1
|
Cometa S, Busto F, Scalia AC, Castellaneta A, Gentile P, Cochis A, Manfredi M, Borrini V, Rimondini L, De Giglio E. Effectiveness of gellan gum scaffolds loaded with Boswellia serrata extract for in-situ modulation of pro-inflammatory pathways affecting cartilage healing. Int J Biol Macromol 2024; 277:134079. [PMID: 39038574 DOI: 10.1016/j.ijbiomac.2024.134079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/09/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
In this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel's mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1β. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing.
Collapse
Affiliation(s)
| | - Francesco Busto
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| | - Alessandro C Scalia
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Andrea Castellaneta
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy.
| | - Piergiorgio Gentile
- Newcastle University, School of Engineering, Claremont Road, NE1 7RU Newcastle upon Tyne, United Kingdom.
| | - Andrea Cochis
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Vittoria Borrini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Lia Rimondini
- Center for Translational Research on Autoimmune and Allergic Disease, CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy.
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari, Italy; INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy.
| |
Collapse
|
2
|
Tang T, Zhang M, Adhikari B, Li C, Lin J. Indirect prediction of the 3D printability of polysaccharide gels using multiple machine learning (ML) models. Int J Biol Macromol 2024; 280:135769. [PMID: 39299424 DOI: 10.1016/j.ijbiomac.2024.135769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
In this paper, the capabilities of NIR spectroscopy and LF-NMR data were compared for rapidly predicting the rheological properties of polysaccharide gels and assessing their printability. Seven machine learning (ML) models were established for rheological property prediction based on partial least squares regression (PLSR), support vector regression (SVR), back propagation artificial neural network (BPANN), one-dimensional convolutional neural network (1D CNN), recurrent neural network (RNN), long short-term memory (LSTM), and Transformer. The results showed that among the seven models, the SVR, BPANN, and 1D CNN models based on NIR spectroscopy effectively predicted the rheological parameters of polysaccharide gels, with the highest R2 in the prediction set reaching 0.9796 and the highest RPD reaching 7.0708. For most polysaccharide gels, using the LF-NMR relaxation time distribution curves provided better predictions of rheological properties than using transverse relaxation time and peak area. Among the seven models, the PLSR, SVR, 1D CNN, and Transformer models effectively predicted the rheological characteristics based on LF-NMR parameters, with the highest R2 in the prediction set reaching 0.9869 and the highest RPD reaching 8.7220. This study successfully established a prediction system for the rheological behaviors and 3D printing performance of polysaccharide gels using NIR spectroscopy and LF-NMR data combined with ML methods, achieving an intelligent assessment of the 3D printing behavior of polysaccharide gels.
Collapse
Affiliation(s)
- Tiantian Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China; Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, 214122 Wuxi, Jiangsu, China.
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, VIC 3083, Australia
| | - Chunli Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, 214122 Wuxi, Jiangsu, China
| | - Jiacong Lin
- Jiangsu New Herun Shijia Food Company Limited, 212000 Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Sznaider F, Rojas AM, Stortz CA, Navarro DA. Amidation of arabinoglucuronoxylans to modulate their flow behavior. Carbohydr Polym 2024; 336:122123. [PMID: 38670754 DOI: 10.1016/j.carbpol.2024.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Arabinoglucuronoxylans obtained from the exudate of Cercidium praecox (Brea gum) were subjected to an amidation reaction to modulate their flow behavior to obtain a product with similar behavior to gum Arabic. The amidation reaction of the uronic acids present in this exudate was studied using the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) system with the aim of maximizing product yield and minimizing by-product. An analysis of the significant factors involved in the reaction was carried out and a response surface methodology was conducted to optimize the stoichiometry of the reagents used. It was possible to obtain models for predicting the degree of amidation (DA) of arabinoglucuronoxylans and the formation of by-products. The formation of a secondary product derived from the amino acid β-alanine which has not been reported previously in the reaction with polysaccharides, was described. The flow behavior of an amidated product (DA = 52 %) was determined, showing a pseudoplastic behavior and a decreased Newtonian viscosity (η0 = 36.2 Pa s) at the lowest shear rate range with respect to native product solution (η0 = 115 Pa s). Amidated arabinoglucuronoxylans had a flow behavior more similar to that of gum Arabic.
Collapse
Affiliation(s)
- Frank Sznaider
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Ana M Rojas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ/CONICET-UBA), Departamento de Industrias, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Carlos A Stortz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina
| | - Diego A Navarro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, C1428BGA Buenos Aires, Argentina.
| |
Collapse
|
4
|
Swarupa S, Thareja P. Techniques, applications and prospects of polysaccharide and protein based biopolymer coatings: A review. Int J Biol Macromol 2024; 266:131104. [PMID: 38522703 DOI: 10.1016/j.ijbiomac.2024.131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The growing relevance of sustainable materials has recently led to the exploration of naturally derived biopolymeric hydrogels as coating materials due to their biodegradability, biocompatibility, ease of fabrication and modification. Although many review articles exist on biopolymeric coatings, they mainly focus on a specific polysaccharide, protein biopolymer, or a particular application- biomedical engineering or food preservation. The current review first summarizes the commonly used polysaccharide and protein-based biopolymers like chitosan, alginate, carrageenan, pectin, cellulose, starch, pullulan, agarose and silk fibroin, gelatin, respectively, with a systematic description of the techniques widely used for physical coating on substrates. Then, broad applications of these biopolymeric coatings on various substrates in biomedical engineering- 3D scaffolds, biomedical implants, and nanoparticles are described in detail. It also entails the application of biopolymeric coatings for food preservation in the form of food packaging and edible coatings. A brief discussion on the newly discovered interest in exploring biopolymers for anticorrosive coating applications is also included. Finally, concluding remarks on the role of biopolymer microstructures in forming homogeneous coatings, prospective alternatives to the currently used biopolymers as coating material and the advent of computer-aided technologies to expedite experimental findings are presented.
Collapse
Affiliation(s)
- Sanchari Swarupa
- Biological Sciences and Engineering, IIT Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Chemical Engineering, Dr. Kiran C. Patel Centre for Sustainable Development, IIT Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
5
|
Feng M, Zeng X, Lin Q, Wang Y, Wei H, Yang S, Wang G, Chen X, Guo M, Yang X, Hu J, Zhang Y, Yang X, Du Y, Zhao Y. Characterization of Chitosan-Gallic Acid Graft Copolymer for Periodontal Dressing Hydrogel Application. Adv Healthc Mater 2024; 13:e2302877. [PMID: 38041691 DOI: 10.1002/adhm.202302877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/09/2023] [Indexed: 12/03/2023]
Abstract
The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.
Collapse
Affiliation(s)
- Mengge Feng
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xuelian Zeng
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Quan Lin
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yunxiao Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Hongjiang Wei
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Shanyi Yang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Guangwei Wang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingyu Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xin Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Jiangxia Laboratory, Wuhan, 430200, P. R. China
| | - Yufeng Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangge Du
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, P. R. China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
6
|
Araujo Neto LA, Silva LP. Influence of biopolymer composition and crosslinking agent concentration on the micro- and nanomechanical properties of hydrogel-based filaments. J Mech Behav Biomed Mater 2024; 150:106316. [PMID: 38145614 DOI: 10.1016/j.jmbbm.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Hydrogel filaments were manufactured using wet spinning technique, incorporating variations in the concentrations of sodium alginate, gelatin, and calcium chloride (crosslinking agent). The combination of biopolymer concentrations was determined using design of experiments (DoE) approach. The resulting filaments were produced from the developed hydrogels. Tensile and vertical strength analyses of the filaments were conducted using an electromechanical extensor. Atomic force microscopy was employed to evaluate the roughness, viscoelasticity, retraction, and deflection of the hydrogels. By employing DoE, a total of seventeen different combinations of biopolymers and crosslinkers were generated to construct the hydrogels. The filaments exhibited variations in electromechanical traction (measured in kPa) and produced distinct stress peaks. Furthermore, diverse roughness values were observed among the tested materials, with the combinations featuring higher concentrations of sodium alginate displaying the highest Young's modulus. This study demonstrates that manipulating the concentrations of biopolymers and crosslinking agents can modulate the micro and nanomechanical properties of biopolymeric filaments.
Collapse
Affiliation(s)
- Lucio Assis Araujo Neto
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília, 70770-917, DF, Brazil; Federal University of Paraná (UFPR), Postgraduate Program in Pharmaceutical Sciences, Curitiba, 80210-170, PR, Brazil
| | - Luciano Paulino Silva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Nanobiotechnology (LNANO), Brasília, 70770-917, DF, Brazil; Federal University of Paraná (UFPR), Postgraduate Program in Pharmaceutical Sciences, Curitiba, 80210-170, PR, Brazil.
| |
Collapse
|
7
|
Ghorai S, Jana B, Ganguly J. Network-supported and adaptable binding efficacy for flexible and multi-functionalized chitosan/phenolic carbaldehyde hydrogels. Int J Biol Macromol 2023; 253:127004. [PMID: 37734526 DOI: 10.1016/j.ijbiomac.2023.127004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
A thoughtful strategy has been intended to control the hydrogel networking to assess the binding efficacy of multifunctional hydrogel. The processing of two distinct network-supported hydrogels has portrayed to express the operating interactions involved during co-existence with solvents, small molecules, biomolecules, etc. Herein, chitosan has separately functionalized in semisynthetic approaches with 4-hydroxyisopthalaldehyde (ChDA) and 2-hydroxybenzene-1,3,5-tricarbaldehyde (ChTA) to construct different gel networks. The disposition of gel networks ChDA adapts more flexible chain or spine, whereas ChTA possesses restricted movements within gel networks. The gel networks of hydrogels have a significant role in their distinct physical activities. Their gel-bonding elucidations have performed to establish the variation in mechanical, swelling photophysical properties, etc. Remarkable self-fluorescence behaviors are used as a tool for binding study. Distinctive gel networks and their flexibility have investigated against self-fluorescence, UV-Vis, and FTIR against small molecule, Boron trifluoride and biomolecule, and Bovine serum albumin. Hydrogel/BF3 shows variation in fluorescence due to the disposition of gel networks. Hydrogel/BSA quenching of fluorescence at three different temperatures provides the binding constant and Stern-Volmer quenching constant. Theoretical DFT and docking studies successfully established the flexibility against binding study. The controlling of cross-linking or functionalization is very crucial for the development of hydrogel-mediated applications.
Collapse
Affiliation(s)
- Shubhankar Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| | - Biswajit Jana
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah 711103, WB, India.
| |
Collapse
|
8
|
Wu KY, Brister D, Bélanger P, Tran SD. Exploring the Potential of Nanoporous Materials for Advancing Ophthalmic Treatments. Int J Mol Sci 2023; 24:15599. [PMID: 37958583 PMCID: PMC10650608 DOI: 10.3390/ijms242115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of ophthalmology is undergoing significant transformations, driven by technological advancements and innovations in materials science. One of the advancements in this evolution is the application of nanoporous materials, endowed with unique physicochemical properties ideal for a variety of ophthalmological applications. Characterized by their high surface area, tunable porosity, and functional versatility, these materials have the potential to improve drug delivery systems and ocular devices. This review, anchored by a comprehensive literature focusing on studies published within the last five years, examines the applications of nanoporous materials in ocular drug delivery systems (DDS), contact lenses, and intraocular lenses. By consolidating the most current research, this review aims to serve as a resource for clinicians, researchers, and material scientists engaged in the rapidly evolving field of ophthalmology.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Danielle Brister
- College of Public Health, National Taiwan University (NTU), Taipei 106319, Taiwan
| | - Paul Bélanger
- Department of Surgery—Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
9
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
10
|
Hu T, Xu Y, Xu G. Dipeptide-polysaccharides hydrogels through co-assembly. Food Chem 2023; 422:136272. [PMID: 37141751 DOI: 10.1016/j.foodchem.2023.136272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Self-assembling dipeptide hydrogels are attracting attention in food, materials, and biomedicine. However, there are still limitations such as weak hydrogel properties. Herein, we introduced two types of polysaccharides (Arabic gum and citrus pectin) into an alkyl-chain modified dipeptide (C13-tryptophan-tyrosine (C13-WY)) to generate co-assembled C13-WY-arabic gum and C13-WY-pectin hydrogels. The co-assembled hydrogels exhibited enhanced mechanical properties and stability. The G' value of C13-WY-arabic gum and C13-WY-pectin hydrogels was 3 and 10 times larger than that of C13-WY hydrogel, respectively. The addition of Arabic gum and citrus pectin led to the co-assembly and molecular rearrangement. Moreover, co-assembled hydrogels showed more β-sheet structure and hydrogen bonds. Importantly, the self-/co-assembled hydrogels showed low cytotoxicity. We utilized these hydrogels for the encapsulation of docetaxel and they showed a high embedding rate and slow-release. Our findings provide a novel strategy for the development of stable supramolecular peptide hydrogels with good biocompatibility through simple co-assembly.
Collapse
Affiliation(s)
- Tan Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Wuhan, Hubei 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| |
Collapse
|
11
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
12
|
Synthesis, characterization, and cytotoxicity assay of γ-Fe2O3 nanoparticles coated with quercetin-loaded polyelectrolyte multilayers. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Li M, He X, Zhao R, Shi Q, Nian Y, Hu B. Hydrogels as promising carriers for the delivery of food bioactive ingredients. Front Nutr 2022; 9:1006520. [PMID: 36238460 PMCID: PMC9551458 DOI: 10.3389/fnut.2022.1006520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The burden of public health challenges associated with the western dietary and living style is growing. Nutraceuticals have been paid increasing attentions due to their effects in promotion of health. However, in the gastrointestinal (GI) tract, the nutraceuticals suffer from not only the harsh acidic environment of the stomach and a variety of digestive enzymes, but also the antibacterial activity of intestinal bile salts and the action of protease from the gut microbiota. The amount of the nutraceuticals arriving at the sites in GI tract for absorption or exerting the bioactivities is always unfortunately limited, which puts forward high requirements for protection of nutraceuticals in a certain high contents during oral consumption. Hydrogels are three-dimensional polymeric porous networks formed by the cross-linking of polymer chains, which can hold huge amounts of water. Compared with other carries with the size in microscopic scale such as nanoparticle and microcapsules, hydrogels could be considered to be more suitable delivery systems in food due to their macroscopic bulk properties, adjustable viscoelasticity and large spatial structure for embedding nutraceuticals. Regarding to the applications in food, natural polymer-based hydrogels are commonly safe and popular due to their source with the appealing characteristics of affordability, biodegradability and biocompatibility. Although chemical crosslinking has been widely utilized in preparation of hydrogels, it prefers the physical crosslinking in the researches in food. The reasonable design for the structure of natural polymeric hydrogels is essential for seeking the favorable functionalities to apply in the delivery system, and it could be possible to obtain the enhanced adhesive property, acid stability, resistant to bile salt, and the controlled release behavior. The hydrogels prepared with proteins, polysaccharides or the mix of them to deliver the functional ingredients, mainly the phenolic components, vitamins, probiotics are discussed to obtain inspiration for the wide applications in delivery systems. Further efforts might be made in the in situ formation of hydrogels in GI tract through the interaction among food polymers and small-molecular ingredients, elevation of the loading contents of nutraceuticals in hydrogels, development of stomach adhesive hydrogels as well as targeting modification of gut microbiota by the hydrogels.
Collapse
Affiliation(s)
- Min Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqian He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ran Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qixin Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
A Molecular Description of Hydrogel Forming Polymers for Cement-Based Printing Paste Applications. Gels 2022; 8:gels8090592. [PMID: 36135304 PMCID: PMC9498349 DOI: 10.3390/gels8090592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
This research endeavors to link the physical and chemical characteristics of select polymer hydrogels to differences in printability when used as printing aids in cement-based printing pastes. A variety of experimental probes including differential scanning calorimetry (DSC), NMR-diffusion ordered spectroscopy (DOSY), quasi-elastic neutron scattering (QENS) using neutron backscattering spectroscopy, and X-ray powder diffraction (XRD), along with molecular dynamic simulations, were used. Conjectures based on objective measures of printability and physical and chemical-molecular characteristics of the polymer gels are emerging that should help target printing aid selection and design, and mix formulation. Molecular simulations were shown to link higher hydrogen bond probability and larger radius of gyration to higher viscosity gels. Furthermore, the higher viscosity gels also produced higher elastic properties, as measured by neutron backscattering spectroscopy.
Collapse
|
15
|
Alginate-Lysozyme Nanofibers Hydrogels with Improved Rheological Behavior, Printability and Biological Properties for 3D Bioprinting Applications. NANOMATERIALS 2022; 12:nano12132190. [PMID: 35808026 PMCID: PMC9268501 DOI: 10.3390/nano12132190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023]
Abstract
In this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.5% (w/v) CaCl2 to formulate A-LNF inks. These inks exhibit proper shear-thinning behavior and good recovery properties (~90%), with the pre-crosslinking step playing a crucial role. A-LNF fully crosslinked hydrogels (with 2% (w/v) CaCl2) that mimic 3D printing scaffolds were prepared, and it was observed that the addition of LNFs improved several properties of the hydrogels, such as the morphology, swelling and degradation profiles, and mechanical properties. All formulations are also noncytotoxic towards HaCaT cells. The printing parameters and 3D scaffold model were then optimized, with A-LNF inks showing improved printability. Selected A-LNF inks (A-LNF0 and A-LNF5) were loaded with HaCaT cells (cell density 2 × 106 cells mL−1), and the cell viability within the bioprinted scaffolds was evaluated for 1, 3 and 7 days, with scaffolds printed with the A-LNF5 bioink showing the highest values for 7 days (87.99 ± 1.28%). Hence, A-LNF bioinks exhibited improved rheological performance, printability and biological properties representing a good strategy to overcome the main limitations of alginate-based bioinks.
Collapse
|
16
|
El Hariri El Nokab M, Lasorsa A, Sebakhy KO, Picchioni F, van der Wel PC. Solid-state NMR spectroscopy insights for resolving different water pools in alginate hydrogels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Huang L, Yang S, Bai M, Lin Y, Chen X, Li G, Cui LG, Wang X. Thermal shielding performance of self-healing hydrogel in tumor thermal ablation. Colloids Surf B Biointerfaces 2022; 213:112382. [PMID: 35151993 DOI: 10.1016/j.colsurfb.2022.112382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/25/2022]
Abstract
Thermal ablation therapy is widely used in the surgical treatment of tumors. Clinically, normal saline is generally used as an insulator to protect adjacent tissues from local high-temperature burns caused by thermal ablation. However, the flow of saline causes fluid loss, requiring frequent injections and complex operation, which is easy to lead to complications such as secondary injury and hematoma. Here, a self-healing chitosan-PEG (CP) hydrogel was proposed as a protective medium to challenge the clinical preparations. Compared with saline and non-self-healing hydrogel F127, CP hydrogel exhibited outstanding thermal shielding performance in the thermal ablation of thyroid nodule in a Beagle dog model. The transient plane source (TPS) method is used to measure thermal properties, including thermal conductivity, thermal diffusivity and specific heat capacity. The thermal shielding mechanism and clinical advantages including operability, biodegradability, and biological safety of self-healing hydrogel are then revealed in-depth. Therefore, self-healing hydrogel can achieve much better thermal management in tumor thermal ablation.
Collapse
Affiliation(s)
- Lifei Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Shiyuan Yang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, PR China
| | - Mingyu Bai
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, PR China
| | - Yuxuan Lin
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, PR China
| | - Xue Chen
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Li-Gang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, PR China.
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
18
|
Boscariol R, Oliveira Junior JM, Baldo DA, Balcão VM, Vila MM. Transdermal permeation of curcumin promoted by choline geranate ionic liquid: Potential for the treatment of skin diseases. Saudi Pharm J 2022; 30:382-397. [PMID: 35527836 PMCID: PMC9068761 DOI: 10.1016/j.jsps.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 12/25/2022] Open
Abstract
The transdermal permeation of curcumin aided by choline and geranic acid ionic liquid (CAGE-IL) was addressed as a potential treatment for skin diseases. An in-depth analysis of the effect of CAGE-IL concentration in the enhancement of transdermal permeation of curcumin was performed, and the results were modelled via nonlinear regression analysis. The results obtained showed that a low percentage of CAGE-IL (viz. 2.0%, w/w) was effective in disrupting the skin structure in a transient fashion, facilitating the passage of curcumin dissolved in it.
Collapse
Affiliation(s)
- Rodrigo Boscariol
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - José M. Oliveira Junior
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Denicezar A. Baldo
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Victor M. Balcão
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M.D.C. Vila
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| |
Collapse
|
19
|
Liu L, Tanguy NR, Yan N, Wu Y, Liu X, Qing Y. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress. Carbohydr Polym 2022; 280:119005. [PMID: 35027120 DOI: 10.1016/j.carbpol.2021.119005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 11/15/2022]
Abstract
Conventional hydrogels with isotropic polymer networks usually lack selective response to external stimuli and that limits their applications in intelligent devices. Herein, hydrogels with distinctive anisotropic optical characteristics combined with thermosensitivity were prepared through in situ photopolymerization. Self-assembled cellulose nanocrystals (CNCs) with chiral nematic ordered structure were embedded in polyethylene glycol derivatives/polyacrylamide polymer networks. The arrangement of CNCs showed a strong dependence on the self-assembly angle and standing time, enabling the fabrication of hydrogels with customizable CNCs arrangements. Increasing the self-assembly angle from 0° to 90° changed the CNCs arrangement from chiral nematic to symmetrical nematic order which, together with CNCs dynamic arrangement from isotropic to annealed chiral nematic phase at longer standing time, provided versatile ways to produce CNCs hydrogels with tunable anisotropic properties. In addition, the obtained hydrogel displayed reversible temperature and compression response, showing excellent promise to be used as soft mechanical stress and temperature sensors or novel anti-counterfeiting materials.
Collapse
Affiliation(s)
- Liu Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada; School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Nicolas R Tanguy
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3B3, Canada.
| | - Yiqiang Wu
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Xiubo Liu
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China; Hunan Province Key Laboratory of Materials Surface and Interface Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yan Qing
- School of Materials Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| |
Collapse
|
20
|
Selim H, Elshypany R, El-Bahy SM, Mubarak MF, Taha EO. Fabrication of electro spun nylon6.12/chitosan @PES nanofibrous UF membrane towards dyes rejection from synthetic wastewater. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04031-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Lechner A, Trossmann VT, Scheibel T. Impact of Cell Loading of Recombinant Spider Silk Based Bioinks on Gelation and Printability. Macromol Biosci 2021; 22:e2100390. [PMID: 34882980 DOI: 10.1002/mabi.202100390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Printability of bioinks encompasses considerations concerning rheology and extrudability, characterization of filament formation, shape fidelity, cell viability, and post-printing cellular development. Recombinant spider silk based hydrogels might be a suitable material to be used in bioinks, that is, a formulation of cells and materials to be used for bioprinting. Here, the high shape fidelity of spider silk ink is shown by bioprinting the shape and size of a human aortic valve. Further the influence of the encapsulation of cells has been evaluated on spider silk hydrogel formation, hydrogel mechanics, and shape fidelity upon extrusion based bioprinting. It is shown that the presence of cells impacts the gelation of spider silk proteins differently, depending on the used silk variant. RGD-modified spider silk hydrogels are physically crosslinked by the cells, while there is no active interaction between cells and un-tagged spider silk proteins. Strikingly, even at cell densities up to ten million cells per milliliter, cell viability is high after extrusion-based printing, which is a significant prerequisite for future applications. Shape fidelity of the printed constructs is demonstrated using a filament collapse test in the absence and presence of human cells.
Collapse
Affiliation(s)
- Annika Lechner
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany
| | - Vanessa T Trossmann
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann Straße 1, 95447, Bayreuth, Germany.,Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayerisches Polymerinstitut (BPI), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|
22
|
Rashwan AK, Karim N, Xu Y, Xie J, Cui H, Mozafari MR, Chen W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit Rev Food Sci Nutr 2021:1-24. [PMID: 34661483 DOI: 10.1080/10408398.2021.1987858] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACNs) are notable hydrophilic compounds that belong to the flavonoid family, which are available in plants. They have excellent antioxidants, anti-obesity, anti-diabetic, anti-inflammatory, anticancer activity, and so on. Furthermore, ACNs can be used as a natural dye in the food industry (food colorant). On the other hand, the stability of ACNs can be affected by processing and storage conditions, for example, pH, temperature, light, oxygen, enzymes, and so on. These factors further reduce the bioavailability (BA) and biological efficacy of ACNs, as well as limit ACNs application in both food and pharmaceutics field. The stability and BA of ACNs can be improved via loading them in encapsulation systems including nanoemulsions, liposomes, niosomes, biopolymer-based nanoparticles, nanogel, complex coacervates, and tocosomes. Among all systems, biopolymer-based nanoparticles, nanohydrogels, and complex coacervates are comparatively suitable for improving the stability and BA of ACNs. These three systems have excellent functional properties such as high encapsulation efficiency and well-stable against unfavorable conditions. Furthermore, these carrier systems can be used for coating of other encapsulation systems (such as liposome). Additionally, tocosomes are a new system that can be used for encapsulating ACNs. ACNs-loaded encapsulation systems can improve the stability and BA of ACNs. However, further studies regarding stability, BA, and in vivo work of ACNs-loaded micro/nano-encapsulation systems could shed a light to evaluate the therapeutic efficacy including physicochemical stability, target mechanisms, cellular internalization, and release kinetics.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China.,Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Naymul Karim
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Xu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiahong Xie
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Haoxin Cui
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), 8054 Monash University LPO, Clayton, Victoria, Australia
| | - Wei Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Elsaeed SM, Zaki EG, Omar WAE, Ashraf Soliman A, Attia AM. Guar Gum-Based Hydrogels as Potent Green Polymers for Enhanced Oil Recovery in High-Salinity Reservoirs. ACS OMEGA 2021; 6:23421-23431. [PMID: 34549141 PMCID: PMC8444309 DOI: 10.1021/acsomega.1c03352] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/24/2021] [Indexed: 05/31/2023]
Abstract
Improving oil production for high-salinity reservoirs using polymer flooding is challenging due to chemical and mechanical degradations. This study developed two biodegradable biopolymers based on graft copolymerization of guar gum (GG) with two different co-monomers, which are acrylamide (Am) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS), and cross-linked by N,N'-methylene bisacrylamide (MBA) to face these challenges. The newly synthesized guar gum-based hydrogels, GG-g-poly(Am-AMPS) (GH) and GG-g-poly(Am-AMPS)/Biochar (GBH composite), were evaluated as potential candidates for enhanced oil recovery (EOR) under high-salinity conditions. Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) of the synthesized hydrogels were investigated, and their rheological properties were measured at room temperature. Both GH and GHB display a shear-thinning performance. In polymer flooding experiments, guar gum hydrogel (GH) and guar gum/biochar composite hydrogel (GHB) showed a remarkable influence on delaying the water breakthrough and proved to be effective biopolymers for enhanced oil recovery in high-salinity reservoirs. At the optimum concentration of 5 g/L, GH flooding achieved maximum oil recoveries of 70.53 and 72.11% in secondary and tertiary recovery processes, respectively. Meanwhile, the waterflooding process achieved an ultimate oil recovery of 58.42%. GHB flooding at optimum concentration, 2 g/L, increased the amount of oil recovery by 8.95% in tertiary recovery compared to waterflooding. Furthermore, GH (5 g/L) and GHB (2 g/L) slightly enhanced the rock water wettability as confirmed by contact angle measurements for GH and the relative permeability saturation curves for GH and GHB.
Collapse
Affiliation(s)
| | | | - Walaa A. E. Omar
- Faculty
of Energy and Environmental Engineering, British University in Egypt (BUE), Elshorouk City 11837, Cairo, Egypt
- Faculty
of Petroleum and Mining Engineering, Suez
University, El-Salam City 43111 Suez, Egypt
| | - Ahmed Ashraf Soliman
- Faculty
of Energy and Environmental Engineering, British University in Egypt (BUE), Elshorouk City 11837, Cairo, Egypt
| | - Attia Mahmoud Attia
- Faculty
of Energy and Environmental Engineering, British University in Egypt (BUE), Elshorouk City 11837, Cairo, Egypt
| |
Collapse
|
24
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
25
|
Safarzadeh Kozani P, Safarzadeh Kozani P, Hamidi M, Valentine Okoro O, Eskandani M, Jaymand M. Polysaccharide-based hydrogels: properties, advantages, challenges, and optimization methods for applications in regenerative medicine. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Oseweuba Valentine Okoro
- BioMatter-Biomass Transformation Lab. (BTL), École Polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
26
|
Rubio FTV, Haminiuk CWI, Dos Santos MM, Thomazini M, Moraes ICF, Martelli-Tosi M, Fávaro-Trindade CS. Development of natural pigments microencapsulated in waste yeast Saccharomyces cerevisiae using spray drying technology and their application in yogurt. Food Funct 2021; 12:8946-8959. [PMID: 34378600 DOI: 10.1039/d1fo00708d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although Saccharomyces cerevisiae has shown potential utilization as a bio-vehicle for encapsulation, there are no reports about the functionality of natural colorants encapsulated using yeast cells. The main objectives of this study were to produce natural food coloring by encapsulating extracts from grape pomace (GP) and jabuticaba byproducts (JB) in brewery waste yeast and evaluate the functionality of the pigments by their incorporation into yogurts. Particles produced by the encapsulation of extracts from GP and JB in S. cerevisiae using 5% of yeast had the highest encapsulation efficiencies for both anthocyanins (11.1 and 47.3%) and phenolic compounds (67.5 and 63.6%), the highest concentration of both bioactives during storage and stable luminosity. Yogurts showed a pseudoplastic behavior and were considered weak gels. Colored yogurts had acceptance indexes between 73.9 and 81.4%. This work evidenced the utilization of enriched yeasts as coloring agents and interesting additives for the production of functional foods.
Collapse
Affiliation(s)
- Fernanda Thaís Vieira Rubio
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Pirassununga, SP, Brazil.
| | - Charles Windson Isidoro Haminiuk
- Universidade Tecnológica Federal do Paraná, Laboratório de Biotecnologia, Departamento Acadêmico de Química e Biologia (DAQBi), Sede Ecoville, Curitiba, PR, Brazil
| | - Mayara Martins Dos Santos
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Pirassununga, SP, Brazil.
| | - Marcelo Thomazini
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Pirassununga, SP, Brazil.
| | | | - Milena Martelli-Tosi
- Universidade de São Paulo (USP), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Pirassununga, SP, Brazil.
| | | |
Collapse
|
27
|
Orekhov AS, Arkharova NA, Klechkovskaya VV. Microstructural Features of Poly(N-Vinylpyrrolidone)−La(NO3)3 ⋅ 6H2O Hydrogel. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521040179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Malhotra D, Pan S, Rüther L, Schlippe G, Voss W, Germann N. Polysaccharide-based skin scaffolds with enhanced mechanical compatibility with native human skin. J Mech Behav Biomed Mater 2021; 122:104607. [PMID: 34198231 DOI: 10.1016/j.jmbbm.2021.104607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
We report a custom-made technique to synthesize process-convenient skin scaffolds by tuning the mechanical properties of hydrogels based on a few naturally occurring polysaccharides to match the rheological properties of previously established benchmarks, i.e., the ex vivo native human skins. We studied the mechanical parameters using oscillatory shear rheology. At small strain amplitudes, the intrinsic elastic modulus showed an almost linear dependence in the middle and a changing rate profile at the two ends with concentration of the principal hydrogel component variant, i.e., kappa (κ)-carrageenan. At large strain amplitudes, the hydrogels demonstrated intercycle strain-softening behavior, the onset of which was directly proportional to the κ-carrageenan concentration. We observed a concentration match for the intrinsic elastic modulus of the benchmark within this sigmoidal curve fit. Contextually, we need to explore other potent polymeric hydrogel systems to achieve mechanical affinity in terms of multiple rheological parameters derived from both strain amplitude and angular frequency sweeps. Additionally, we carried out diffusion experiments to study caffeine permeation attributes. The hydrogels show improved barrier features with increasing κ-carrageenan concentration. In terms of the penetration flux and total cumulative amount of permeated caffeine, this enhanced mechanical adherence demonstrates comparable penetration features with the commercial 3D skin model.
Collapse
Affiliation(s)
- Deepika Malhotra
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Sharadwata Pan
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| | - Lars Rüther
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | | | - Werner Voss
- Dermatest GmbH, Engelstraße 37, Münster, 48143, Germany.
| | - Natalie Germann
- Fluid Dynamics of Complex Biosystems, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|
29
|
Vieira de Souza T, Malmonge SM, Santos AR. Development of a chitosan and hyaluronic acid hydrogel with potential for bioprinting utilization: A preliminary study. J Biomater Appl 2021; 36:358-371. [PMID: 34102923 DOI: 10.1177/08853282211024164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bioprinting is a technique that has been applied in the areas of tissue engineering and regenerative medicine (TERM). Natural polymer-based hydrogels are known for their favorable biocompatible properties, as well as attractive biomaterials for cell encapsulation. These hydrogels provide an aqueous three-dimensional environment with biologically relevant chemical and physical signals, mimicking the natural environment of the extracellular matrix (ECM). Chitosan (CHI) and hyaluronic acid (HA) have been widely researched for biomedical applications. Bioinks are "ink" formulations, usually hydrogels, that allow the printing of living cells. This work proposes the development of a low cost and simple chitosan CHI-AH hydrogel with potential to become a bioink. At physiological temperature, the biomaterials form a hydrogel. The material developed was characterized by the analysis of morphology, cytotoxicity, and cell viability. FTIR showed the characteristic vibrational bands of chitosan and HA. No difference in swelling was observed between the different formulations studied, although SEM showed architectural differences between the hydrogels obtained. Extract cytotoxicity testing showed that the hydrogel is not cytotoxic. The direct toxicity test also revealed the absence of toxicity, but the cells had difficulty migrating into the gel, probably because of its density. These data were confirmed by SEM. Further testing are ongoing to better understand the gel's characteristics to improve the limitations found so far.
Collapse
Affiliation(s)
- Thaís Vieira de Souza
- Center for Natural Sciences and Humanities (CCNH), Federal University of ABC, São Bernardo do Campo, Sao Paulo, Brazil
| | - Sonia Maria Malmonge
- Center for Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC, São Bernardo do Campo, Sao Paulo, Brazil
| | - Arnaldo R Santos
- Center for Natural Sciences and Humanities (CCNH), Federal University of ABC, São Bernardo do Campo, Sao Paulo, Brazil
| |
Collapse
|
30
|
Generation of Photopolymerized Microparticles Based on PEGDA Using Microfluidic Devices. Part 1. Initial Gelation Time and Mechanical Properties of the Material. MICROMACHINES 2021; 12:mi12030293. [PMID: 33802204 PMCID: PMC8001310 DOI: 10.3390/mi12030293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 01/13/2023]
Abstract
Photopolymerized microparticles are made of biocompatible hydrogels like Polyethylene Glycol Diacrylate (PEGDA) by using microfluidic devices are a good option for encapsulation, transport and retention of biological or toxic agents. Due to the different applications of these microparticles, it is important to investigate the formulation and the mechanical properties of the material of which they are made of. Therefore, in the present study, mechanical tests were carried out to determine the swelling, drying, soluble fraction, compression, cross-linking density (Mc) and mesh size (ξ) properties of different hydrogel formulations. Tests provided sufficient data to select the best formulation for the future generation of microparticles using microfluidic devices. The initial gelation times of the hydrogels formulations were estimated for their use in the photopolymerization process inside a microfluidic device. Obtained results showed a close relationship between the amount of PEGDA used in the hydrogel and its mechanical properties as well as its initial gelation time. Consequently, it is of considerable importance to know the mechanical properties of the hydrogels made in this research for their proper manipulation and application. On the other hand, the initial gelation time is crucial in photopolymerizable hydrogels and their use in continuous systems such as microfluidic devices.
Collapse
|
31
|
Karoyo AH, Wilson LD. A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1095. [PMID: 33652859 PMCID: PMC7956345 DOI: 10.3390/ma14051095] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
Hydrogels are hydrophilic 3D networks that are able to ingest large amounts of water or biological fluids, and are potential candidates for biosensors, drug delivery vectors, energy harvester devices, and carriers or matrices for cells in tissue engineering. Natural polymers, e.g., cellulose, chitosan and starch, have excellent properties that afford fabrication of advanced hydrogel materials for biomedical applications: biodegradability, biocompatibility, non-toxicity, hydrophilicity, thermal and chemical stability, and the high capacity for swelling induced by facile synthetic modification, among other physicochemical properties. Hydrogels require variable time to reach an equilibrium swelling due to the variable diffusion rates of water sorption, capillary action, and other modalities. In this study, the nature, transport kinetics, and the role of water in the formation and structural stability of various types of hydrogels comprised of natural polymers are reviewed. Since water is an integral part of hydrogels that constitute a substantive portion of its composition, there is a need to obtain an improved understanding of the role of hydration in the structure, degree of swelling and the mechanical stability of such biomaterial hydrogels. The capacity of the polymer chains to swell in an aqueous solvent can be expressed by the rubber elasticity theory and other thermodynamic contributions; whereas the rate of water diffusion can be driven either by concentration gradient or chemical potential. An overview of fabrication strategies for various types of hydrogels is presented as well as their responsiveness to external stimuli, along with their potential utility in diverse and novel applications. This review aims to shed light on the role of hydration to the structure and function of hydrogels. In turn, this review will further contribute to the development of advanced materials, such as "injectable hydrogels" and super-adsorbents for applications in the field of environmental science and biomedicine.
Collapse
Affiliation(s)
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| |
Collapse
|
32
|
Hoti G, Caldera F, Cecone C, Rubin Pedrazzo A, Anceschi A, Appleton SL, Khazaei Monfared Y, Trotta F. Effect of the Cross-Linking Density on the Swelling and Rheological Behavior of Ester-Bridged β-Cyclodextrin Nanosponges. MATERIALS (BASEL, SWITZERLAND) 2021; 14:478. [PMID: 33498322 PMCID: PMC7864023 DOI: 10.3390/ma14030478] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 11/23/2022]
Abstract
The cross-linking density influences the physicochemical properties of cyclodextrin-based nanosponges (CD-NSs). Although the effect of the cross-linker type and content on the NSs performance has been investigated, a detailed study of the cross-linking density has never been performed. In this contribution, nine ester-bridged NSs based on β-cyclodextrin (β-CD) and different quantities of pyromellitic dianhydride (PMDA), used as a cross-linking agent in stoichiometric proportions of 2, 3, 4, 5, 6, 7, 8, 9, and 10 moles of PMDA for each mole of CD, were synthesized and characterized in terms of swelling and rheological properties. The results, from the swelling experiments, exploiting Flory-Rehner theory, and rheology, strongly showed a cross-linker content-dependent behavior. The study of cross-linking density allowed to shed light on the efficiency of the synthesis reaction methods. Overall, our study demonstrates that by varying the amount of cross-linking agent, the cross-linked structure of the NSs matrix can be controlled effectively. As PMDA βCD-NSs have emerged over the years as a highly versatile class of materials with potential applications in various fields, this study represents the first step towards a full understanding of the correlation between their structure and properties, which is a key requirement to effectively tune their synthesis reaction in view of any specific future application or industrial scale-up.
Collapse
Affiliation(s)
- Gjylije Hoti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Fabrizio Caldera
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Claudio Cecone
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Alberto Rubin Pedrazzo
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Anastasia Anceschi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
- CNR-STIIMA, Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Consiglio Nazionale delle Ricerche, C.so Pella 16, 13900 Biella, Italy
| | - Silvia Lucia Appleton
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Yousef Khazaei Monfared
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| | - Francesco Trotta
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy; (F.C.); (C.C.); (A.R.P.); (A.A.); (S.L.A.); (Y.K.M.); (F.T.)
| |
Collapse
|
33
|
Gul K, Gan RY, Sun CX, Jiao G, Wu DT, Li HB, Kenaan A, Corke H, Fang YP. Recent advances in the structure, synthesis, and applications of natural polymeric hydrogels. Crit Rev Food Sci Nutr 2021; 62:3817-3832. [PMID: 33406881 DOI: 10.1080/10408398.2020.1870034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels, polymeric network materials, are capable of swelling and holding the bulk of water in their three-dimensional structures upon swelling. In recent years, hydrogels have witnessed increased attention in food and biomedical applications. In this paper, the available literature related to the design concepts, types, functionalities, and applications of hydrogels with special emphasis on food applications was reviewed. Hydrogels from natural polymers are preferred over synthetic hydrogels. They are predominantly used in diverse food applications for example in encapsulation, drug delivery, packaging, and more recently for the fabrication of structured foods. Natural polymeric hydrogels offer immense benefits due to their extraordinary biocompatible nature. Hydrogels based on natural/edible polymers, for example, those from polysaccharides and proteins, can serve as prospective alternatives to synthetic polymer-based hydrogels. The utilization of hydrogels has so far been limited, despite their prospects to address various issues in the food industries. More research is needed to develop biomimetic hydrogels, which can imitate the biological characteristics in addition to the physicochemical properties of natural materials for different food applications.
Collapse
Affiliation(s)
- Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Cui-Xia Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ge Jiao
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, China Sichuan
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, China.,Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ya-Peng Fang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Nnyigide OS, Nnyigide TO, Hyun K. The degradation of xanthan gum in ionic and non-ionic denaturants studied by rheology and molecular dynamics simulation. Carbohydr Polym 2021; 251:117061. [PMID: 33142613 DOI: 10.1016/j.carbpol.2020.117061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
The use of xanthan gum (XG) as a thickener increases solution viscosity, and therefore, the cost of subsequent processes such as fluid transportation and purification. Herein, we investigate the degradation of XG by urea, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The results showed that CTAB degraded the XG more than SDS or urea. Interestingly, the degree of CTAB-induced degradation varied with the concentration regime. Thus, increasing CTAB concentration from 0.01 to 0.1 M decreased the complex viscosity (|η*|), whereas from 0.2 to 0.5 M the |η*| increased. For XG/SDS, the |η*| was unchanged with increasing SDS concentration from 0.01 to 0.1 M, whereas it decreased from 0.2 to 0.5 M. For XG/urea, the |η*| was stable in all concentrations. At the atomic-scale, computer simulations revealed that the degrading effect of CTAB was due to preferential interaction with the XG sidechain. These findings can enhance industrial applications of XG.
Collapse
Affiliation(s)
- Osita Sunday Nnyigide
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, South Korea
| | - Tochukwu Olunna Nnyigide
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, South Korea
| | - Kyu Hyun
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
35
|
Zahib IR, Md Tahir P, Talib M, Mohamad R, Alias AH, Lee SH. Effects of degree of substitution and irradiation doses on the properties of hydrogel prepared from carboxymethyl-sago starch and polyethylene glycol. Carbohydr Polym 2021; 252:117224. [DOI: 10.1016/j.carbpol.2020.117224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022]
|
36
|
Sharma S, Tiwari S. RETRACTED: A review on biomacromolecular hydrogel classification and its applications. Int J Biol Macromol 2020; 162:737-747. [PMID: 32553961 DOI: 10.1016/j.ijbiomac.2020.06.110] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief and Author. The work included substantial parts copied without attribution from a prior work by Varaprasad et al (2017): https://doi.org/10.1016/j.msec.2017.05.096
Collapse
Affiliation(s)
- Swati Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, (UP), India.
| | - Shachi Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, (UP), India
| |
Collapse
|
37
|
A Mini-Review on Chitosan-Based Hydrogels with Potential for Sustainable Agricultural Applications. Polymers (Basel) 2020; 12:polym12102425. [PMID: 33096639 PMCID: PMC7590028 DOI: 10.3390/polym12102425] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/24/2022] Open
Abstract
Agriculture is an important sector of the economy, but this industry consumes significant amounts of water, which is a precious and limited natural resource. Irrigation techniques and efforts to mitigate water usage influence the growth, survival, and yield of crops. However, superabsorbent polymers in combination with fertilizers can be employed to obtain sustained release of nutrients and improved water retention capacity of the soil. Despite significant recent progress in this area involving synthetic polyacrylate hydrogels, there are no industrially applicable solutions exhibiting similar performance using natural biopolymers or synthetic polymers enriched with natural components. This review focuses on biodegradable chitosan-based hydrogels (both natural and semi-synthetic), and discusses their potential agricultural and horticultural applications. The methods for synthesizing hydrogels via physical or chemical crosslinking, and the resulting functional properties of recently reported hydrogels, such as water retention and release of active ingredients, are presented herein.
Collapse
|
38
|
Kouhi M, Prabhakaran MP, Ramakrishna S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Beghetto V, Gatto V, Conca S, Bardella N, Buranello C, Gasparetto G, Sole R. Development of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride cross-linked carboxymethyl cellulose films. Carbohydr Polym 2020; 249:116810. [PMID: 32933659 DOI: 10.1016/j.carbpol.2020.116810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022]
Abstract
First example of the use of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM) as cross-linking agent for the development of carboxymethyl cellulose (CMC) films for food packaging is reported. Influence of different wt % of DMTMM and glycerol on the physical-mechanical properties of CMC films was investigated. The presence of DMTMM effectively improved moisture uptake, moisture content, water vapour permeability, water solubility of the films, oil resistance together with good biodegradability. Best compromise between high water resistance, vapour permeability and mechanical properties was accomplished with 5 wt % DMTMM and 50 wt % glycerol giving tensile strength and elongation at break of 52.25 ± 4.33 and 37.32 ± 2.04 respectively. DSC, TGA and SEM analysis further confirmed CMC cross-linking by DMTMM. All films prepared showed low opacity and high transparencies. Therefore, data reported show that DMTMM can efficiently cross-link CMC to produce films for food packaging.
Collapse
Affiliation(s)
- Valentina Beghetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy; Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Vanessa Gatto
- Crossing S.r.l., Viale della Repubblica 193/b, 31100, Treviso, Italy.
| | - Silvia Conca
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Noemi Bardella
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Chiara Buranello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Giulia Gasparetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| | - Roberto Sole
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Via Torino 155, 30170, Venezia, Italy.
| |
Collapse
|
40
|
Effect of heat treatment on thermal and mechanical stability of NaOH-doped xanthan gum-based hydrogels. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Klein M, Poverenov E. Natural biopolymer-based hydrogels for use in food and agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2337-2347. [PMID: 31960453 DOI: 10.1002/jsfa.10274] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Hydrogels are important materials that are of high scientific interest and with numerous applications. Natural polymer-based hydrogels are preferred to synthetic ones due to their safety, biocompatibility, and ecofriendly properties. They have been studied extensively and implemented in various fields, such as medicine, cosmetics, personal-care products, water purification, and more. This review focuses on the applications of nature-sourced polymer-based hydrogels in food and agriculture. Different types of biopolymers and crosslinking agents, and various methods for hydrogel formation are described. The physicomechanical properties and applied activities of the resulting materials are also comprehensively discussed. Biodegradable synthetic polymers are outside the scope of this review. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miri Klein
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Elena Poverenov
- The Institute of Postharvest and Food Science, Agro-Nanotechnology and Advanced Materials Center, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
42
|
Abo-shady AZ, Elkammar H, Elwazzan VS, Nasr M. Formulation and clinical evaluation of mucoadhesive buccal films containing hyaluronic acid for treatment of aphthous ulcer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Fialho L, Araújo D, Alves VD, Roma-Rodrigues C, Baptista PV, Fernandes AR, Freitas F, Reis MAM. Cation-mediated gelation of the fucose-rich polysaccharide FucoPol: preparation and characterization of hydrogel beads and their cytotoxicity assessment. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1695205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Letícia Fialho
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Diana Araújo
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Vitor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria A. M. Reis
- UCIBIO-REQUIMTE, Chemistry Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
44
|
Effect of crosslinking agent to design nanostructured hyaluronic acid-based hydrogels with improved relaxometric properties. Carbohydr Polym 2019; 222:114991. [DOI: 10.1016/j.carbpol.2019.114991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
|
45
|
Zhao L, Skwarczynski M, Toth I. Polyelectrolyte-Based Platforms for the Delivery of Peptides and Proteins. ACS Biomater Sci Eng 2019; 5:4937-4950. [PMID: 33455241 DOI: 10.1021/acsbiomaterials.9b01135] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of peptides and proteins in the pharmaceutical field has increased dramatically over recent years. They have been especially relevant to advances in the treatment of cancer, rheumatoid arthritis, leukemia, and cardiovascular, ophthalmological, metabolic, and infectious diseases. Despite the great potential of peptides and proteins, their use in pharmaceuticals has failed to reach its full potential because of some outstanding challenges. They are unstable under storage conditions and in biological milieus, and their high molecular weight limits permeation through biological membranes. A variety of delivery systems have been investigated to overcome these limitations. Polyelectrolytes (PEs) are molecules that bear multiple negative or positive charges. These molecules play an important role in various platforms relating to the delivery of peptide/protein-based drugs and subunit vaccines. The most commonly utilized PEs include chitosan, alginate, chondroitin sulfate, and poly(γ-glutamic acid). PE-based delivery systems, such as polyelectrolyte complexes (PECs), PE-coated nanocarriers, and PE multilayers, were designed to protect peptides and proteins from degradation and facilitate their absorption. These delivery systems are especially effective when administered orally or intranasally. This review emphasizes the important role of PEs and PE-based delivery vehicles in peptide/protein-based drugs and vaccines.
Collapse
Affiliation(s)
- Lili Zhao
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia.,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
46
|
Liang S, Li X, Ma X, Li A, Wang Y, Reaney MJ, Shim YY. A flaxseed heteropolysaccharide stimulates immune responses and inhibits hepatitis B virus. Int J Biol Macromol 2019; 136:230-240. [DOI: 10.1016/j.ijbiomac.2019.06.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/12/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022]
|
47
|
Shahdadi Sardou H, Akhgari A, Afrasiabi Garekani H, Sadeghi F. Screening of different polysaccharides in a composite film based on Eudragit RS for subsequent use as a coating for delivery of 5-ASA to colon. Int J Pharm 2019; 568:118527. [DOI: 10.1016/j.ijpharm.2019.118527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/07/2019] [Accepted: 07/13/2019] [Indexed: 12/17/2022]
|
48
|
Razani S, Dadkhah Tehrani A. Development of new organic-inorganic, hybrid bionanocomposite from cellulose nanowhisker and Mg/Al-CO3-LDHfor enhanced dye removal. Int J Biol Macromol 2019; 133:892-901. [DOI: 10.1016/j.ijbiomac.2019.04.149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/17/2019] [Accepted: 04/22/2019] [Indexed: 12/25/2022]
|
49
|
Bui HT, Prawel DA, Harris KL, Li E, James SP. Development and Fabrication of Vapor Cross-Linked Hyaluronan-Polyethylene Interpenetrating Polymer Network as a Biomaterial. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18930-18941. [PMID: 31063346 DOI: 10.1021/acsami.9b03437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flexible heart valve leaflets made from hyaluronan-enhanced linear low-density polyethylene interpenetrating polymeric network (HA-LLDPE IPN) films have been shown to provide good hemodynamics, but the resulting surfaces were not consistent; therefore, the present work tries to mitigate this problem by developing a vapor cross-linked HA-LLDPE IPN. Herein, the HA-LLDPE fabrication process is studied, and its parameters are varied to assess their effects on the IPN formation. Thermal analysis and gas chromatography-mass spectrometry were used to quantify the effects of different treatment conditions on material properties. Water contact angle goniometry, infrared spectroscopy, and toluidine blue O (TBO) staining were used to characterize the surface of the HA-LLDPE IPN. The results show that a hydrophilic surface is formed on HA-LLDPE, which is indicative of HA. HA surface density data from TBO staining show consistent HA distribution on the surface. The IPN fabrication process does not affect the tensile properties that make LLDPE an attractive material for use in flexible heart valve leaflets. The 28 day in vitro biological assays show HA-LLDPE to be noncytotoxic and resistant to enzymatic degradation. The HA-LLDPE showed less platelet adhesion and caused less platelet activation than the plain LLDPE or tissue culture polystyrene. All of the results indicate that vapor cross-linked HA-LLDPE IPN is a promising material for use as flexible leaflets for heart valve replacements.
Collapse
|
50
|
Pettignano A, Charlot A, Fleury E. Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1579226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Asja Pettignano
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| | - Aurélia Charlot
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| | - Etienne Fleury
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223 F 69621, Villeurbanne, France
| |
Collapse
|