Wu J, Li H, Zhang N, Zheng Q. Micelle-Containing Hydrogels and Their Applications in Biomedical Research. Gels 2024; 10:471. [PMID: 39057494 PMCID: PMC11276039 DOI: 10.3390/gels10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are one of the most commonly used materials in our daily lives, which possess crosslinked three-dimensional network structures and are capable of absorbing large amounts of fluid. Due to their outstanding properties, such as flexibility, tunability, and biocompatibility, hydrogels have been widely employed in biomedical research and clinics, especially in on-demand drug release. However, traditional hydrogels face various limitations, e.g., the delivery of hydrophobic drugs due to their highly hydrophilic interior environment. Therefore, micelle-containing hydrogels have been designed and developed, which possess both hydrophilic and hydrophobic microenvironments and enable the storage of diverse cargos. Based on the functionalities of micelles, these hydrogels can be classified into micelle-doped and chemically/physically crosslinked types, which were reported to be responsive to varied stimuli, including temperature, pH, irradiation, electrical signal, magnetic field, etc. Here, we summarize the research advances of micelle-containing hydrogels and provide perspectives on their applications in the biomedical field based on the recent studies from our own lab and others.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Zhang S, Yang G, Zhang Q, Fan Y, Tang M, Shen L, Zhu D, Zhang G, Yard B. PEGylation renders carnosine resistant to hydrolysis by serum carnosinase and increases renal carnosine levels. Amino Acids 2024; 56:44. [PMID: 38960916 PMCID: PMC11222247 DOI: 10.1007/s00726-024-03405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China.
| | - Guang Yang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Qinqin Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuying Fan
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingna Tang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Liuhai Shen
- Department of Nuclear Medicine, Provincial Peoplès Hospital, Anhui No. 2, Hefei, 230041, China
| | - Dongchun Zhu
- Department of Pharmacy, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| |
Collapse
|
7
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
8
|
Maradiaga Rivas JE, Chen LJ, Lin SY, Hussain S. A Study on the Dilational Modulus Measurement of Polyacrylic Acid Films at Air-Water Interface by Pendant Bubble Tensiometry. Polymers (Basel) 2024; 16:1359. [PMID: 38794550 PMCID: PMC11125069 DOI: 10.3390/polym16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The dilational modulus (E) of polymer films has been commonly measured using the oscillating ring/bubble/drop methods with an external force, and often without specifying the state of the adsorbed film. This study explores an approach where E was determined from the relaxations of surface tension (ST) and surface area (SA) of natural perturbations, in which ST and SA were monitored using a pendant bubble tensiometer. The E of the adsorbed film of PAA (polyacrylic acid) was evaluated for aqueous solutions at CPAA = 5 × 10-4 g/cm3, [MW = 5, 25, and 250 (kDa)]. The E (=dγ/dlnA) was estimated from the surface dilational rate (dlnA/dt) and the rate of ST change (dγ/dt) of the bubble surface from the natural perturbation caused by minute variations in ambient temperature. The data revealed that (i) a considerable time is required to reach the equilibrium-ST (γeq) and to attain the saturated dilational modulus (Esat) of the adsorbed PAA film, (ii) both γeq and Esat of PAA solutions increase with MW of PAA, (iii) a lower MW solution requires a longer time to reach its γeq and Esat, and (iv) this approach is workable for evaluating the E of adsorbed polymer films.
Collapse
Affiliation(s)
- Johann Eduardo Maradiaga Rivas
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| | - Li-Jen Chen
- Department of Chemical Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei City 106, Taiwan;
| | - Shi-Yow Lin
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| | - Siam Hussain
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Road, Taipei 106, Taiwan;
| |
Collapse
|
9
|
Nigro L, Magni S, Ortenzi MA, Gazzotti S, Della Torre C, Signorini SG, Sbarberi R, Binelli A. Unveiling the multilevel impact of four water-soluble polymers on Daphnia magna: From proteome to behaviour (a case study). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134000. [PMID: 38508107 DOI: 10.1016/j.jhazmat.2024.134000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The ubiquitous presence of water-soluble polymers (WSPs) in freshwater environments raises concerns regarding potential threats to aquatic organisms. This study investigated, for the first time, the effects of widely used WSPs -polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid (PAA), and polyethylene glycol (PEG)- using a multi-level approach in the freshwater biological model Daphnia magna. This integrated assessment employed a suite of biomarkers, evaluation of swimming behaviour, and proteomic analysis to investigate the effects of three environmentally relevant concentrations (0.001, 0.5, and 1 mg/L) of the tested WSPs from molecular to organismal levels, assessing both acute and chronic effects. Our findings reveal that exposure to different WSPs induces specific responses at each biological level, with PEG being the only WSP inducing lethal effects at 0.5 mg/L. At the physiological level, although all WSPs impacted both swimming performance and heart rate of D. magna specimens, PAA exhibited the greatest effects on the measured behavioural parameters. Furthermore, proteomic analyses demonstrated altered protein profiles following exposure to all WSPs, with PVA emerging as the most effective.
Collapse
Affiliation(s)
- Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy.
| | - Marco Aldo Ortenzi
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Stefano Gazzotti
- Department of Chemistry, University of Milan, Via Golgi 19, Milan 20133, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | | | - Riccardo Sbarberi
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, Milan 20133, Italy
| |
Collapse
|
10
|
Alves P, Luzio D, de Sá K, Correia I, Ferreira P. Preparation of Gel Forming Polymer-Based Sprays for First Aid Care of Skin Injuries. Gels 2024; 10:297. [PMID: 38786214 PMCID: PMC11121244 DOI: 10.3390/gels10050297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Currently, there are several types of materials for the treatment of wounds, burns, and other topical injuries available on the market. The most used are gauzes and compresses due to their fluid absorption capacity; however, these materials adhere to the surface of the lesions, which can lead to further bleeding and tissue damage upon removal. In the present study, the development of a polymer-based gel that can be applied as a spray provides a new vision in injury protection, respecting the requirements of safety, ease, and quickness of both applicability and removal. The following polymeric sprays were developed to further obtain gels based on different polymers: hydroxypropyl cellulose (HPC), polyvinyl pyrrolidone (PVP) and hydroxypropyl methylcellulose (HPMC) using polyethylene glycol (PEG) as a plasticizer. The developed sprays revealed suitable properties for use in topical injuries. A protective film was obtained when sprayed on a surface through a casting mechanism. The obtained films adhered to the surface of biological tissue (pig muscle), turning into a gel when the exudate was absorbed, and proved to be washable with saline solution and contribute to the clotting process. Moreover, biocompatibility results showed that all materials were biocompatible, as cell viability was over 90% for all the materials.
Collapse
Affiliation(s)
- Patrícia Alves
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Diana Luzio
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
| | - Kevin de Sá
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Ilídio Correia
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilha, Portugal;
| | - Paula Ferreira
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal; (P.A.); (D.L.); (I.C.)
- Applied Research Institute, Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços—S. Martinho do Bispo, 3045-093 Coimbra, Portugal
- Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, 3045-601 Coimbra, Portugal
| |
Collapse
|
11
|
Vidović N, Antić V, Schwarzbauer J. Simultaneous identification and quantification of three water-soluble polymers (PVP, PNVCL and PEI) in wastewater samples by continuous-flow off-line pyrolysis GC/MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170320. [PMID: 38278278 DOI: 10.1016/j.scitotenv.2024.170320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
In environmental analysis, the detection of water-soluble synthetic polymers (WSSP) presents considerable challenges. Thus, a precise and reproducible analytical method was developed using continuous-flow off-line pyrolysis with gas chromatography/mass spectrometry (GC/MS) to simultaneously identify multiple water-soluble polymers from a single environmental sample. WSSP are widely used in multiple industries as hydrogels due to their hydrophilic character and potential biocompatibility. This adaptability of hydrogels is reflected in their ability to provide customized formulations for specific needs, such as in the development of personal care products, medicine, and pharmaceuticals. Specifically, polyvinylpyrrolidone (PVP), poly(N-vinylcaprolactam) (PNVCL), and polyethyleneimine (PEI) were targeted for analysis in wastewater, employing unique pyrolysis products for identification. These polymers require careful assessment in wastewater to evaluate potential environmental risks associated with their release. PVP and PNVCL were identified through two pyrolysis products, while six pyrolysis products were utilized for the identification of PEI. The validated method demonstrated very good linearity and reproducibility, with correlation coefficients ranging from 0.94 to 0.99 and relative standard deviation (RSD) values between 3 % and 36 % for the targeted compounds. The limit of quantification (LOQ) for the three polymers ranged from 1 to 10 μg L-1. Moreover, the average recovery rates for these polymers, determined from artificial water samples, were approx. 85 %. Utilizing the validated method, water samples from seven wastewater treatment plants in Germany were successfully analyzed, confirming the presence of these polymers at elevated concentrations in the μg L-1 range. Notably, untreated influent waters exhibited higher polymer levels compared to treated influents and effluents, underscoring their significant contribution to overall polymer content. The developed analytical method provides an efficient tool for the simultaneous identification and quantification of PVP, PNVCL, and PEI in wastewater samples. The results highlighted the prevalent presence of PVP, PNVCL, and PEI in the tested wastewater samples, indicating their significant abundance.
Collapse
Affiliation(s)
- Nada Vidović
- Institute for Geology and Geochemistry of Petroleum and Coal, RWTH, Lochnerstr. 4-20, Aachen, Germany
| | - Vesna Antić
- University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11080 Zemun-Belgrade, Serbia
| | - Jan Schwarzbauer
- Institute for Geology and Geochemistry of Petroleum and Coal, RWTH, Lochnerstr. 4-20, Aachen, Germany.
| |
Collapse
|
12
|
Rathore C, Saha M, de Boer J, Desai A, Gupta P, Naik A, Subha HY. Unraveling the land-based discharge of microplastics from sewers to oceans - A comprehensive study and risk assessment in wastewaters of Goa, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169621. [PMID: 38157900 DOI: 10.1016/j.scitotenv.2023.169621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Owing to their pervasive dispersion in the environment and their potential ramifications on both marine life and human health, microplastics (MPs) are of increasing concern. However, there is still a lack of research on the release of MPs from different land-based pathways like creeks, drainage outfalls, and conduits into coastal water systems in India. This study represents comprehensive research into the attribution of MPs in the estuarine system, specifically those emanating from wastewater sources in Panjim City, Goa, India. Urban wastewater collected from different locations in and around Panjim City exhibited values ranging from 79 ± 21 to 338 ± 7 MPs/L, with a prevalence of fibrous and black MP particles. The size range of the MPs at all sampling sites was 100-300 μm. Analysis by μ-FTIR revealed 35 distinct polymeric compositions in wastewater, with a dominance of polyacrylamide (PAM), polyvinyl chloride (PVC), and polyamide (PA). Additionally, primary and secondary MPs were studied to unravel the contributions from land-based sources. This included the quantification of MPs in ten samples from personal care products (PCPs) and twenty samples from washing machine effluents (WMEs). MPs in PCPs ranged from 1.8 to 1554 MPs/g. Microfibres and fragments were predominant in WMEs (3986 to 4898 MPs/L). This study suggests a strong relation between polymers found in wastewater effluent and those present in PCPs and WMEs. The identified polymers showed high polymer hazard indices (IV and V), posing a significant threat to the ecosystem and a potential risk to human health.
Collapse
Affiliation(s)
- Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Jacob de Boer
- Vrije University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Aniket Desai
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akshata Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India
| | - Haritha Yespal Subha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403 004, India; Department of Marine Chemistry, Kerala University of Fisheries and Ocean Studies, Kochi 682506, India
| |
Collapse
|
13
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
14
|
Binelli A, Nigro L, Sbarberi R, Della Torre C, Magni S. To be or not to be plastics? Protein modulation and biochemical effects in zebrafish embryos exposed to three water-soluble polymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167699. [PMID: 37832656 DOI: 10.1016/j.scitotenv.2023.167699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Water-soluble polymers (WSPs) are a particular category of polymers that, due to their capability to be soluble in water, come out of the classic definition of plastic and therefore also from its regulation and control, representing a possible new environmental problem considering the number of consumer products in which they are contained. For this reason, the aim of this study was to evaluate the possible adverse effects of three of the most used WSPs (polyacrylic acid - PAA, polyethylene glycol - PEG, polyvinylpyrrolidone - PVP), administered at relevant environmental concentrations (0.001, 0.5 and 1 mg/L) to Danio rerio (zebrafish) embryos up to 120 h post fertilization. To assess the WSP toxicity at the molecular, cellular and organism level we used an integrated ecotoxicological approach of both biomarkers and high-throughput technology based on gel-free proteomics. The main results showed how all the three WSPs up-regulated many proteins (up to 74 in specimens exposed to 1 mg/L PVP) with a wide range of molecular functions and involved in numerous cellular pathways of exposed specimens. On the other hand, the measurement of biomarkers showed how PAA and PVP were able to activate the antioxidant machinery following an over-production of reactive oxygen species, while PEG produced no significant changes in the biomarkers measured. Based on the obtained results, the use and application of WSPs should be revised and regulated.
Collapse
Affiliation(s)
- Andrea Binelli
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy.
| | - Riccardo Sbarberi
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- University of Milan, Department of Biosciences, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
15
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
16
|
Ahmed S, Keniry M, Anaya-Barbosa N, Padilla V, Javed MN, Gilkerson R, Narula AS, Ibrahim E, Lozano K. Oxymatrine Loaded Cross-Linked PVA Nanofibrous Scaffold: Design and Characterization and Anticancer Properties. Macromol Biosci 2023; 23:e2300098. [PMID: 37270675 DOI: 10.1002/mabi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/08/2023] [Indexed: 06/05/2023]
Abstract
This study focuses on the fabrication, characterization and anticancer properties of biocompatible and biodegradable composite nanofibers consisting of poly(vinyl alcohol) (PVA), oxymatrine (OM), and citric acid (CA) using a facile and high-yield centrifugal spinning process known as Forcespinning. The effects of varying concentrations of OM and CA on fiber diameter and molecular cross-linking are investigated. The morphological and thermo-physical properties, as well as water absorption of the developed nanofiber-based mats are characterized using microscopical analysis, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. In vitro anticancer studies are conducted with HCT116 colorectal cancer cells. Results show a high yield of long fibers embedded with beads. Fiber average diameters range between 462 and 528 nm depending on OM concentration. The thermal analysis results show that the fibers are stable at room temperature. The anticancer study reveals that PVA nanofiber membrane with high concentrations of OM can suppress the proliferation of HCT116 colorectal cancer cells. The study provides a comprehensive investigation of OM embedded into nanosized PVA fibers and the prospective application of these membranes as a drug delivery system.
Collapse
Affiliation(s)
- Salahuddin Ahmed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Megan Keniry
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Narcedalia Anaya-Barbosa
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Victoria Padilla
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Md Noushad Javed
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Robert Gilkerson
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | | | - Eman Ibrahim
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Karen Lozano
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| |
Collapse
|
17
|
Mandal A, Pal S, Kilbinger AFM. Controlled Ring Opening Metathesis Polymerization of a New Monomer: On Switching the Solvent-Water-Soluble Homopolymers to Degradable Copolymers. Macromol Rapid Commun 2023; 44:e2300218. [PMID: 37435988 DOI: 10.1002/marc.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (Mn ) and dispersities (Đ) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers. All the synthesized polymers are characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. It is believed that this new route to water soluble ROMP homopolymers as well as the cost-effective and environmentally friendly route to degradable copolymers and block-copolymers could find applications in biomedicine in the near future.
Collapse
Affiliation(s)
- Ankita Mandal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Subhajit Pal
- Department of Chemistry, University of Fribourg, Fribourg, CH-1700, Switzerland
| | | |
Collapse
|
18
|
Budiman A, Handini AL, Muslimah MN, Nurani NV, Laelasari E, Kurniawansyah IS, Aulifa DL. Amorphous Solid Dispersion as Drug Delivery Vehicles in Cancer. Polymers (Basel) 2023; 15:3380. [PMID: 37631436 PMCID: PMC10457821 DOI: 10.3390/polym15163380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cancer treatment has improved over the past decades, but a major challenge lies in drug formulation, specifically for oral administration. Most anticancer drugs have poor water solubility which can affect their bioavailability. This causes suboptimal pharmacokinetic performance, resulting in limited efficacy and safety when administered orally. As a result, it is essential to develop a strategy to modify the solubility of anticancer drugs in oral formulations to improve their efficacy and safety. A promising approach that can be implemented is amorphous solid dispersion (ASD) which can enhance the aqueous solubility and bioavailability of poorly water-soluble drugs. The addition of a polymer can cause stability in the formulations and maintain a high supersaturation in bulk medium. Therefore, this study aimed to summarize and elucidate the mechanisms and impact of an amorphous solid dispersion system on cancer therapy. To gather relevant information, a comprehensive search was conducted using keywords such as "anticancer drug" and "amorphous solid dispersion" in the PubMed, Scopus, and Google Scholar databases. The review provides an overview and discussion of the issues related to the ASD system used to improve the bioavailability of anticancer drugs based on molecular pharmaceutics. A thorough understanding of anticancer drugs in this system at a molecular level is imperative for the rational design of the products.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Annisa Luthfiyah Handini
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Mutia Nur Muslimah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Neng Vera Nurani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Eli Laelasari
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Insan Sunan Kurniawansyah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia; (A.L.H.); (M.N.M.); (N.V.N.); (E.L.); (I.S.K.)
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Bandung 45363, Indonesia;
| |
Collapse
|
19
|
Kayed SF, Almeataq MS. Photocatalytic Activity and Thermal Stability of Hybrid Metal-Polymer-Coordinated Complexes Derived from Gallic Acid and Ethylenediamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10445-10452. [PMID: 37458686 DOI: 10.1021/acs.langmuir.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Three new hybrid metal-polymer-coordinated complexes (MPCs) of copper(II), cobalt(II), and nickel(II) ions with an organic polymer derived from gallic acid and ethylenediamine (GAEtH) were synthesized. The structures of GAEtH and MPCs were characterized with FT-IR, ultraviolet (UV)-Vis, 1H and 13C NMR spectroscopy, and elemental and thermogravimetric analysis. The results reveal that the organic polymer GAEtH exhibits an infinite one-dimensional chain structure, while the hybrid MPCs have a double chain structure, with the two chains joined by metal ions. The thermodynamic and kinetic parameters of the thermal degradation stages were determined by the Coats Redfern method, and the photocatalytic behaviors of the MPCs were investigated through the decomposition of methyl orange dye under UV irradiation.
Collapse
Affiliation(s)
- Safa Faris Kayed
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | | |
Collapse
|
20
|
Wysor SK, Marcus RK. Two-dimensional separation of water-soluble polymers using size exclusion and reversed phase chromatography employing capillary-channeled polymer fiber columns. J Chromatogr A 2023; 1701:464051. [PMID: 37209520 DOI: 10.1016/j.chroma.2023.464051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Polymeric materials are readily available, durable materials that have piqued the interest of many diverse fields, ranging from biomedical engineering to construction. The physiochemical properties of a polymer dictate the behavior and function, where large polydispersity among polymer properties can lead to problems; however, current polymer analysis methods often only report results for one particular property. Two-dimensional liquid chromatography (2DLC) applications have become increasingly popular due to the ability to implement two chromatographic modalities in one platform, meaning the ability to simultaneously address multiple physiochemical aspects of a polymer sample, such as functional group content and molar mass. The work presented employs size exclusion chromatography (SEC) and reversed-phase (RP) chromatography, through two coupling strategies: SEC x RP and RP x RP separations of the water-soluble polymers poly(methacrylic acid) (PMA) and polystyrene sulfonic acid (PSSA). Capillary-channeled polymer (C-CP) fiber (polyester and polypropylene) stationary phases were used for the RP separations. Particularly attractive is the fact that they are easily implemented as the second dimension in 2DLC workflows due to their low backpressure (<1000 psi at ∼70 mm sec-1) and fast separation times. In-line multi-angle light scattering (MALS) was also implemented for molecular weight determinations of the polymer samples, with the molecular weight of PMA ranging from 5 × 104 to 2 × 105 g mol-1, while PSSA ranges from 105 to 108 g mol-1. While the orthogonal pairing of SEC x RP addresses polymer sizing and chemistry, this approach is limited by long separation times (80 min), the need for high solute concentrations (PMA = 1.79 mg mL-1 and PSSA = 0.175 mg mL-1 to yield comparable absorbance responses) due to on-column dilution and subsequently limited resolution in the RP separation space. With RP x RP couplings, separation times were significantly reduced (40 min), with lower sample concentrations (0.595 mg mL-1 of PMA and 0.05 mg mL-1 of PSSA) required. The combined RP strategy provided better overall distinction in the chemical distribution of the polymers, yielding 7 distict species versus 3 for the SEC x RP coupling.
Collapse
Affiliation(s)
- Sarah K Wysor
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA
| | - R Kenneth Marcus
- Department of Chemistry, Biosystems Research Complex, Clemson University, Clemson, SC 29634-0973, USA.
| |
Collapse
|
21
|
Herrada-Manchón H, Fernández MA, Aguilar E. Essential Guide to Hydrogel Rheology in Extrusion 3D Printing: How to Measure It and Why It Matters? Gels 2023; 9:517. [PMID: 37504396 PMCID: PMC10379134 DOI: 10.3390/gels9070517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
Rheology plays a crucial role in the field of extrusion-based three-dimensional (3D) printing, particularly in the context of hydrogels. Hydrogels have gained popularity in 3D printing due to their potential applications in tissue engineering, regenerative medicine, and drug delivery. The rheological properties of the printing material have a significant impact on its behaviour throughout the 3D printing process, including its extrudability, shape retention, and response to stress and strain. Thus, understanding the rheological characteristics of hydrogels, such as shear thinning behaviour, thixotropy, viscoelasticity, and gelling mechanisms, is essential for optimising the printing process and achieving desired product quality and accuracy. This review discusses the theoretical foundations of rheology, explores different types of fluid and their properties, and discusses the essential rheological tests necessary for characterising hydrogels. The paper emphasises the importance of terminology, concepts, and the correct interpretation of results in evaluating hydrogel formulations. By presenting a detailed understanding of rheology in the context of 3D printing, this review paper aims to assist researchers, engineers, and practitioners in the field of hydrogel-based 3D printing in optimizing their printing processes and achieving desired product outcomes.
Collapse
Affiliation(s)
- Helena Herrada-Manchón
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Manuel Alejandro Fernández
- Fundación Idonial, Parque Científico y Tecnológico de Gijón, Avda, Jardín Botánico 1345, 33203 Gijón, Spain
| | - Enrique Aguilar
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto Universitario de Química Organometálica "Enrique Moles", Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
22
|
Wang D, Zheng Y, Deng Q, Liu X. Water-Soluble Synthetic Polymers: Their Environmental Emission Relevant Usage, Transport and Transformation, Persistence, and Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6387-6402. [PMID: 37052478 DOI: 10.1021/acs.est.2c09178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Water-soluble synthetic polymers (WSPs) are distinct from insoluble plastic particles, which are both critical components of synthetic polymers. In the history of human-made macromolecules, WSPs have consistently portrayed a crucial role and served as the ingredients of a variety of products (e.g., flocculants, thickeners, solubilizers, surfactants, etc.) commonly used in human society. However, the environmental exposures and risks of WSPs with different functions remain poorly understood. This paper provides a critical review of the usage, environmental fate, environmental persistence, and biological consequences of multiple types of WSPs in commercial and industrial production. Investigations have identified a wide market of applications and potential environmental threats of various types of WSPs, but we still lack the suitable assessment tools. The effects of physicochemical properties and environmental factors on the environmental distribution as well as the transport and transformation of WSPs are further summarized. Evidence regarding the degradation of WSPs, including mechanical, thermal, hydrolytic, photoinduced, and biological degradation is summarized, and their environmental persistence is discussed. The toxicity data show that some WSPs can cause adverse effects on aquatic species and microbial communities through intrinsic toxicity and physical hazards. This review may serve as a guide for environmental risk assessment to help develop a sustainable path for WSP management.
Collapse
Affiliation(s)
- Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Yuyang Zheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Qian Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, P. R. China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, P. R. China
| |
Collapse
|
23
|
Castro Nascimento CM, Pimentel AS. Do Large Language Models Understand Chemistry? A Conversation with ChatGPT. J Chem Inf Model 2023; 63:1649-1655. [PMID: 36926868 DOI: 10.1021/acs.jcim.3c00285] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Large language models (LLMs) have promised a revolution in answering complex questions using the ChatGPT model. Its application in chemistry is still in its infancy. This viewpoint addresses the question of how well ChatGPT understands chemistry by posing five simple tasks in different subareas of chemistry.
Collapse
Affiliation(s)
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, P.O. Box 38097, Rio de Janeiro, RJ 22451-900, Brazil
| |
Collapse
|
24
|
Synthesis and Characterization of Linear Copolymers Based on Pharmaceutically Functionalized Monomeric Choline Ionic Liquid for Delivery of p-Aminosalicylate. Pharmaceutics 2023; 15:pharmaceutics15030860. [PMID: 36986721 PMCID: PMC10059273 DOI: 10.3390/pharmaceutics15030860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Bioactive linear poly(ionic liquid)s (PIL) were designed as carriers in drug delivery systems (DDS). Their synthesis was based on a monomeric ionic liquid (MIL) with a relevant pharmaceutical anion to create therapeutically functionalized monomers, which further can be used in the controlled atom transfer radical polymerization (ATRP). The presence of chloride counterions in the quaternary ammonium groups of choline MIL, e.g., [2-(methacryloyloxy)ethyl]trimethyl-ammonium chloride (ChMACl), was stimulated to undergo the anion exchange with p-aminosalicylate sodium salt (NaPAS) as the source of the pharmaceutical anion with antibacterial activity. The resultant [2-(methacryloyloxy)ethyl]trimethylammonium p-aminosalicylate (ChMAPAS) was copolymerized to attain the well-defined linear choline-based copolymers with various contents of PAS anions (24–42%), which were regulated by the initial ratio of ChMAPAS to MMA and conversion degree. The length of polymeric chains was evaluated by the total monomer conversion (31–66%) yielding degree of polymerization (DPn = 133–272). Depending on the polymer carrier composition, PAS anions were exchanged by 60–100% within 1 h, 80–100% within 4 h, and completely after 24 h by phosphate anions in PBS imitating a physiological fluid.
Collapse
|
25
|
Kammakakam I, Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges. CHEMOSPHERE 2023; 316:137669. [PMID: 36623590 DOI: 10.1016/j.chemosphere.2022.137669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/09/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.
Collapse
Affiliation(s)
- Irshad Kammakakam
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| | - Zhiping Lai
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia.
| |
Collapse
|
26
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
27
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
28
|
Hydroxyethylcellulose-Based Hydrogels Containing Liposomes Functionalized with Cell-Penetrating Peptides for Nasal Delivery of Insulin in the Treatment of Diabetes. Pharmaceutics 2022; 14:pharmaceutics14112492. [PMID: 36432681 PMCID: PMC9699037 DOI: 10.3390/pharmaceutics14112492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Liposomes functionalized with cell-penetrating peptides are a promising strategy to deliver insulin through the nasal route. A hydrogel based on hydroxyethylcellulose (HEC) aqueous solution was prepared, followed by a subsequent addition of liposomes containing insulin solution functionalized with trans-activator of transcription protein of HIV-1 (TAT) or Penetratin (PNT). The formulations were characterized for rheological behavior, mucoadhesion, syringeability, in vitro release and in vivo efficacy. Rheological tests revealed non-Newtonian fluids with pseudoplastic behavior, and the incorporation of liposomes (HLI, HLITAT and HLIPNT) in hydrogels did not alter the behavior original pseudoplastic characteristic of the HEC hydrogel. Pseudoplastic flow behavior is a desirable property for formulations intended for the administration of drugs via the nasal route. The results of syringeability and mucoadhesive strength from HEC hydrogels suggest a viable vehicle for nasal delivery. Comparing the insulin release profile, it is observed that HI was the system that released the greatest amount while the liposomal gel promoted greater drug retention, since the liposomal system provides an extra barrier for the release through the hydrogel. Additionally, it is observed that both peptides tested had an impact on the insulin release profile, promoting a slower release, due to complexation with insulin. The in vitro release kinetics of insulin from all formulations followed Weibull's mathematical model, reaching approximately 90% of release in the formulation prepared with HEC-based hydrogels. Serum insulin levels and the antihyperglycemic effects suggested that formulations HI and HLI have potential as carriers for insulin delivery by the nasal pathway, a profile not observed when insulin was administered by subcutaneous injection or by the nasal route in saline. Furthermore, formulations functionalized with TAT and PNT can be considered promoters of late and early absorption, respectively.
Collapse
|
29
|
Mondellini S, Schott M, Löder MGJ, Agarwal S, Greiner A, Laforsch C. Beyond microplastics: Water soluble synthetic polymers exert sublethal adverse effects in the freshwater cladoceran Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157608. [PMID: 35901884 DOI: 10.1016/j.scitotenv.2022.157608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution is considered one of the causes of global change. However, water soluble synthetic polymers (WSSPs) have been neglected so far, although they are used in several industrial, dietary, domestic and biomedical products. Moreover, they are applied in wastewater treatment plants (WWTPs) as flocculants and coagulant agents. Hence, their presence in the aquatic environment as well as their uptake by aquatic organisms is probable, whereas no data are available regarding their potential adverse effects. Here we show in the freshwater key species D. magna exposed to five different WSSPs life history changes along with an altered level of reactive oxygen species, although acute mortality was not observed. Since daphnids act as keystone species in lake ecosystems by controlling phytoplankton biomass, even sublethal effects such as WSSPs induced changes in life history may result in cascading effects, from lower to higher trophic levels, which in turn could affect the whole food web.
Collapse
Affiliation(s)
- Simona Mondellini
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Matthias Schott
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Martin G J Löder
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Seema Agarwal
- Macromolecolar Chemistry II, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Andreas Greiner
- Macromolecolar Chemistry II, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| | - Christian Laforsch
- Animal Ecology I, Universitaetsstraße 30, 95447 Bayreuth, Germany; BayCEER, Universitaetsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
30
|
Ajaz N, Abbas A, Afshan R, Irfan M, Khalid SH, Asghar S, Munir MU, Rizg WY, Majrashi KA, Alshehri S, Alissa M, Majrashi M, Bukhary DM, Hussain G, Rehman F, Khan IU. In Vitro and In Vivo Evaluation of Hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) Semi-Interpenetrating Matrices of Dexamethasone Sodium Phosphate. Pharmaceuticals (Basel) 2022; 15:1399. [PMID: 36422529 PMCID: PMC9692809 DOI: 10.3390/ph15111399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 09/02/2024] Open
Abstract
In this paper, we fabricated semi-interpenetrating polymeric network (semi-IPN) of hydroxypropyl-β-cyclodextrin-grafted-poly(acrylic acid)/poly(vinyl pyrrolidone) (HP-β-CD-g-poly(AA)/PVP) by the free radical polymerization technique, intended for colon specific release of dexamethasone sodium phosphate (DSP). Different proportions of polyvinyl pyrrolidone (PVP), acrylic acid (AA), and hydroxypropyl-beta-cyclodextrin (HP-β-CD) were reacted along with ammonium persulphate (APS) as initiator and methylene-bis-acrylamide (MBA) as crosslinker to develop a hydrogel system with optimum swelling at distal intestinal pH. Initially, all formulations were screened for swelling behavior and AP-8 was chosen as optimum formulation. This formulation was capable of releasing a small amount of drug at acidic pH (1.2), while a maximum amount of drug was released at colonic pH (7.4) by the non-Fickian diffusion mechanism. Fourier transformed infrared spectroscopy (FTIR) revealed successful grafting of components and development of semi-IPN structure without any interaction with DSP. Thermogravimetric analysis (TGA) confirmed the thermal stability of developed semi-IPN. X-ray diffraction (XRD) revealed reduction in crystallinity of DSP upon loading in the hydrogel. The scanning electron microscopic (SEM) images revealed a rough and porous hydrogel surface. The toxicological evaluation of semi-IPN hydrogels confirmed their bio-safety and hemocompatibility. Therefore, the prepared hydrogels were pH sensitive, biocompatible, showed good swelling, mechanical properties, and were efficient in releasing the drug in the colonic environment. Therefore, AP-8 can be deemed as a potential carrier for targeted delivery of DSP to treat inflammatory bowel diseases.
Collapse
Affiliation(s)
- Nyla Ajaz
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Anum Abbas
- Foundation University Medical College, Islamabad 44000, Pakistan
| | - Rabia Afshan
- Women Medical College, Abbottabad 22020, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kamlah Ali Majrashi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Sameer Alshehri
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Deena M. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24211, Saudi Arabia
| | - Ghulam Hussain
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Fauzia Rehman
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
31
|
Polysaccharide gum based network hydrogels for controlled drug delivery of ceftriaxone: Synthesis, Characterization and biomedical evaluations. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
33
|
Wu J, Shaidani S, Theodossiou SK, Hartzell EJ, Kaplan DL. Localized, on-demand, sustained drug delivery from biopolymer-based materials. Expert Opin Drug Deliv 2022; 19:1317-1335. [PMID: 35930000 PMCID: PMC9617770 DOI: 10.1080/17425247.2022.2110582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Local drug delivery facilitiates higher concentrations of drug molecules at or near the treatment site to enhance treatment efficiency and reduce drug toxicity and other systemic side effects. However, local drug delivery systems face challenges in terms of encapsulation, delivery, and controlled release of therapeutics. AREAS COVERED We provide an overview of naturally derived biopolymer-based drug delivery systems for localized, sustained, and on-demand treatment. We introduce the advantages and limitations of these systems for drug encapsulation, delivery, and local release, as well as recent applications. EXPERT OPINION Naturally derived biopolymers like cellulose, silk fibroin, chitosan, alginate, hyaluronic acid, and gelatin are good candidates for localized drug delivery because they are readily chemically modified, biocompatible, biodegradable (with the generation of metabolically compatible degradation products), and can be processed in aqueous and ambient environments to maintain the bioactivity of various therapeutics. The tradeoff between the effective treatment dosage and the response by local healthy tissue should be balanced during the design of these delivery systems. Future directions will be focused on strategies to design tunable and controlled biodegradation rates, as well as to explore commercial utility in substituting biopolymer-based systems for currently utilized synthetic polymers for implants for drug delivery.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sawnaz Shaidani
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Sophia K. Theodossiou
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - Emily J. Hartzell
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, USA, 02155
| |
Collapse
|
34
|
Singh R, Prasad A, Kumar B, Kumari S, Sahu RK, Hedau ST. Potential of Dual Drug Delivery Systems: MOF as Hybrid Nanocarrier for Dual Drug Delivery in Cancer Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ragini Singh
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Amrita Prasad
- Department of Chemistry Magadh Mahila College Patna University Patna Bihar. India
| | - Binayak Kumar
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Soni Kumari
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Ram Krishna Sahu
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| | - Suresh T. Hedau
- Division of Molecular Oncology ICMR-National Institute of Cancer Prevention and Research I-7, Sector 39 Noida 201301 Gautam Budha Nagar, U.P. India
| |
Collapse
|
35
|
Li EG, Morenko EO, Zhavoronok ES, Panov AV, Kedik SA. Effect of the Molecular Mass of Hyaluronan on Its Thermophysical Properties and on Dynamic Viscosity of Its Aqueous Solutions. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Funk NL, Fantaus S, Beck RCR. Immediate release 3D printed oral dosage forms: How different polymers have been explored to reach suitable drug release behaviour. Int J Pharm 2022; 625:122066. [PMID: 35926751 DOI: 10.1016/j.ijpharm.2022.122066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional (3D) printing has been gaining attention as a new technological approach to obtain immediate release (IR) dosage forms. The versatility conferred by 3D printing techniques arises from the suitability of using different polymeric materials in the production of solids with different porosities, geometries, sizes, and infill patterns. The appropriate choice of polymer can facilitate in reaching IR specifications and afford other specific properties to 3D printed solid dosage forms. This review aims to provide an overview of the polymers that have been employed in the development of IR 3D printed dosage forms, mainly considering their in vitro drug release behaviour. The physicochemical and mechanical properties of the IR 3D printed dosage forms will also be discussed, together with the manufacturing process strategies. Up to now, methacrylic polymers, cellulosic polymers, vinyl derivatives, glycols and different polymeric blends have been explored to produce IR 3D printed dosage forms. Their effects on drug release profiles are critically discussed here, giving a complete overview to drive formulators towards a rational choice of polymeric material and thus contributing to future studies in 3D printing of pharmaceuticals.
Collapse
Affiliation(s)
- Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Stephani Fantaus
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
37
|
Ghelich R, Jahannama MR, Abdizadeh H, Torknik FS, Vaezi MR. Effects of hafnium and boron on antibacterial and mechanical properties of polyvinylpyrrolidone-based nanofibrous composites. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Weng F, Li L, Wu Q. Preparation and Mechanisms of Compatible Composite from Water soluble starch and Polycaprolactone. STARCH-STARKE 2022. [DOI: 10.1002/star.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fangqing Weng
- Hubei Key Laboratory of Purification and Application of Plant Anti‐cancer Active Ingredients College of Chemistry and Life Sciences Hubei University of Education Wuhan 430205 China
| | - Lin Li
- Hubei Xiangyuan New Material Technology Co. Ltd. Hanchuan 431600 Hanchuan China
| | - Qiangxian Wu
- College of Chemistry Central China Normal University Wuhan 430079 China
| |
Collapse
|
39
|
Zahra Q, Minhas MU, Khan S, Wu PC, Suhail M, Iqbal R, Bashir M. Fabrication of polyethylene glycol hydrogels with enhanced swelling; loading capacity and release kinetics. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03740-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Sangthong S, Pintathong P, Pongsua P, Jirarat A, Chaiwut P. Polysaccharides from Volvariella volvacea Mushroom: Extraction, Biological Activities and Cosmetic Efficacy. J Fungi (Basel) 2022; 8:jof8060572. [PMID: 35736055 PMCID: PMC9225106 DOI: 10.3390/jof8060572] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides from Volvariella volvacea (VVP) were investigated for their cosmetic-related activities and in vivo efficacy for use as a multifunctional active cosmetic ingredient. Three different polysaccharide extraction methods, including hot water shaking (HS), microwave-assisted (MA) and ultrasonic-assisted (UA), were used. Extractable yield, polysaccharide contents and biological activities, including antioxidant, anti-tyrosinase and anti-elastase activities, were compared. The polysaccharides from HS provided the highest extraction yield (15.58 ± 0.96% w/w) and the highest beta-glucan content (18.80 ± 0.81% w/w). The HS polysaccharides also possessed the highest inhibitory effects toward lipid peroxidation (IC50 of 0.0378 mg/mL), tyrosinase (51.46 mg KAE/g), and elastase (604.21 ± 73.66 mg EGCG/g). The cytotoxicity of the VVP was determined for safe use. A cosmetic gel cream containing VVP was developed and 0.2% VVP formulation was observed to be the most stable in color. UV protection factors, skin irritation by single patch test, and in vivo efficacy, including skin moisturization, anti-wrinkle and whitening, were measured. The VVP showed no cytotoxicity against human dermal skin fibroblast. The gel cream containing VVP provided less sun protection factor; however, it significantly exhibited the skin benefits of increasing moisture, gross elasticity, net elasticity, and skin firmness. Improvements to skin roughness, scaliness, wrinkles and in melanin content were also depicted gradually along 8 weeks. V. volvacea, therefore, could be a good source for polysaccharides being used as a moisturizing, anti-wrinkle, and whitening agent in cosmetic preparations.
Collapse
Affiliation(s)
- Sarita Sangthong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (P.P.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (A.J.)
| | - Punyawatt Pintathong
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (P.P.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (A.J.)
| | - Patcharee Pongsua
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (A.J.)
| | - Areeya Jirarat
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (A.J.)
| | - Phanuphong Chaiwut
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.S.); (P.P.)
- Green Cosmetic Technology Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand; (P.P.); (A.J.)
- Correspondence: ; Tel.: +66-5-3916-839
| |
Collapse
|
41
|
Wang J, Liang J, Ning D, Zhang T, Wang M. A review of biomass immobilization in anammox and partial nitrification/anammox systems: Advances, issues, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152792. [PMID: 35033568 DOI: 10.1016/j.scitotenv.2021.152792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/11/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Two biomass immobilization techniques; entrapment and carrier-based, attract increasing attention in anammox and partial nitrification/anammox (PN/A) systems. This paper provides a comprehensive review of the advances, outstanding issues, and future research directions in this field. The application of both entrapment and carrier-based biofilm immobilization for reactor start up, improving the nitrogen removal performance, and protecting autotrophic bacteria from environmental fluctuations in anammox and partial nitrification/anammox systems are summarized and discussed. The key characteristics of carriers for biomass immobilization are biocompatibility for supporting microbial growth, permeability for effective mass transfer, and physical/chemical stability for long-term use. Carriers without these characteristics must be improved and re-evaluated for their feasibility in applications. Lab-scale, pilot, and full-scale studies are needed to overcome the potential obstacles of preliminary studies, and to investigate the long-term performance of biomass immobilization techniques, especially using real wastewater as influent, which may introduce more complexity and threaten the carrier's immobilization. In addition, calculating the 'nitrogen removal rate normalized by the packing ratio of carriers (NRR-C)' in the immobilization system is strongly suggested to obtain a direct comparison of immobilization performance/limitations from different studies. This review will improve understanding of the major challenges of immobilization technology in anammox and PN/A systems and provide insights into the next-stage of research and full-scale applications.
Collapse
Affiliation(s)
- Jinxing Wang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China; College of Horticulture, North West Agriculture and Forestry University, Yangling 712100, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Dingying Ning
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tengge Zhang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Meng Wang
- Department of Energy and Mineral Engineering and EMS Energy Institute, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
42
|
Rashmi SN, Chandrashekar HK, Sangamesha MA, Sankarshan BM. A Review on Synthesis and Applications of Tungsten Oxide Nanoparticles and its Polymer Composites. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Aburayan WS, Alajmi AM, Alfahad AJ, Alsharif WK, Alshehri AA, Booq RY, Alsudir SA, Alsulaihem FM, Bukhary HA, Badr MY, Alyamani EJ, Tawfik EA. Melittin from Bee Venom Encapsulating Electrospun Fibers as a Potential Antimicrobial Wound Dressing Patches for Skin Infections. Pharmaceutics 2022; 14:pharmaceutics14040725. [PMID: 35456558 PMCID: PMC9030956 DOI: 10.3390/pharmaceutics14040725] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Skin infection compromises the body’s natural defenses. Several antibiotics are no longer effective owing to the evolution of antimicrobial-resistant (AMR) bacteria, hence, the constant development of novel antibacterial agents. Naturally occurring antibacterial agents may be potential candidates for AMR bacterial infection treatments; however, caution should be taken when administering such agents due to the high incidence of toxicity. A fibrous material system from a biocompatible polymer that could be used as a skin patch for skin infections treatment caused by AMR bacteria is proposed in this study. Bee venom’s active ingredient, melittin, was fabricated using electrospinning technology. Scanning electron microscopy showed that melittin-loaded fibers had smooth surfaces with no signs of beads or pores. The average diameter of this fibrous system was measured to be 1030 ± 160 nm, indicating its successful preparation. The melittin fibers’ drug loading and entrapment efficiency (EE%) were 49 ± 3 µg/mg and 84 ± 5%, respectively. This high EE% can be another successful preparatory criterion. An in vitro release study demonstrated that 40% of melittin was released after 5 min and achieved complete release after 120 min owing to the hydrophilic nature of the PVP polymer. A concentration of ≤10 µg/mL was shown to be safe for use on human dermal fibroblasts HFF-1 after 24-h exposure, while an antibacterial MIC study found that 5 μg/mL was the effective antimicrobial concentration for S. aureus, A. baumannii, E. coli and Candida albicans yeast. A melittin-loaded fibrous system demonstrated an antibacterial zone of inhibition equivalent to the control (melittin discs), suggesting its potential use as a wound dressing patch for skin infections.
Collapse
Affiliation(s)
- Walaa S. Aburayan
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Areej M. Alajmi
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Ahmed J. Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Wijdan K. Alsharif
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Abdullah A. Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Rayan Y. Booq
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Samar A. Alsudir
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Fatemah M. Alsulaihem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Haitham A. Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (H.A.B.); (M.Y.B.)
| | - Moutaz Y. Badr
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (H.A.B.); (M.Y.B.)
| | - Essam J. Alyamani
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
| | - Essam A. Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (W.S.A.); (A.M.A.); (A.J.A.); (W.K.A.); (A.A.A.); (R.Y.B.); (S.A.A.); (F.M.A.); (E.J.A.)
- Correspondence:
| |
Collapse
|
44
|
Fabrication and evaluation of gelatin-PVA-co-poly(2-acrylamido-2-methylpropane sulfonic acid)-based hydrogels for extended-release of sitagliptin and metformin by employing response surface methodology. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
45
|
Wireko C, Abichou T, Tian K, Zainab B, Zhang Z. Effect of incineration ash leachates on the hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:25-38. [PMID: 34929416 DOI: 10.1016/j.wasman.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
A study was conducted to evaluate the hydraulic conductivity (k) of six bentonite-polymer composite (BPC) geosynthetic clay liners (GCLs) using five synthetic municipal solid waste incineration ash (IA) leachates with ionic strength (I) ranging from 174 to1978 mM. The BPC GCLs contained a dry blend of bentonite and proprietary polymers and had polymer loading ranging from 0.5 to 5.5%. The polymers used in the BPC GCLs were classified as linear polymer (LP) or crosslinked polymer (CP) based on the swelling characteristics of specimens extracted from the GCLs. Comparable hydraulic conductivity tests were also performed on two conventional bentonite (CB) GCLs as controls. The BPC GCLs had k of 2.6 - 6.7 × 10-11 m/s when permeated with IA leachate with I = 174 mM, whereas the CB GCLs had k > 5.0 × 10-8 m/s when permeated with the same leachate. However, k of the BPC GCLs ranged from the order of 10-10 to 10-7 m/s when permeated with IA leachates with I > 600 mM. BPC GCLs with high polymer loading generally had lower k compared to those with lower polymer loading when permeated with the same IA leachate, regardless of the polymer type. Polymer eluted from the BPC GCLs containing LP during permeation with DI water or IA leachate. Unlike CPs, LPs are water-soluble, therefore, they seem to easily migrate during permeation. There was no correlation between the percentage of polymer retained and the final hydraulic conductivity of the LPB GCLs used in this study.
Collapse
Affiliation(s)
- Christian Wireko
- Geosyntec Consultants Inc, 1200 Riverplace Blvd STE 710, Jacksonville, FL 32207, USA.
| | - Tarek Abichou
- Department of Civil and Environmental Engineering, Florida A&M University- Florida State University College of Engineering, 2525 Pottsdamer St., Tallahassee, FL, 32310-6064, USA.
| | - Kuo Tian
- Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA 22030, USA.
| | | | - Zhiming Zhang
- Department of Civil and Environmental Engineering, Florida A&M University- Florida State University College of Engineering, 2525 Pottsdamer St., Tallahassee, FL, 32310-6064, USA.
| |
Collapse
|
46
|
Metal-free, in bulk synthesis of highly hydrophilic polyester bearing pyrrolidone pendants and its diblock copolymers with UCST-type phase transition in water. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Li J, Li C, Zhang H, Gao X, Wang T, Wang Z, Zheng A. Preparation of Azithromycin Amorphous Solid Dispersion by Hot-Melt Extrusion: An Advantageous Technology with Taste Masking and Solubilization Effects. Polymers (Basel) 2022; 14:polym14030495. [PMID: 35160485 PMCID: PMC8840525 DOI: 10.3390/polym14030495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 01/16/2023] Open
Abstract
Azithromycin (AZI) is one of the most commonly used macrolide antibiotics in children, but has the disadvantages of a heavy bitter taste and poor solubility. In order to solve these problems, hot-melt extrusion (HME) was used to prepare azithromycin amorphous solid dispersion. Preliminary selection of a polymer for HME was conducted by calculating Hansen solubility parameter to predict the miscibility of the drug and polymer. Eudragit® RL PO was chosen as the polymer due to its combination of taste-masking effect and dissolution. Moreover, the solubility was improved with this polymer. Design of experiments (DoE) was used to optimize the formulation and process, with screw speed, extrusion temperature, and drug percentage as independent variables, and content, dissolution, and extrudates diameter as dependent variables. The optimal extrusion parameters were obtained as follows: temperature-150 °C; screw speed-75 rpm; and drug percentage-25%. Differential scanning calorimetry (DSC) and Powder X-ray Diffraction (PXRD) studies of the powdered solid dispersions showed that the crystalline AZI transformed into the amorphous form. Fourier transform infrared spectroscopy (FTIR) results indicated that the formation of a hydrogen bond between AZI and the polymer led to the stabilization of AZI in its amorphous form. In conclusion, this work illustrated the importance of HME for the preparation of amorphous solid dispersion of AZI, which can solve the problems of bitterness and low solubility. It is also of great significance for the development of compliant pediatric AZI preparation.
Collapse
Affiliation(s)
- Jiale Li
- School of Pharmacy, Anhui Medical University, 81th Meishan Road, Hefei 230032, China;
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Conghui Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81th Meishan Road, Hefei 230032, China;
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Haidian District, Beijing 100850, China; (C.L.); (H.Z.); (X.G.)
- Correspondence: (T.W.); (Z.W.); (A.Z.); Tel.: +86-15155934952 (T.W.); +86-(0)10-66874665 (Z.W.); +86-(0)10-66931694 (A.Z.)
| |
Collapse
|
49
|
Dosmar E, Walsh J, Doyel M, Bussett K, Oladipupo A, Amer S, Goebel K. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering (Basel) 2022; 9:41. [PMID: 35049750 PMCID: PMC8772869 DOI: 10.3390/bioengineering9010041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Ocular drug delivery remains the focus of much modern research. Primary routes of administration include the surface, the intravitreal space, the subretinal space, and the subconjunctival space, each with its own series of unique challenges, limitations, and advantages. Each of these approaches requires careful consideration of the local anatomy, physical barriers, and key cells as well as the interface between the anatomy and the drug or drug system being delivered. While least invasive, the topical route poses a challenge with the many physical barriers that prevent drug penetration into the eye; while injection into the intravitreal, subretinal, and subconjunctival spaces are direct and targeted but limited due to the many internal clearance mechanisms and potential for damage to the eye. Polymeric-based, sustained-release drug delivery systems have been identified as a potential solution to many of these challenges; however, the design and successful implementation of a sustained-release system that is well-tolerated, bioactive, biocompatible, and degradable remains, in many cases, only in the early stages. The drugs and biomaterials in question also require special attention as small chemical changes could result in vastly different outcomes. This paper explores the anatomy and key cells of these four primary drug delivery routes as well as the interface between drug and drug delivery systems and the anatomy, reviewing the recent developments and current state of research in each area. Finally, this paper also examines the frequently used drugs and biomaterials found in ocular drug delivery and summarizes the primary interactions observed.
Collapse
Affiliation(s)
- Emily Dosmar
- Department of Biology and Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA; (J.W.); (M.D.); (K.B.); (A.O.); (S.A.); (K.G.)
| | | | | | | | | | | | | |
Collapse
|
50
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|