1
|
Seyam S, Choukaife H, Al Rahal O, Alfatama M. Colonic targeting insulin-loaded trimethyl chitosan nanoparticles coated pectin for oral delivery: In vitro and In vivo studies. Int J Biol Macromol 2024; 281:136549. [PMID: 39401622 DOI: 10.1016/j.ijbiomac.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Colon-targeted delivery offers several benefits for oral protein delivery, such as low proteolytic enzyme activity, a natural pH environment, and extended residence time, which improve the bioavailability of the encapsulated protein. Therefore, we hypothesize that developing a novel colonic nanocarrier system, featuring modified chitosan that is soluble at physiological pH and coated with a colon-degradable polymer, will provide an effective delivery system for oral insulin. This study aims to synthesize insulin-loaded pectin-trimethyl chitosan nanoparticles (Ins-P-TMC-NPs) as an oral insulin delivery system and to evaluate its efficacy both in vitro and in vivo. N-trimethyl chitosan (TMC), synthesized via a methylation method, was used to prepare insulin-TMC nanoparticles coated with pectin via the ionic gelation method. The nanoparticles were characterized for their physicochemical properties, cumulative release profile, and surface morphology. The in vitro biological cytotoxicity and cellular uptake of the nanoparticles were evaluated against HT-29 cells. The in vivo blood glucose-lowering effect and histological toxicity were assessed in diabetic male Sprague-Dawley rats. The results showed that Ins-P-TMC-NPs were spherical, with an average size of 379.40 ± 40.26 nm, a polydispersity index of 24.10 ± 1.03 %, a zeta potential of +17.20 ± 0.52 mV, and a loading efficiency of 83.21 ± 1.23 %. Compared to uncoated TMC nanoparticles, Ins-P-TMC-NPs reduced insulin loss in simulated gastrointestinal fluid by approximately 67.23 ± 0.97 % and provided controlled insulin release in simulated colonic fluid. In vitro bioactivity studies revealed that Ins-P-TMC-NPs were non-toxic, with cell viability of 91.12 ± 0.91 % after 24 h of treatment, and exhibited high cellular uptake in the HT-29 cell line with a fluorescence intensity of 37.80 ± 2.40 after 4 h of incubation. Furthermore, the in vivo study demonstrated a sustained reduction in blood glucose levels after oral administration of Ins-P-TMC-NPs, peaking after 8 h with a blood glucose reduction of 87 ± 1.03 %. Histological sections showed no signs of toxicity when compared to those of healthy rats. Overall, the developed colon-targeted oral insulin delivery system exhibits strong potential as a candidate for effective oral insulin administration.
Collapse
Affiliation(s)
- Salma Seyam
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia; Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Kepala Batas, Penang, Malaysia
| | - Hazem Choukaife
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| | - Okba Al Rahal
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia.
| |
Collapse
|
2
|
Miranda-Muñoz K, Midkiff K, Woessner A, Afshar-Mohajer M, Zou M, Pollock E, Gonzalez-Nino D, Prinz G, Hutchinson L, Li R, Kompalage K, Culbertson CT, Tucker RJ, Coetzee H, Tsai T, Powell J, Almodovar J. A Multicomponent Microneedle Patch for the Delivery of Meloxicam for Veterinary Applications. ACS NANO 2024; 18:25716-25739. [PMID: 39225687 DOI: 10.1021/acsnano.4c08072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study evaluates the use of poly(vinyl alcohol), collagen, and chitosan blends for developing a microneedle patch for the delivery of meloxicam (MEL). Results confirm successful MEL encapsulation, structural integrity, and chemical stability even after ethylene oxide sterilization. Mechanical testing indicates the patch has the required properties for effective skin penetration and drug delivery, as demonstrated by load-displacement curves showing successful penetration of pig ear surfaces at 3N of normal load. In vitro imaging confirms the microneedle patch penetrates the pig's ear cadaver skin effectively and uniformly, with histological evaluation revealing the sustained presence and gradual degradation of microneedles within the skin. Additionally, in vitro drug diffusion experiments utilizing ballistic gel suggest that microneedles commence dissolution almost immediately upon insertion into the gel, steadily releasing the drug over 24 h. Furthermore, the microneedle patch demonstrates ideal drug release capabilities, achieving nearly 100% release of meloxicam content from a single patch within 18 h. Finally, in vivo studies using pigs demonstrate the successful dissolution and transdermal drug delivery efficacy of biodegradable microneedle patches delivering meloxicam in a porcine model, with over 70% of microneedles undergoing dissolution after 3 days. While low detectable meloxicam concentrations were observed in the bloodstream, high levels were detected in the ear tissue, confirming the release and diffusion of the drug from microneedles. This work highlights the potential of microneedle patches for controlled drug release in veterinary applications.
Collapse
Affiliation(s)
- Katherine Miranda-Muñoz
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Kirsten Midkiff
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Alan Woessner
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Arkansas Integrative Metabolic Research Center, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahyar Afshar-Mohajer
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Min Zou
- Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, Arkansas 72701, United States
| | - Erik Pollock
- Department of Biological Sciences, University of Arkansas, Fayetteville, Science Engineering Building, Fayetteville, Arkansas 72701, United States
| | - David Gonzalez-Nino
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Gary Prinz
- Department of Civil Engineering, University of Arkansas, 4190 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Lillian Hutchinson
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Ruohan Li
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| | - Kushan Kompalage
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Christopher T Culbertson
- Department of Chemistry, Kansas State University, 228 Coles Hall, 1710 Denison Ave, Manhattan, Kansas 66506, United States
| | - Ryan Jared Tucker
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Hans Coetzee
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 213 CBC Building, 1212 Mid-Campus Dr North, Manhattan, Kansas 66506, United States
| | - Tsung Tsai
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jeremy Powell
- Department of Animal Sciences, University of Arkansas, B110 Agriculture, Food and Life Sciences Building, Fayetteville, Arkansas 72701, United States
| | - Jorge Almodovar
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
3
|
Nguyen SH, Nguyen VN, Tran MT. Dual-channel fluorescent sensors based on chitosan-coated Mn-doped ZnS micromaterials to detect ampicillin. Sci Rep 2024; 14:10066. [PMID: 38698009 PMCID: PMC11065863 DOI: 10.1038/s41598-024-59772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
The global threat of antibiotic resistance has increased the importance of the detection of antibiotics. Conventional methods to detect antibiotics are time-consuming and require expensive specialized equipment. Here, we present a simple and rapid biosensor for detecting ampicillin, a commonly used antibiotic. Our method is based on the fluorescent properties of chitosan-coated Mn-doped ZnS micromaterials combined with the β-lactamase enzyme. The biosensors exhibited the highest sensitivity in a linear working range of 13.1-72.2 pM with a limit of detection of 8.24 pM in deionized water. In addition, due to the biological specificity of β-lactamase, the proposed sensors have demonstrated high selectivity over penicillin, tetracycline, and glucose through the enhancing and quenching effects at wavelengths of 510 nm and 614 nm, respectively. These proposed sensors also showed promising results when tested in various matrices, including tap water, bottled water, and milk. Our work reports for the first time the cost-effective (Mn:ZnS)Chitosan micromaterial was used for ampicillin detection. The results will facilitate the monitoring of antibiotics in clinical and environmental contexts.
Collapse
Affiliation(s)
- Son Hai Nguyen
- School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, 100000, Vietnam
| | - Van-Nhat Nguyen
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000, Vietnam
| | - Mai Thi Tran
- College of Engineering and Computer Science, VinUniversity, Hanoi, 100000, Vietnam.
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, 100000, Vietnam.
| |
Collapse
|
4
|
Kujur JP, Moon PR, Pathak DD. Surface modification of chitosan with Ni(II) Schiff base complex: A new heterogeneous catalyst for the synthesis of xanthones. Int J Biol Macromol 2023; 252:126497. [PMID: 37640183 DOI: 10.1016/j.ijbiomac.2023.126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
A new biocomposite of chitosan, chitosan-supported di(pyridine-2-yl)methanone-Ni(II) complex, CS-DPM-Ni, is synthesized for the first time. The biocomposite is thoroughly characterized by FTIR, PXRD, XPS, FESEM, EDX, TGA, ICP-OES, and elemental analysis. The synthesized composite is successfully used as a heterogeneous catalyst in the synthesis of a library of xanthone derivatives by the intermolecular catalytical coupling of 2-substituted benzaldehydes and phenols. The catalyst could be retrieved from the reaction mixture by simple filtration and reused for up to four catalytic cycles. All products were isolated in good to high yields (65-90 %) with good turnover numbers (TONs), and fully characterized by 1H and 13C{1H} NMR spectroscopy. The green chemistry metrics values for the reaction were discerned and found to be close to the ideal values.
Collapse
Affiliation(s)
- Jyoti Prabha Kujur
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Pritish Rajkumar Moon
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Devendra Deo Pathak
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, 826004, India.
| |
Collapse
|
5
|
El-Sabbagh SM, Mira HI, Desouky OA, Hussien SS, Elgohary DM, Ali AO, El Naggar AMA. Synthesis of fungal chitosan-polystyrene modified by nanoparticles of binary metals for the removal of heavy metals from waste aqueous media. RSC Adv 2023; 13:29735-29748. [PMID: 37822657 PMCID: PMC10563796 DOI: 10.1039/d3ra04451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
The objective of this study was to assess the efficacy of fungal chitosan-polystyrene-Co-nanocomposites (FCPNC) as a material for the adsorptive removal of cadmium (Cd) ions from aqueous solutions. The synthesis and characterization of FCPNC were accomplished using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and dynamic light scattering (DLS). The effectiveness of this adsorbent in removing Cd(ii) species from solution matrices was systematically investigated, resulting in the achievement of a maximum adsorption capacity of approximately 112.36 mg g-1. This high adsorption capacity was detected using the following operational parameters: solution pH equals 5.0, 60 min as a contact time between the adsorbent and Cd(ii) solution, Cd initial concentration of 50 ppm, adsorbent dosage of 0.5 g L-1 and room temperature. The process of cadmium adsorption by FCPNC was found to follow the Langmuir isotherm model, suggesting that a chemical reaction occurs on the biosorbent surface. Kinetic studies have demonstrated that the cadmium removal process aligns well with the pseudo-second-order model. The thermodynamic analysis revealed the following values: ΔH° = 25.89 kJ mol-1, ΔG° = -21.58 kJ mol-1, and ΔS° = 159.30 J mol-1 K-1. These values indicate that the sorption process is endothermic, spontaneous, and feasible. These findings suggest the potential of FCPNC as an exceptionally effective biosorbent for the removal of water contaminants.
Collapse
Affiliation(s)
- Sabha M El-Sabbagh
- Department of Microbiology, Faculty of Science, Menoufia University Menoufia Egypt
| | - Hamed I Mira
- Nuclear Materials Authority P.O. Box 530, El Maddi Cairo Egypt
| | - Osman A Desouky
- Nuclear Materials Authority P.O. Box 530, El Maddi Cairo Egypt
| | | | - Dina M Elgohary
- Department of Microbiology, Faculty of Science, Menoufia University Menoufia Egypt
| | - Anwaar O Ali
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor St., Nasr City Cairo Egypt
| |
Collapse
|
6
|
Cho HS, Lee BS, Shim E. Study on the Dyeing and Fastness Properties of Ash Veneer with Acid Dyes. ACS OMEGA 2023; 8:20561-20568. [PMID: 37323384 PMCID: PMC10268015 DOI: 10.1021/acsomega.3c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
As an alternative to raw wood, processed timber can help reduce costs and environmental damage while meeting the needs of various fields that require building materials possessing the sensibility of raw timber. Veneer wood is positioned as a high-value-added product owing to its elegance and beauty, and it is used in various building-related fields, such as interior decoration, furniture, flooring, building interior materials, and lumber. Dyeing is necessary to enhance its esthetic appearance and expand its use. In this study, we compared and analyzed the dyeability of ash-patterned materials using acid dyes and evaluated their performance as interior materials. The ash-patterned material was dyed using three types of acid dyes, and a comparative analysis was performed. The most suitable dyeing conditions were 80 °C, 3 h, and 3% o.w.f. Furthermore, the effect of pretreatment before the dyeing process, the effect of methyl alcohol solvent during dyeing with acid dyes, and the dyeability of veneers dyed under various temperature and time conditions were also compared and analyzed. Resilience to daylight, resilience to rubbing, fire resistance, and flame retardance of the selected material were evaluated as being suitable for use as a building material for interiors.
Collapse
|
7
|
Shi H, Ni Y, Guo H, Liu Y. Chemical Structure and Microscopic Morphology Changes of Dyed Wood Holocellulose Exposed to UV Irradiation. Polymers (Basel) 2023; 15:1125. [PMID: 36904366 PMCID: PMC10007622 DOI: 10.3390/polym15051125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Dyed wood is prone to photoaging when exposed to UV irradiation which decreases its decorative effect and service life. Holocellulose, as the main component of dyed wood, has a photodegradation behavior which is still unclear. To investigate the effect of UV irradiation on chemical structure and microscopic morphology changes of dyed wood holocellulose, Maple birch (Betulacostata Trautv) dyed wood and holocellulose were exposed to UV accelerated aging treatment; the photoresponsivity includes crystallization, chemical structure, thermal stability, and microstructure were studied. Results showed that UV radiation has no significant effect on the lattice structure of dyed wood fibers. The wood crystal zone diffraction 2θ and layer spacing was basically unchanged. With the UV radiation time extension, the relative crystallinity of dyed wood and holocellulose showed a trend of increasing first and then decreasing, but the overall change was not significant. The relative crystallinity change range of the dyed wood was not more than 3%, and the dyed holocellulose was not more than 5%. UV radiation caused the molecular chain chemical bond in the non-crystalline region of dyed holocellulose to break, the fiber underwent photooxidation degradation, and the surface photoetching feature was prominent. Wood fiber morphology was damaged and destroyed, finally leading to the degradation and corrosion of the dyed wood. Studying the photodegradation of holocellulose is helpful to understand the photochromic mechanism of dyed wood, and, further, to improve its weather resistance.
Collapse
Affiliation(s)
- Hui Shi
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, Beijing Forestry University, Beijing 100083, China
- Jirong Furniture Co., Ltd., Cangzhou 062150, China
| | - Yongqing Ni
- Jirong Furniture Co., Ltd., Cangzhou 062150, China
| | - Hongwu Guo
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Liu
- National Forestry and Grassland Engineering Technology Center for Wood Resources Recycling, Beijing Forestry University, Beijing 100083, China
- Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
8
|
Construction of a Chitosan/ZnO-Based Light-Resistant Coating System to Protect Dyed Wood from Ultraviolet Irradiation via Layer-by-Layer Self-Assembly. Int J Mol Sci 2022; 23:ijms232415735. [PMID: 36555382 PMCID: PMC9779377 DOI: 10.3390/ijms232415735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wood dyeing is an effective way to alleviate the supply-demand imbalance of valuable wood and improve the surface decoration of fast-growing wood. However, applications of dyed wood are limited due to the susceptibility of dyes and wood to photo-discolor and degrade under light irradiation. Thus, the improved weather resistance of dyed wood is crucial. To prevent photochromic discoloration of dyed wood, an anti-photochromic coating structure was constructed via layer-by-layer self-assembly (LbL) using chitosan and zinc oxide (ZnO). The results showed that the surface color difference of treated dyed wood was reduced by approximately 84.6% after the first 2 h of irradiation under the following conditions °C: temperature (50 °C), relative humidity (55%), and irradiation intensity (550 W/m2). However, the color of untreated dyed wood drastically changed at this stage. The reason for the decrease was that the redness and yellowness of treated dye wood were significantly reduced. The deposition of ZnO onto treated dyed wood helped to protect the wood from UV light irradiation. Chitosan bridged the dyes and complexed ZnO to enhance UV resistance. This study provides valuable information for the protection of dyed wood against light discoloration that can be used as an interior and exterior decorative material.
Collapse
|
9
|
Gonzalez-Montfort TS, Almaraz-Abarca N, Pérez-y-Terrón R, Ocaranza-Sánchez E, Rojas-López M. Synthesis of Chitosan Microparticles Encapsulating Bacterial Cell-Free Supernatants and Indole Acetic Acid, and Their Effects on Germination and Seedling Growth in Tomato ( Solanum lycopersicum). Int J Anal Chem 2022; 2022:2182783. [PMID: 36419777 PMCID: PMC9678453 DOI: 10.1155/2022/2182783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/08/2022] [Accepted: 10/29/2022] [Indexed: 10/08/2023] Open
Abstract
Encapsulation of biostimulant metabolites has gained popularity as it increases their shelf life and improves their absorption, being considered a good alternative for the manufacture of products that stimulate plant growth and fruit production. Cell-free supernatants (CFS) were obtained from nine indole-3-acetic acid (IAA) producing bacterial strains. Stenotrophomonas maltophilia (PT53T) produced the highest concentration of IAA (15.88 μg/mL) after 48 h of incubation. CFS from this strain, as well as an IAA standard were separately encapsulated in chitosan microparticles (CS-MP) using the ionic gelation method. The CS-MP were analyzed by Fourier transform infrared spectroscopy (FTIR), showing absorption bands at 1641, 1547, and 1218 cm-1, associated with the vibrations of the carbonyl C=O, the N-H amine, and the bond between chitosan (CHI) and sodium tripolyphosphate (TPP). The effects of unencapsulated CFS, encapsulated CFS (EN-CFS), and encapsulated IAA standard (EN-IAA) on germination and growth of seven-day-old tomato (Solanum lycopersicum) seedlings were studied. Results showed that both EN-CFS and EN-IAA significantly (p < 0.05) increased seed germination rates by 77.5 and 80.8%, respectively. Both CFS and EN-IAA produced the greatest increase in aerial part length and fresh weight with respect to the treatment-free test. Therefore, it was concluded that the application of EN-CFS or EN-IAA could be a good option to improve the germination and growth of tomato seedlings.
Collapse
Affiliation(s)
| | - Norma Almaraz-Abarca
- Instituto Politecnico Nacional, Centro Interdisciplinario De Investigacion Para El Desarrollo Integral Regional, Unidad Durango, Sigma 119, Durango, Dgo 34220, Mexico
| | - Rocío Pérez-y-Terrón
- Benemerita Universidad Autonoma de Puebla, Facultad De Ciencias Biologicas, Puebla, Mexico
| | - Erik Ocaranza-Sánchez
- Instituto Politécnico Nacional, Centro De Investigación En Biotecnología Aplicada, Tepetitla, Tlax 90700, Mexico
| | - Marlon Rojas-López
- Instituto Politécnico Nacional, Centro De Investigación En Biotecnología Aplicada, Tepetitla, Tlax 90700, Mexico
| |
Collapse
|
10
|
Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers (Basel) 2022; 14:polym14224854. [PMID: 36432981 PMCID: PMC9696233 DOI: 10.3390/polym14224854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.
Collapse
|
11
|
The Synthesis and Characterization of Core-Shell Nanogels Based on Alginate and Chitosan for the Controlled Delivery of Mupirocin. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Allouche F. Synergistic Effects on the Mercury Sorption Behaviors Using Hybrid Cellulose Fiber/Chitosan Foam. ChemistrySelect 2022. [DOI: 10.1002/slct.202202600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fella‐Naouel Allouche
- Division Bioénergie et Environnement Centre de Développement des Energies Renouvelables (CDER) BP. 62 Route de l'Observatoire Bouzaréah 16340 Algiers Algeria
| |
Collapse
|
13
|
Gholami M, Abbasi N, Ghaneialvar H, Karimi E, Afzalinia A, Zangeneh MM, Yadollahi M. Investigation of biological effects of chitosan magnetic nano-composites hydrogel. NANOTECHNOLOGY 2022; 33:495603. [PMID: 36125420 DOI: 10.1088/1361-6528/ac88da] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The growing concern about microorganism infections, especially hospital-acquired infections, has driven the demand for effective and safe agents in recent years. Herein, novel nanocomposites were prepared based on layered double hydroxides (LDH NPs), Fe2O3nanoparticles (Fe2O3NPs), and chitosan hydrogel beads in different concentrations. The characteristics and composition of the prepared materials were investigated by various techniques such as XRD, FESEM, and FTIR. The results indicate that the nanocomposites are synthesized successfully, and each component is present in hydrogel matrixes. Then, their biomedical properties, including antibacterial, antifungal, and antioxidant activity, were examined. Our findings demonstrate that the antimicrobial activity of nanocomposites significantly depends on the concentration of each component and their chemical groups. It shows itself in the result of the inhibitory zone of all bacteria or fungi samples. The obtained results indicate that the nanocomposite of Chitosan-hydrogel beads with 20% LDH and Fe2O3(CHB-LDH-Fe2O3%20) and Chitosan-hydrogel beads based on 20% LDH (CHB-LDH%20) showed excellent antibacterial and antifungal properties against all tested bacteria and fungi (P ≤ 0.01). In addition, the antioxidant effects of the synthesized materials (especially CHB-LDH Fe2O3%20 and CHB-LDH%20) were investigated, showing high antioxidant efficacy against DPPH free radicals (P ≤ 0.01). According to our findings, we can say that these materials are promising biomaterials for inhibiting some infectious bacteria and fungi.
Collapse
Affiliation(s)
- Milad Gholami
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Elahe Karimi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ahmad Afzalinia
- Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran
| | - Mohammad Mahdi Zangeneh
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Mehdi Yadollahi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
14
|
Biodegradable microneedle patch for delivery of meloxicam for managing pain in cattle. PLoS One 2022; 17:e0272169. [PMID: 35917312 PMCID: PMC9345335 DOI: 10.1371/journal.pone.0272169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of the microneedle patch. Results regarding the physical characteristics, chemical composition, and mechanical properties confirmed that rheological properties of the chitosan solution, present significant differences over time, demonstrating that reusing the solution on the fourth day results in failure patches. Morphological characteristics and chemical composition studies revealed that the process of sterilization (ethylene oxide gas) needed for implanting the patches into the skin did not affect the properties of microneedle patches. In-vitro studies showed that approximately 33.02 ± 3.88% of the meloxicam was released over 7 days. A full penetration of the microneedles into the skin can be obtained by applying approximately 3.2 N. In-vivo studies demonstrated that microneedle patches were capable of swelling and dissolving, exhibiting a dissolution percentage of more than 50% of the original height of microneedle after 7 days. No abnormal tissue, swelling, or inflammation was observed in the implanted area. The results of this work show that chitosan biodegradable microneedle patches may be useful to deliver meloxicam to improve pain management of cattle with positive effects for commercial manufacturing.
Collapse
|
15
|
Valadi FM, Shahsavari S, Akbarzadeh E, Gholami MR. Preparation of new MOF-808/chitosan composite for Cr(VI) adsorption from aqueous solution: Experimental and DFT study. Carbohydr Polym 2022; 288:119383. [PMID: 35450645 DOI: 10.1016/j.carbpol.2022.119383] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022]
Abstract
In this study, a series of Zirconium-based MOF and chitosan composites (MOF-808/chitosan) were synthesized as efficient adsorbent for Cr(VI) ions elimination from aqueous solution. MOF-808/chitosan structure and morphology was characterized by FE-SEM, EDX, XRD, BET, zeta potential analysis, FT-IR, XPS techniques. The kinetic studies ascertained that Cr(VI) adsorption over MOF-808/chitosan followed pseudo-second-order kinetic model. The adsorption isotherms fitted the Langmuir isotherm model, implying on homogeneously adsorption of Cr(VI) on the surface of MOF-808/chitosan. According to the Langmuir model, the maximum capacity was obtained to be 320.0 mg/g at pH 5. Thermodynamic investigation proposed spontaneous (ΔG° < 0), disordered (ΔS° > 0) and endothermic (ΔH° > 0) for adsorption process. Besides, MOF-808/chitosan displayed an appropriate reusability for the elimination of Cr(VI) ions from their aqueous solutions for six successive cycles. DFT study of the adsorption process displayed and confirmed the role of hydrogen bonding and electrostatic attraction simultaneously.
Collapse
Affiliation(s)
| | - Shayan Shahsavari
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran; Nanoclub Elites Association, Tehran, Iran
| | - Elham Akbarzadeh
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| | - Mohammad Reza Gholami
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran.
| |
Collapse
|
16
|
Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol 2022; 214:568-582. [PMID: 35752342 DOI: 10.1016/j.ijbiomac.2022.06.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/24/2022] [Accepted: 06/18/2022] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD), and its consequent effect primarily clinical dementia, Parkinson's disease dementia, etc. currently bring potential avenues for diagnosis centered on identification of beta-amyloid1-42 (Aβ1-42). Unfortunately, techniques engaged in AD core biomarker (Aβ1-42) detection are majorly suffering from poor sensitivity and selectivity. Thus, we fabricated graphene oxide (GO) surface decorated chitosan (CS) mediated layer-by-layer (LbL) assembly based surface plasmon resonance (SPR) biosensor for highly sensitive and selective recognition of Aβ1-42. Briefly, silver nanoparticles (AgNPs) and GO synthesis were achieved through a greener approach. LbL assembly was designed using CS and polystyrene sulphonate (PSS) on surface of AgNPs (AgNPs-CS-PSS-CS) and then antibodies of Aβ (anti-Aβ) were fixed on LbL assembly (AgNPs-CS-PSS-CS@anti-Aβ). Herein, amine functionality of CS offers a plethora of sites for anti-Aβ antibody immobilization that gives specific direction, high selectivity, and an adequate amount of antibody immobilization. For fabrication, synthesized GO was immobilized on an amine-modified gold-coated sensor chip via carbodiimide chemistry followed by AgNPs-CS-PSS-CS@anti-Aβ immobilization on an activated GO surface. Inimitable features of LbL assembly showed improved selectivity towards Aβ peptide whereas utilization of affinity biotransducer with a combination of plasmonic and non-plasmonic nanomaterial improved sensitivity and selectivity. Consequently, linearity range and limit of detection (LOD) of Aβ1-42 antigens were found to be 2 fg/mL to 400 ng/mL and 1.21 fg/mL, respectively. Moreover, analysis of Aβ1-42 in AD-induced rats confirmed the real-time-applicability of the designed SPR biosensor. Hence, GO surface decorated AgNPs-CS-PSS-CS@anti-Aβ mediated SPR biosensor would provide a novel approach for exceptionally sensitive and selective Aβ detection.
Collapse
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Dist: Dhule, MS, India.
| |
Collapse
|
17
|
Vlăsceanu GM, Ioniță M, Popescu CC, Giol ED, Ionescu I, Dumitrașcu AM, Floarea M, Boerasu I, Necolau MI, Olăreț E, Ghițman J, Iovu H. Chitosan-Based Materials Featuring Multiscale Anisotropy for Wider Tissue Engineering Applications. Int J Mol Sci 2022; 23:ijms23105336. [PMID: 35628150 PMCID: PMC9140409 DOI: 10.3390/ijms23105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/10/2022] Open
Abstract
We designed graphene oxide composites with increased morphological and structural variability using fatty acid-coupled polysaccharide co-polymer as the continuous phase. The matrix was synthesized by N, O-acylation of chitosan with palmitic and lauric acid. The obtained co-polymer was crosslinked with genipin and composited with graphene oxide. FTIR spectra highlighted the modification and multi-components interaction. DLS, SEM, and contact angle tests demonstrated that the conjugation of hydrophobic molecules to chitosan increased surface roughness and hydrophilicity, since it triggered a core-shell macromolecular structuration. Nanoindentation revealed a notable durotaxis gradient due to chitosan/fatty acid self-organization and graphene sheet embedment. The composited building blocks with graphene oxide were more stable during in vitro enzymatic degradation tests and swelled less. In vitro viability, cytotoxicity, and inflammatory response tests yielded promising results, and the protein adsorption test demonstrated potential antifouling efficacy. The robust and stable substrates with heterogeneous architecture we developed show promise in biomedical applications.
Collapse
Affiliation(s)
- George Mihail Vlăsceanu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Mariana Ioniță
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Correspondence: ; Tel.: +40-214-022-709
| | - Corina Cristiana Popescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania; (G.M.V.); (C.C.P.)
| | - Elena Diana Giol
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Irina Ionescu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Andrei-Mihai Dumitrașcu
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Mădălina Floarea
- Cantacuzino National Medico-Military Institute for Research and Development, 050096 Bucharest, Romania; (I.I.); (A.-M.D.); (M.F.)
| | - Iulian Boerasu
- Department of Lasers, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Mădălina Ioana Necolau
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Elena Olăreț
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Jana Ghițman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania; (E.D.G.); (M.I.N.); (E.O.); (J.G.); (H.I.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
18
|
Raghatate A, Cortes Vega FD, Velazquez Meraz O, Ahmadi K, Chaudhari NM, Solanki D, Puthirath AB, Castaneda N, Ajayan PM, Herrera Ramirez JM, Balan V, Robles Hernández FC. Sustainable Biocomposites for Structural Applications with Environmental Affinity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17837-17848. [PMID: 35380421 DOI: 10.1021/acsami.2c02073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we report a facile preparation of biocomposites using a chitosan matrix that is reinforced with morphed graphene in amounts from 1 to 5 wt % C. The composites are processed by milling and conventional sintering. The morphed graphene additions show clear improvements in mechanical properties, having a direct correlation with temperature in particular for 180 °C. Higher temperatures are detrimental to chitosan and the properties drop because chitosan degrades. Mechanical properties in the composite such as yield strength and compressive strength increase between 40 and 50% with respect to the pure chitosan samples. The Young's modulus presents a drop of approximately 10%, but the fracture toughness increases up to 3.5 fold. The properties of our sustainable composites are comparable to those seen in polymers such as polyethylene, polypropylene, nylon, and poly(methyl methacrylate), among other commodity or single use plastics. The enhancement in the mechanical properties is attributed to the morphed graphene embedded chitosan matrix that generates a network of intergranular "anchors" that hold the chitosan crystals in place, preventing failure. The composites can be molded into near-net-shape products, machined, or shaped using various methods including laser lithography. These studies demonstrate the feasibility of fabricating biocomposites with different architectures and sizes for disposable structural components. Both chitosan and the composites are compostable and biodegradable with the potential to sustain plant growth when discarded. In addition, morphed graphene and chitosan are produced from byproducts or waste, which may result in a negative carbon footprint on the environment.
Collapse
Affiliation(s)
- Amruta Raghatate
- Mechanical Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, Texas 77204, United States
| | - Fernando D Cortes Vega
- Mechanical Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, Texas 77204, United States
| | - Omar Velazquez Meraz
- Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua 31136, Chih, México
| | - Kamyar Ahmadi
- Materials Science and Engineering, Engineering, University of Houston, Houston, Texas 77204, United States
| | - Nikhil M Chaudhari
- Materials Science and Engineering, Engineering, University of Houston, Houston, Texas 77204, United States
| | - Dhaivat Solanki
- Materials Science and Engineering, Engineering, University of Houston, Houston, Texas 77204, United States
| | - Anand B Puthirath
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Nathaly Castaneda
- Mechanical Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, Texas 77204, United States
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jose Martin Herrera Ramirez
- Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología, Miguel de Cervantes 120, Chihuahua 31136, Chih, México
| | - Venkatesh Balan
- Biotechnology Program, Department of Engineering Technology, College of Technology, University of Houston, Sugarland, Texas 77479, United States
| | - Francisco Carlos Robles Hernández
- Mechanical Engineering Technology Program, Department of Engineering Technology, College of Technology, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
19
|
Chen YC, Liao HJ, Hsu YM, Shen YS, Chang CH. Delivery of Mesenchymal Stem Cell in Dialdehyde Methylcellulose-Succinyl-Chitosan Hydrogel Promotes Chondrogenesis in a Porcine Model. Polymers (Basel) 2022; 14:polym14071474. [PMID: 35406348 PMCID: PMC9002496 DOI: 10.3390/polym14071474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the limitation in the current treatment modalities, such as secondary surgery in ACI and fibrocartilage formation in microfracture surgery, various scaffolds or hydrogels have been developed for cartilage regeneration. In the present study, we used sodium periodate to oxidize methylcellulose and formed dialdehyde methylcellulose (DAC) after dialysis and freeze-drying process, DAC was further mixed with succinyl-chitosan (SUC) to form an DAC-SUC in situ forming hydrogel. The hydrogel is a stiffness, elastic-like and porous hydrogel according to the observation of SEM and rheological analysis. DAC-SUC13 hydrogel possess well cell-compatibility as well as biodegradability. Most bone marrow mesenchymal stem cells (BM-pMSCs) were alive in the hydrogel and possess chondrogenesis potential. According to the results of animal study, we found DAC-SUC13 hydrogel can function as a stem cell carrier to promote glycosaminoglycans and type II collagen synthesis in the osteochondral defects of porcine knee. These findings suggested that DAC-SUC13 hydrogel combined with stem cell is a potential treatment for cartilage defects repair in the future.
Collapse
Affiliation(s)
- Yu-Chun Chen
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan;
| | - Hsiu-Jung Liao
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
| | - Yuan-Ming Hsu
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
| | - Yi-Shan Shen
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
- Department of Biomedical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; (H.-J.L.); (Y.-M.H.); (Y.-S.S.)
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City 320315, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Bagheri-Josheghani S, Bakhshi B. Formulation of selenium nanoparticles encapsulated by alginate-chitosan for controlled delivery of Vibrio Cholerae LPS: A novel delivery system candidate for nanovaccine. Int J Biol Macromol 2022; 208:494-508. [PMID: 35337913 DOI: 10.1016/j.ijbiomac.2022.03.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022]
Abstract
The lipopolysaccharide (LPS) of Vibrio cholerae plays a significant role in stimulating primary protection and immune responses. LPS delivery has been limited by the stimulation of inflammatory cytokines. This work aimed to report the synthesis and performance of this formulation in modulating immune responses and protecting LPS against acidic gastric medium. Alg-Cs-LPS-SeNPs composite was fabricated by an ionic cross-linking/in situ reduction method. Cytokines TNF-α, IL-6, IL-10, and TGF-β were assessed after cells were incubated with different compounds of the system. The main outcomes revealed that encapsulation of LPS-loaded SeNPs in the alginate-chitosan complex was associated with a high entrapment efficiency and could effectively protect LPS against acidic GIT medium. Kinetic profiling revealed that LPS was more slowly released from LPS-loaded Alg-Cs-LPS-SeNPs at pH 1.2, 7.4, and 6.8. These results indicated that Alg-Cs-LPS-SeNPs composite was able to significantly increase anti-inflammatory cytokines and reduce the release of pro-inflammatory cytokines. Thus, these findings show that this system for LPS delivery could be easily biosynthesized and encapsulated for use in the pharmaceutical industry. This study provides proof of the potential for future use of oral LPS vaccines, concomitantly inducing immunomodulatory effects.
Collapse
Affiliation(s)
- Sareh Bagheri-Josheghani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
21
|
Asim Raza M, Gull N, Lee SW, Seralathan KK, Hyun Park S. Development of stimuli-responsive chitosan based hydrogels with anticancer efficacy, enhanced antibacterial characteristics, and applications for controlled release of benzocaine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Makaudi R, Paumo HK, Pone BK, Katata-Seru L. In Situ Stabilisation of Silver Nanoparticles at Chitosan-Functionalised Graphene Oxide for Reduction of 2,4-Dinitrophenol in Water. Polymers (Basel) 2021; 13:3800. [PMID: 34771356 PMCID: PMC8587642 DOI: 10.3390/polym13213800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022] Open
Abstract
This investigation reports the in situ growth of silver nanoparticles onto covalently bonded graphene oxide-chitosan, which serve as supported nanocatalysts for the NaBH4 reduction of 2,4-dinitrophenol in aqueous systems. Fumaryl chloride reacted with chitosan in an acidic environment to yield a tailored polymeric material. The latter was, in turn, treated with the pre-synthesised graphene oxide sheets under acidic conditions to generate the GO-functionalised membrane (GO-FL-CS). The adsorption of Ag+ from aqueous media by GO-FL-CS yielded a set of membranes that were decorated with silver nanoparticles (Ag NPs@GO-FL-CS) without any reducing agent. Various analytical tools were used to characterise these composites, including Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller surface area analysis, X-ray diffraction, scanning electron microscopy/energy-dispersive X-ray analysis, inductively coupled plasma-mass spectrometry, and transmission electron microscopy. The silver-loaded materials were further used for the remediation of 2,4-dinitrophenol from aqueous solutions under batch operation. The BET analysis revealed that the functionalisation of GO with chitosan and Ag NPs (average size 20-60 nm) resulted in a three-fold increased surface area. The optimised catalyst (Ag mass loading 16.95%) displayed remarkable activity with an apparent pseudo-first-order rate constant of 13.5 × 10-3 min-1. The cyclic voltammetry experiment was conducted to determine the nitro-conversion pathway. The reusability/stability test showed no significant reduction efficiency of this metal-laden composite over six cycles. Findings from the study revealed that Ag NPs@GO-FL-CS could be employed as a low-cost and recyclable catalyst to convert toxic nitroaromatics in wastewater.
Collapse
Affiliation(s)
- Rebaone Makaudi
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| | - Hugues Kamdem Paumo
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| | - Boniface Kamdem Pone
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Lebogang Katata-Seru
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho 2735, South Africa;
| |
Collapse
|
23
|
Peng L, Li M, Zhao K, Ma C, Tang H, Li Y. Evaluation of an Injectable Hydrogel Based on Hyaluronic Acid-chitosan/β-glycerophosphate-loaded Mesenchymal Stem Cells in Enhancing the Therapeutic Efficacy of Myocardial Infarction. Macromol Biosci 2021; 22:e2100286. [PMID: 34676668 DOI: 10.1002/mabi.202100286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/18/2021] [Indexed: 11/11/2022]
Abstract
Myocardial infarction (MI), which is due to cardiac dysfunction, results in morbidity and mortality. Moreover, the cellular activity of transplanted mesenchymal stem cells (MSCs)generally limits their therapeutic efficacy in the treatment of MI. Here, inject able hyaluronic acid-chitosan/β-glycerophosphate (HA-CS/β-GP) hydrogel-loaded MSCs were prepared, after which their effects on the treatment of MI were investigated. The synthesized HA-CS/β-GP hydrogels exhibited swelling ratio (SR), an in vitro degradation value, and a gelatin time of 82.19 ± 4.1, 88.18% ± 2.4%, and 9 s, respectively. Further, rheological studies revealed that the elastic modulus of the HA-CS/β-GP hydrogels was ≥230 Pa, exhibiting large elastic to viscous modulus ratio, which indicated their mechanical strength. Furthermore, the in vitro 3T3 cell and MSC culture studies confirmed the good biocompatibility of the HA-CS and HA-CS/β-GP hydrogels. The implantation of the synthesized hydrogels in the mouse MI model considerably improved the therapeutic effect of the MSCs (enhanced cardiac function, reduced cardiomyocyte apoptosis, and increased vascularization) for the first time. The innovative synergistic strategy of combining injectable HA-CS and HA-CS/β-GP hydro gels with MSCs might be suitable for the effective treatment of cardiac morbidity due to MIs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liang Peng
- L. Peng, M. Li, K. Zhao, C. Ma, H. Tang, Department of Cardiovascular, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, PR China
| | - Muwei Li
- L. Peng, M. Li, K. Zhao, C. Ma, H. Tang, Department of Cardiovascular, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, PR China
| | - Kang Zhao
- L. Peng, M. Li, K. Zhao, C. Ma, H. Tang, Department of Cardiovascular, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, PR China
| | - Cao Ma
- L. Peng, M. Li, K. Zhao, C. Ma, H. Tang, Department of Cardiovascular, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, PR China
| | - Haiyu Tang
- L. Peng, M. Li, K. Zhao, C. Ma, H. Tang, Department of Cardiovascular, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, PR China
| | - Yan Li
- Y. Li, Department of Integrated Chinese and Western Medicine, The Affiliated cancer hospital of Zhengzhou University, PR China
| |
Collapse
|
24
|
Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae baicalensis radix Extract and Chitosan for Periodontal Diseases Treatment. Int J Mol Sci 2021; 22:ijms222111319. [PMID: 34768748 PMCID: PMC8583119 DOI: 10.3390/ijms222111319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023] Open
Abstract
Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed shear-thinning properties, gelation temperature between 25 and 27 °C, and favorable mucoadhesiveness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were liberated in a prolonged manner with a fast onset from hydrogel formulations.
Collapse
|
25
|
Rahman N, Varshney P. Effective removal of doxycycline from aqueous solution using CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43599-43617. [PMID: 33837937 DOI: 10.1007/s11356-021-13584-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
The primary focus of the present study was to synthesize CuO nanoparticles decorated poly(2-acrylamido-2-methyl-1-propanesulfonic acid)/chitosan to explore its potential for uptake of doxycycline (DXN) from water. The composite material was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction and thermogravimetric analysis-differential thermal analysis. Central composite design under response surface methodology was opted to optimize the process variables (pH, adsorbent dosage, contact time and initial concentration of DXN) for obtaining the highest removal efficiency. The removal of DXN reached 98.84% at 303 K under the optimum conditions of pH 7.0, equilibrating time of 70 min, adsorbent dose of 20 mg/25 mL and initial concentration of 50 mg L-1. The Langmuir isotherm and pseudo-second-order kinetic models fitted best with the experimental data. The values of ΔG° (- 29.159 to - 31.997 kJ mol-1), ΔH° (56.768 kJ mol-1) and ΔS° (283.382 J mol-1 K-1) demonstrated the spontaneous and endothermic nature of adsorption process. The adsorption/desorption study revealed the reusability of the prepared composite material for DXN uptake up to six cycles.
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Poornima Varshney
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
26
|
Marquez-Bravo S, Doench I, Molina P, Bentley FE, Tamo AK, Passieux R, Lossada F, David L, Osorio-Madrazo A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers (Basel) 2021; 13:polym13101563. [PMID: 34068136 PMCID: PMC8152965 DOI: 10.3390/polym13101563] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.
Collapse
Affiliation(s)
- Sofia Marquez-Bravo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Pamela Molina
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Flor Estefany Bentley
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Renaud Passieux
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | | | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-67363
| |
Collapse
|
27
|
Taser B, Ozkan H, Adiguzel A, Orak T, Baltaci MO, Taskin M. Preparation of chitosan from waste shrimp shells fermented with Paenibacillus jamilae BAT1. Int J Biol Macromol 2021; 183:1191-1199. [PMID: 33989684 DOI: 10.1016/j.ijbiomac.2021.05.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022]
Abstract
In this study, chitin extraction from shrimp shell powder (SSP) using locally isolated Paenibacillus jamilae BAT1 (GenBank: MN176658), the preparation of chitosan from the extracted chitin, and the characterization and biological activity (antimicrobial and antioxidant) of the prepared chitosan (PC) were investigated. It was determined that P. jamilae BAT1 did not have chitinase activity but showed high protease activity and protein removal potential. Optimum pH, shell concentration and incubation time for deproteinization were determined as 7.0, 60 g/L and 4 days, respectively. Addition of KH2PO4 or MgSO4 did not affect chitin extraction and deproteinization yield. The maximum yields of deproteinization, demineralization and chitin extraction yields were 87.67, 41.95 and 24.5%, respectively. The viscosity-average molecular weight of PC was determined as 1.41 × 105 g/mol. The deacetylation degree of PC (86%) was found to be higher that of commercial chitosan (CC) (78%). DPPH scavenging activity of PC (IC50 0.59 mg/mL) was higher than that of CC (IC50 3.72 mg/mL). PC was found to have higher antimicrobial activity against the bacteria E. coli and S. aureus and the yeast C. albicans when compared to CC. This is the first study on the use of the bacterium P. jamilae in biological chitin extraction.
Collapse
Affiliation(s)
- Behiye Taser
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Agri Ibrahim Cecen University, Agri, Turkey
| | - Hakan Ozkan
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.
| | - Ahmet Adiguzel
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mustafa Ozkan Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
28
|
Sasidharan V, Sachan D, Chauhan D, Talreja N, Ashfaq M. Three-dimensional (3D) polymer-metal-carbon framework for efficient removal of chemical and biological contaminants. Sci Rep 2021; 11:7708. [PMID: 33833269 PMCID: PMC8032700 DOI: 10.1038/s41598-021-86661-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
The continuously increased existence of contaminants such as chemical and biological mainly dye, bacteria, and heavy metals ions (HMI) in water bodies has increased environmental concern due to their hostile effects on living things. Therefore, there is necessity to be developed newer materials that skirmishes such environmental menace. The present works focus on the synthesis of a novel three-dimensional (3D) polymer-metal-carbon (3D-PMC) framework for the exclusion of contaminants (chemical and biological) from water bodies. Initially, polyurethane (PU) foam was treated with nitric acid and used as a framework for the development of 3D-PMC materials. The copper nanosheet (Cu-NS) was deposited onto the functionalized PU foam to produce Cu-NS-PU material. The mechanically exfoliated graphene was mixed with chitosan to produce a graphene-chitosan homogenous suspension. The produce homogenous suspension was deposited Cu-NS-PU for the development of the 3D-PMC framework. The prepared 3D-PMC framework was characterized by scanning electron microscopy (SEM), Energy Dispersive X-Ray Analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and X-rays diffraction (XRD) analysis. The prepared 3D-PMC framework was subjected to various adsorption parameters to assess the sorption ability of the material. The prepared 3D-PMC framework was effectively used for the removal of chromium (Cr) metal ions and Congo-red (CR) dye from the water system. The synthesis of the 3D-PMC framework is simple, novel, cost-effective, and economically viable. Therefore, the prepared 3D-PMC framework has the potential to be used as a filter assembly in water treatment technologies.
Collapse
Affiliation(s)
- V Sasidharan
- School of Life Science, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Deepa Sachan
- Center for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Divya Chauhan
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, USA
| | - Neetu Talreja
- Multidisciplinary Research Institute for Science and Technology, IIMCT, University of La Serena, 1015 Juan Cisternas St., La Serena, Chile
| | - Mohammad Ashfaq
- School of Life Science, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| |
Collapse
|
29
|
Castilla-Casadiego DA, Carlton H, Gonzalez-Nino D, Miranda-Muñoz KA, Daneshpour R, Huitink D, Prinz G, Powell J, Greenlee L, Almodovar J. Design, characterization, and modeling of a chitosan microneedle patch for transdermal delivery of meloxicam as a pain management strategy for use in cattle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111544. [DOI: 10.1016/j.msec.2020.111544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/21/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
|
30
|
Investigation of Polystyrene-Based Microspheres from Different Copolymers and Their Structural Color Coatings on Wood Surface. COATINGS 2020. [DOI: 10.3390/coatings11010014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Six kinds of polystyrene (PSt)-based colloidal microspheres were synthesized by adding acrylic acid (AA), methyl methacrylate (MMA), and butyl acrylate (BA) as comonomers in styrene emulsion polymerization. The structurally colored coatings on a wood surface were self-assembled by thermally assisted gravity deposition of these microspheres. Chemical compositions and structures of microspheres and morphological characteristics of microspheres and structural color coatings, as well as optical properties of coatings and their generated structural colors, were studied. Pure PSt microspheres had a smooth surface and uniform structure, while microspheres of copolymers had core–shell morphologies and a rough surface. Only poly(styrene-acrylic acid) (P(St-AA)) microspheres had good monodispersity and the resulting coating had a well-ordered photonic crystal structure. However, other kinds of microspheres could form short ranges of ordered amorphous photonic crystal structures and they displayed structural colors. Both the reflectivity of coatings to visible light and structural colors varied with microsphere size and self-assembly temperature.
Collapse
|
31
|
Cu(II) and As(V) Adsorption Kinetic Characteristic of the Multifunctional Amino Groups in Chitosan. Processes (Basel) 2020. [DOI: 10.3390/pr8091194] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amino groups in the chitosan polymer play as a functional group for the removal of cations and anions depending on the degree of protonation, which is determined by the solution pH. A hydrogel beadlike porous adsorbent was used to investigate the functions and adsorption mechanism of the amino groups by removal of Cu(II) as a cation and As(V) as an anion for a single and mixed solution. The uptakes of Cu(II) and As(V) were 5.2 and 5.6 μmol/g for the single solution and 5.9 and 3.6 μmol/g for the mixed solution, respectively. The increased total capacity in the presence of both the cation and anion indicated that the amino group (NH2 or NH3+) species was directly associated for adsorption. The application of a pseudo second-order (PSO) kinetic model was more suitable and resulted in an accurate correlation coefficient (R2) compared with the pseudo first-order (PFO) kinetic model for all experimental conditions. Due to poor linearization of the PFO reaction model, we attempted to divide it into two sections to improve the accuracy. Regardless of the model equation, the order of the rate constant was in the order of As(V)-single > Cu(II)-single > As(V)-mixed > Cu(II)-mixed. Also, the corresponding single solution and As(V) showed a higher adsorption rate. According to intraparticle and film diffusion applications displaying two linear lines and none passing through zero, the rate controlling step in the chitosan hydrogel bead was determined by both intraparticle and film diffusion.
Collapse
|
32
|
Wu L, Li L, Pan L, Wang H, Bin Y. MWCNTs
reinforced conductive, self‐healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. J Appl Polym Sci 2020. [DOI: 10.1002/app.49800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lu Wu
- School of Chemical Engineering Dalian University of Technology Dalian China
| | - Longwei Li
- School of Chemical Engineering Dalian University of Technology Dalian China
| | - Lujun Pan
- School of Physics Dalian University of Technology Dalian China
| | - Hai Wang
- School of Chemical Engineering Dalian University of Technology Dalian China
| | - Yuezhen Bin
- School of Chemical Engineering Dalian University of Technology Dalian China
| |
Collapse
|
33
|
Microbial dyes: dyeing of poplar veneer with melanin secreted by Lasiodiplodia theobromae isolated from wood. Appl Microbiol Biotechnol 2020; 104:3367-3377. [DOI: 10.1007/s00253-020-10478-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
|
34
|
Wang M, Wang X, Guo C, Zhao T, Li W. A Feasible Method Applied to One-Bath Process of Wool/Acrylic Blended Fabrics with Novel Heterocyclic Reactive Dyes and Application Properties of Dyed Textiles. Polymers (Basel) 2020; 12:polym12020285. [PMID: 32024144 PMCID: PMC7077430 DOI: 10.3390/polym12020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/24/2022] Open
Abstract
Reactive dyes containing cationic groups have great potentiality as novel dyes, which can be applicable to one-bath dyeing of wool/acrylic blended fabrics. In this work, four novel heterocyclic reactive dyes containing cationic groups were designed by using m-aminophenyltrimethylammonium salt or N-(2-aminoethyl) pyridinium chloride salt as cationic groups, N, N-diethyl-1,3-benzenediamine as a coupling component, 2-amino-6-methoxybenzothiazole, 2-aminobenzothiazole or 3-amino-5-nitrobenzoisothiazole as diazo components. These dyes based on benzothiazole derivative chromophores not only showed beautiful color, including blue-green and fuchsia, but also had larger tinctorial strength with a high molar extinction coefficient, further reducing the dosage of dyes to achieve same color depth. Factors affecting the dyeability on fabrics, such as pH value, dyeing temperature and dye concentration were discussed. Excellent dyeing behavior, levelling properties and good fastness on wool/acrylic blended fabric were obtained. What’ more, excellent anti-ultraviolet and antibacterial properties were obtained for textiles with these dyes. The application of these dyes with large molar extinction coefficients presents a wide range of possibilities for the further development of cleaner production and eco-friendly dyeing, even functional textiles.
Collapse
Affiliation(s)
- Meihui Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Xianfeng Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Chong Guo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
| | - Tao Zhao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China; (M.W.); (X.W.); (C.G.)
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
- Correspondence: (T.Z.); (W.L.); Tel.: +86-021-6779-2811 (T.Z.)
| | - Wenyao Li
- College of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Correspondence: (T.Z.); (W.L.); Tel.: +86-021-6779-2811 (T.Z.)
| |
Collapse
|
35
|
Fathi P, Sikorski M, Christodoulides K, Langan K, Choi YS, Titcomb M, Ghodasara A, Wonodi O, Thaker H, Vural M, Behrens A, Kofinas P. Zeolite-loaded alginate-chitosan hydrogel beads as a topical hemostat. J Biomed Mater Res B Appl Biomater 2018; 106:1662-1671. [PMID: 28842967 PMCID: PMC5826813 DOI: 10.1002/jbm.b.33969] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 11/06/2022]
Abstract
Hemorrhage is the leading cause of preventable death after a traumatic injury, and the largest contributor to loss of productive years of life. Hemostatic agents accelerate hemostasis and help control hemorrhage by concentrating coagulation factors, acting as procoagulants and/or interacting with erythrocytes and platelets. Hydrogel composites offer a platform for targeting both mechanical and biological hemostatic mechanisms. The goal of this work was to develop hydrogel particles composed of chitosan, alginate, and zeolite, and to assess their potential to promote blood coagulation via multiple mechanisms: erythrocyte adhesion, factor concentration, and the ability to serve as a mechanical barrier to blood loss. Several particle compositions were synthesized and characterized. Hydrogel bead composition was optimized to achieve the highest swelling capacity, greatest erythrocyte adhesion, and minimal in vitro cytotoxicity. These results suggest a polymer hydrogel-aluminosilicate composite material may serve as a platform for an effective hemostatic agent that incorporates multiple mechanisms of action. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1662-1671, 2018.
Collapse
Affiliation(s)
- Parinaz Fathi
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Michael Sikorski
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| | | | - Kristen Langan
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Yoon Sun Choi
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Michael Titcomb
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Anjali Ghodasara
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Omasiri Wonodi
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Hemi Thaker
- Gemstone Honors Program, University of Maryland, College Park, Maryland 20742
| | - Mert Vural
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742
| | - Adam Behrens
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
36
|
Wang F, Gong J, Zhang X, Ren Y, Zhang J. Preparation of Biocolorant and Eco-Dyeing Derived from Polyphenols Based on Laccase-Catalyzed Oxidative Polymerization. Polymers (Basel) 2018; 10:E196. [PMID: 30966232 PMCID: PMC6414836 DOI: 10.3390/polym10020196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/11/2018] [Accepted: 02/11/2018] [Indexed: 11/16/2022] Open
Abstract
Natural products have been believed to be a promising source to obtain ecological dyes and pigments. Plant polyphenol is a kind of significant natural compound, and tea provides a rich source of polyphenols. In this study, biocolorant derived from phenolic compounds was generated based on laccase-catalyzed oxidative polymerization, and eco-dyeing of silk and wool fabrics with pigments derived from tea was investigated under the influence of pH variation. This work demonstrated that the dyeing property was better under acidic conditions compared to alkalinity, and fixation rate was the best when pH value was 3. Furthermore, breaking strength of dyed fabrics sharply reduced under the condition of pH 11. Eventually, the dyeing method was an eco-friendly process, which was based on bioconversion, and no mordant was added during the process of dyeing.
Collapse
Affiliation(s)
- Fubang Wang
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory for Advanced Textile Composites of the Education Ministry of China, Tianjin 300387, China.
| | - Jixian Gong
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory for Advanced Textile Composites of the Education Ministry of China, Tianjin 300387, China.
| | - Xinqing Zhang
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory for Advanced Textile Composites of the Education Ministry of China, Tianjin 300387, China.
| | - Yanfei Ren
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory for Advanced Textile Composites of the Education Ministry of China, Tianjin 300387, China.
| | - Jianfei Zhang
- School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory for Advanced Textile Composites of the Education Ministry of China, Tianjin 300387, China.
| |
Collapse
|