1
|
Laurent E, Maric M. Organic-Inorganic Hybrid Materials from Vegetable Oils. Macromol Rapid Commun 2024; 45:e2400408. [PMID: 39412784 PMCID: PMC11628362 DOI: 10.1002/marc.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Indexed: 12/11/2024]
Abstract
The production of materials based on fossil resources is yielding more sustainable and ecologically beneficial methods. Vegetable oils (VO) are one example of base materials whose derivatives rival the properties of their petro-based counterparts. Gaps exist however and one way to fill them is by employing sol-gel processes to synthesize organic-inorganic hybrid materials, often derived from silane/siloxane compounds. Creating Si─O─Si inorganic networks in the organic VO matrix permits the attainment of necessary strength, among other property enhancements. Consequently, many efforts have been directed to optimally achieve organic-inorganic hybrid materials with VOs. However, compatibilization is challenging, and desirable conditions for matching the inorganic filler in the organic matrix remain a key stumbling block toward wider application. Therefore, this review aims to detail recent progress on these new hybrids, focusing on the main strategies to polymerize and functionalize the raw VO, followed by routes highlighting the addition of the inorganic fillers to obtain desirable composites.
Collapse
Affiliation(s)
- Eline Laurent
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| | - Milan Maric
- Department of Chemical EngineeringMcGill UniversityMontrealQuebecH3A 0C5Canada
| |
Collapse
|
2
|
Buwalda SJ. 'Click' hydrogels from renewable polysaccharide resources: Bioorthogonal chemistry for the preparation of alginate, cellulose and other plant-based networks with biomedical applications. Int J Biol Macromol 2024; 282:136695. [PMID: 39447791 DOI: 10.1016/j.ijbiomac.2024.136695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Click chemistry refers to a class of highly selective reactions that occur in one pot, are not disturbed by water or oxygen, proceed quickly to high yield and generate only inoffensive byproducts. Since its first definition by Barry Sharpless in 2001, click chemistry has increasingly been used for the preparation of hydrogels, which are water-swollen polymer networks with numerous biomedical applications. Polysaccharides, which can be obtained from renewable resources including plants, have drawn growing attention for use in hydrogels due to the recent focus on the development of a sustainable society and the reduction of the environmental impact of the chemical industry. Importantly, plant-based polysaccharides are often bioresorbable and exhibit excellent biocompatibility and biomimicry. This comprehensive review describes the synthesis, characterization and biomedical applications of hydrogels which combine the renewable and biocompatible aspects of polysaccharides with the chemically and biomedically favorable characteristics of click crosslinking. The manuscript focuses on click hydrogels prepared from alginate and cellulose, the most widely used polysaccharides for this type of hydrogel, but also click hydrogels based on other plant-derived polymers (e.g. pectin) are discussed. In addition, the challenges are described that should be overcome to facilitate translation from academia to the clinic.
Collapse
Affiliation(s)
- Sytze J Buwalda
- MINES Paris, PSL University, Center for Materials Forming (CEMEF), UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France.
| |
Collapse
|
3
|
Moraru D, Cortés A, Martinez-Diaz D, Prolongo SG, Jiménez-Suárez A, Sangermano M. Sustainable Electrically Conductive Bio-Based Composites via Radical-Induced Cationic Frontal Photopolymerization. Polymers (Basel) 2024; 16:2159. [PMID: 39125185 PMCID: PMC11314415 DOI: 10.3390/polym16152159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Diglycidylether of vanillyl alcohol (DGEVA), in combination with mechanically recycled carbon fibers (RCFs), was used to make, via Radical-Induced Cationic Frontal Photopolymerization (RICFP), fully sustainable and bio-based conductive composites with good electrical conductivity and consequent Joule effect proprieties. Three different fiber lengths, using three different sieve sizes during the mechanical recycling process (0.2, 0.5, and 2.0 mm), were used in five different amounts (ranging from 1 to 25 phr). The samples were first characterized by dynamic mechanical thermal analysis (DMTA), followed byelectrical conductivity and Joule heating tests. More specifically, the mechanical properties of the composites increased when increasing fiber content. Furthermore, the composites obtained with the longest fibers showed the highest electrical conductivity, reaching a maximum of 11 S/m, due to their higher aspect ratio. In this context, the temperature reached by Joule effect was directly related to the electrical conductivity, and was able to reach an average and maximum temperatures of 80 °C and 120 °C, respectively, just by applying 6 V.
Collapse
Affiliation(s)
- Dumitru Moraru
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Alejandro Cortés
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - David Martinez-Diaz
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Silvia G. Prolongo
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
- Instituto de Tecnologías para la Sostenibilidad, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain
| | - Alberto Jiménez-Suárez
- Materials Science and Engineering Area, University Rey Juan Carlos, C/Tulipán s/n, 28933 Madrid, Spain; (A.C.); (D.M.-D.); (S.G.P.); (A.J.-S.)
| | - Marco Sangermano
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy;
| |
Collapse
|
4
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Mahmoud MH, El-Gogary RI, Soliman ME, Kamel AO. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int J Biol Macromol 2024; 264:130698. [PMID: 38458296 DOI: 10.1016/j.ijbiomac.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.
Collapse
Affiliation(s)
- Mariam H Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt; Egypt Japan University of Science and Technology, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Righetti GIC, Faedi F, Famulari A. Embracing Sustainability: The World of Bio-Based Polymers in a Mini Review. Polymers (Basel) 2024; 16:950. [PMID: 38611207 PMCID: PMC11013738 DOI: 10.3390/polym16070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The proliferation of polymer science and technology in recent decades has been remarkable, with synthetic polymers derived predominantly from petroleum-based sources dominating the market. However, concerns about their environmental impacts and the finite nature of fossil resources have sparked interest in sustainable alternatives. Bio-based polymers, derived from renewable sources such as plants and microbes, offer promise in addressing these challenges. This review provides an overview of bio-based polymers, discussing their production methods, properties, and potential applications. Specifically, it explores prominent examples including polylactic acid (PLA), polyhydroxyalkanoates (PHAs), and polyhydroxy polyamides (PHPAs). Despite their current limited market share, the growing awareness of environmental issues and advancements in technology are driving increased demand for bio-based polymers, positioning them as essential components in the transition towards a more sustainable future.
Collapse
Affiliation(s)
- Grazia Isa C. Righetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Antonino Famulari
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Peydayesh M, Boschi E, Bagnani M, Tay D, Donat F, Almohammadi H, Li M, Usuelli M, Shiroka T, Mezzenga R. Hybrid Amyloid-Chitin Nanofibrils for Magnetic and Catalytic Aerogels. ACS NANO 2024; 18:6690-6701. [PMID: 38345899 DOI: 10.1021/acsnano.4c00883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In the quest for a sustainable and circular economy, it is essential to explore environmentally friendly alternatives to traditional petroleum-based materials. A promising pathway toward this goal lies in the leveraging of biopolymers derived from food waste, such as proteins and polysaccharides, to develop advanced sustainable materials. Here, we design versatile hybrid materials by hybridizing amyloid nanofibrils derived by self-assembly of whey, a dairy byproduct, with chitin nanofibrils exfoliated from the two distinct allomorphs of α-chitin and β-chitin, extracted from seafood waste. Various hydrogels and aerogels were developed via the hybridization and reassembly of these biopolymeric nanobuilding blocks, and they were further magnetized upon biomineralization with iron nanoparticles. The pH-phase diagram highlights the significant role of electrostatic interactions in gel formation, between positively charged amyloid fibrils and negatively charged chitin nanofibrils. Hybrid magnetic aerogels exhibit a ferromagnetic response characterized by a low coercivity (<50 Oe) and a high specific magnetization (>40 emu/g) at all temperatures, making them particularly suitable for superparamagnetic applications. Additionally, these aerogels exhibit a distinct magnetic transition, featuring a higher blocking temperature (200 K) compared to previously reported similar nanoparticles (160 K), indicating enhanced magnetic stability at elevated temperatures. Finally, we demonstrate the practical application of these hybrid magnetic materials as catalysts for carbon monoxide oxidation, showcasing their potential in environmental pollution control and highlighting their versatility as catalyst supports.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Daniel Tay
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, CH-8092 Zürich, Switzerland
| | - Hamed Almohammadi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mingqin Li
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Toni Shiroka
- Laboratorium für Festkörperphysik, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Valero L, Gainche M, Esparcieux C, Delor-Jestin F, Askanian H. Vegetal Polyphenol Extracts as Antioxidants for the Stabilization of PLA: Toward Fully Biobased Polymer Formulation. ACS OMEGA 2024; 9:7725-7736. [PMID: 38405455 PMCID: PMC10882618 DOI: 10.1021/acsomega.3c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 02/27/2024]
Abstract
The use of natural antioxidants as substitutes for traditional synthetic stabilizers has been investigated for the stabilization of biobased and biodegradable polymers, with the aim of designing fully biobased plastic formulations. This study focused on the thermo- and photostabilization of poly(lactic acid) (PLA) using vegetal polyphenol extracts as biosourced antioxidants. The polyphenols were extracted by microwave-assisted extraction from the valorization of vegetal waste, and their potential as antioxidant additives was evaluated (e.g., polyphenol content, composition, and antioxidant activity). PLA was then formulated with 2 wt % of the extracts exhibiting the highest antioxidant activities: green tea residues, pomegranate peels, grape marc, bramble leaves, and yellow onion peel extracts. The efficiency of the natural additives as thermal stabilizers was evaluated and compared with a synthetic antioxidant using rheological and thermal analyses. The results demonstrated the capacity of grape marc extract and pomegranate peel extract to significantly improve PLA thermal stability during processing and thermo-oxidation. Finally, photorheology was conducted to evaluate the influence of the bioadditives on the biopolyester photodegradation. The different polyphenol extracts seemed to significantly hinder the photo-oxidation of PLA and constitute very promising natural UV stabilizers, combining UV absorbers and antioxidant functions.
Collapse
Affiliation(s)
- Luna Valero
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Mael Gainche
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Cécile Esparcieux
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Florence Delor-Jestin
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| | - Haroutioun Askanian
- Université Clermont Auvergne,
Clermont Auvergne INP—Sigma Clermont, CNRS, ICCF, 63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Pielichowska K, Nowicka-Dunal K, Pielichowski K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers (Basel) 2024; 16:328. [PMID: 38337217 DOI: 10.3390/polym16030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Phase change materials (PCMs) have received increasing attention in recent years as they enable the storage of thermal energy in the form of sensible and latent heat, and they are used in advanced technical solutions for the conservation of sustainable and waste energy. Importantly, most of the currently applied PCMs are produced from non-renewable sources and their carbon footprint is associated with some environmental impact. However, novel PCMs can also be designed and fabricated using green materials without or with a slight impact on the environment. In this work, the current state of knowledge on the bio-based polymers in PCM applications is described. Bio-based polymers can be applied as phase-change materials, as well as for PCMs encapsulation and shape stabilization, such as cellulose and its derivatives, chitosan, lignin, gelatin, and starch. Vast attention has been paid to evaluation of properties of the final PCMs and their application potential in various sectors. Novel strategies for improving their thermal energy storage characteristics, as well as to impart multifunctional features, have been presented. It is also discussed how bio-based polymers can extend in future the potential of new environmentally-safe PCMs in various industrial fields.
Collapse
Affiliation(s)
- Kinga Pielichowska
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Nowicka-Dunal
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Krzysztof Pielichowski
- Faculty of Chemical Engineering and Technology, Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| |
Collapse
|
10
|
Lee SW, Kim KT. Synthesis and self-assembly of dendritic-linear block copolymers containing poly(mandelic acid) with discrete molecular weights and stereochemical structures. RSC Adv 2024; 14:2285-2292. [PMID: 38213974 PMCID: PMC10779440 DOI: 10.1039/d3ra07536b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 01/13/2024] Open
Abstract
In this work, we present the synthesis of uniform PMAs, where the number of repeat units and their stereochemical arrangement are precisely defined. Utilizing an iterative convergent approach with orthogonally protected dimandelic acid building blocks, we achieved high molecular weight PMAs with the desired number of repeat units, extending up to 144 mandelic acids. Additionally, stereochemically defined poly(l-mandelic acid)s with up to 32 repeat units were successfully synthesized. These uniform PMAs were subsequently coupled with uniform branched poly(ethylene glycol) blocks to create uniform dendritic-linear block copolymers. The self-assembly of these block copolymers in solution was systematically investigated. In solution self-assembly, the synthesized block copolymers showed multiple phases from cylinder to inverse cubic as the molecular weight of PMA increased. In the case of solvent diffusion-evaporation-mediated self-assembly, the block copolymers underwent a phase transition as the rate of water addition decreased.
Collapse
Affiliation(s)
- Seul Woo Lee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| |
Collapse
|
11
|
Peng Y, Qiu B, Ding S, Hu M, Zhang Y, Jiao Y, Fan X, Parlett CMA. A Facile Synthesis Route to AuPd Alloys for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Chempluschem 2024; 89:e202300545. [PMID: 37884457 DOI: 10.1002/cplu.202300545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Synthesis of 2,5-furandicarboxylic acid (FDCA) can be achieved via catalytic oxidation of 5-hydroxymethylfurfural (5-HMF), in which both base and catalyst play important roles. This work presents the development of a simple synthesis method (based on a commercial parent 10 wt.% Pd/C catalyst) to prepare the bimetallic AuPd alloy catalysts (i. e., AuPd/C) for selective 5-HMF oxidation to FDCA. When using the strong base of NaOH, Pd and Au cooperate to promote FDCA formation when deployed either separately (as a physical mixture of the monometallic Au/C and Pd/C catalysts) or ideally alloyed (AuPd/C), with complete 5-HMF conversion and FDCA yields of 66 % vs 77 %, respectively. However, NaOH also promoted the formation of undesired by-products, leading to poor mass balances (<81 %). Comparatively, under weak base conditions (using NaHCO3 ), an increase in Au loading in the AuPd/C catalysts enhances 5-HMF conversion and FDCA productivity (due to the enhanced carbonyl oxidation capacity) which coincides with a superior mass balances of >97 %. Yet, the excessive Pd content in the AuPd/C catalysts was not beneficial in promoting FDCA formation.
Collapse
Affiliation(s)
- Yani Peng
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Boya Qiu
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Shengzhe Ding
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Min Hu
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yuxin Zhang
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, China
| | - Xiaolei Fan
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Christopher M A Parlett
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Diamond Light Source Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- University of Manchester at Harwell, Diamond Light Source Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Oxfordshire, OX11 0FA, UK
| |
Collapse
|
12
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
13
|
Sasimowski E, Grochowicz M, Szajnecki Ł. Preparation and Spectroscopic, Thermal, and Mechanical Characterization of Biocomposites of Poly(butylene succinate) and Onion Peels or Durum Wheat Bran. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6799. [PMID: 37895780 PMCID: PMC10607975 DOI: 10.3390/ma16206799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The utilization of plant based fillers: onion peels (OP) and durum wheat bran (WB) to obtain sustainable biocomposite materials with poly(butylene succinate) (PBS) is presented in this paper. The biocomposites were first obtained in pellet form by extrusion method and then injection moldings were made from the pellets. Two kinds of biocomposites were fabricated containing 15% and 30% wt. of OP or WB. Additionally, pure PBS moldings were prepared for comparative purposes. The effect of the filler type and its amount on the chemical structure, density, thermal, and thermo-mechanical properties of the fabricated composite samples was studied. Fourier-transform infrared spectroscopy results showed that the composite preparation method had no effect on the chemical structure of composite components, but weak interactions such as hydrogen bonding between OP or WB and PBS was observed. The addition of OP or WB to the composite with PBS reduced its thermal stability in comparison with pure PBS, all studied composites start to degrade below 290 °C. Additionally, the mechanical properties of the composites are worse than PBS, as the impact strength dropped by about 70%. The deterioration of tensile strength was in the range 20-47%, and the elongation at maximum load of the composites was in the range 9.22-3.42%, whereas for pure PBS it was 16.75%. On the other hand, the crystallinity degree increased from 63% for pure PBS to 79% for composite with 30% wt. of WB. The Young's modulus increased to 160% for composition with 30% wt. of OP. Additionally, the hardness of the composites was slightly higher than PBS and was in the range 38.2-48.7 MPa. Despite the reduction in thermal stability and some mechanical properties, the studied composites show promise for everyday object production.
Collapse
Affiliation(s)
- Emil Sasimowski
- Department of Technology and Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Marta Grochowicz
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland;
| | - Łukasz Szajnecki
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, 20-614 Lublin, Poland;
| |
Collapse
|
14
|
Viel T, Cocca M, Manfra L, Caramiello D, Libralato G, Zupo V, Costantini M. Effects of biodegradable-based microplastics in Paracentrotus lividus Lmk embryos: Morphological and gene expression analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122129. [PMID: 37429489 DOI: 10.1016/j.envpol.2023.122129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Plastic pollution is a remarkable environmental issue. In fact, plastic is widespread in the lifetime and serious environmental problems are caused by the improper management of plastic end of life, being plastic litter detected in any environment. Efforts are put to implement the development of sustainable and circular materials. In this scenario, biodegradable polymers, BPs, are promising materials if correctly applied and managed at the end of life to minimize environmental problems. However, a lack of data on BPs fate and toxicity on marine organisms, limits their applicability. In this research, the impact of microplastics obtained from BPs, BMPs, were analyzed on Paracentrotus lividus. Microplastics were produced from five biodegradable polyesters at laboratory scale by milling the pristine polymers, under cryogenic conditions. Morphological analysis of P. lividus embryos exposed to polycaprolactone (PCL), polyhydroxy butyrate (PHB) and polylactic acid (PLA) showed their delay and malformations, which at molecular level are due to variation in expression levels of eighty-seven genes involved in various cellular processes, such as skeletogenesis, differentiation and development, stress, and detoxification response. Exposure to poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA) microplastics showed no detectable effects on P. lividus embryos. These findings contribute with important data on the effect of BPs on the physiology of marine invertebrates.
Collapse
Affiliation(s)
- Thomas Viel
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078, Pozzuoli, Napoli, Italy.
| | - Loredana Manfra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144, Rome, Italy
| | - Davide Caramiello
- Stazione Zoologica Anton Dohrn, Department of Marine Animal Conservation and Public Engagement, Villa Comunale, 1, 80121, Naples, Italy
| | - Giovanni Libralato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Ischia Marine Centre, Via F. Buonocore, 42, 80077, Ischia, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton, n.55, 80133, Napoli, Italy
| |
Collapse
|
15
|
Al-Shawabkeh AF. Thermodynamic characteristics of the aliphatic polyamide crystal structures: Enhancement of nylon 66α, 610α and 77γ polymers. Heliyon 2023; 9:e21042. [PMID: 37916125 PMCID: PMC10616352 DOI: 10.1016/j.heliyon.2023.e21042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
Despite the polymer industry's reliance on nylon polymers, numerous questions remain about their crystal structures, modeling, and other features. This work discusses the thermodynamic properties and molecular modeling of a polyamides nylon 66α, 610α, and 77γ crystal structure systems for use in various electronics and Nano-devices that feature distinct properties such as exceptional optoelectronic properties at a low cost compared to other structures. This study looked at the crystal structure of a linear polyamide chain made up of repeating units. The influence of the thermal expansion coefficient and thermodynamic parameters on crystal structures' characteristics at different temperatures has previously been explored. The findings of this study demonstrate, on the one hand, the influence of the amorphous phase on the final thermodynamic characteristics of semi-crystalline polymers and, on the other hand, pave the way for greater improvement in the durability of these polymers by increasing their crystalline features. The values of the thermodynamic parameters for nylon 66α, 610α and 77γ such as enthalpy (ΔHExp.) were 35.08, 40.25, and 1.44 kJ/mol, entropy (ΔSExp.) 113.75, 128.84, and 15.10 J/mol-K, free energy (ΔGExp.) was -44.57, -46.62, and -6.86 kJ/mol, respectively. When the nylon data is compared, the nylon 610α exhibits a significantly higher free energy, at high temperatures, the process is spontaneous and exergonic, making it a potentially viable material for use as fibers and engineering thermoplastics.
Collapse
Affiliation(s)
- Ali F. Al-Shawabkeh
- Department of Scientific Basic Sciences, Faculty of Engineering Technology, Al-Balqa Applied University, Amman 11134 Jordan
| |
Collapse
|
16
|
Solomevich SO, Oranges CM, Kalbermatten DF, Schwendeman A, Madduri S. Natural polysaccharides and their derivatives as potential medical materials and drug delivery systems for the treatment of peripheral nerve injuries. Carbohydr Polym 2023; 315:120934. [PMID: 37230605 DOI: 10.1016/j.carbpol.2023.120934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
Peripheral nerve repair following injury is one of the most serious problems in neurosurgery. Clinical outcomes are often unsatisfactory and associated with a huge socioeconomic burden. Several studies have revealed the great potential of biodegradable polysaccharides for improving nerve regeneration. We review here the promising therapeutic strategies involving different types of polysaccharides and their bio-active composites for promoting nerve regeneration. Within this context, polysaccharide materials widely used for nerve repair in different forms are highlighted, including nerve guidance conduits, hydrogels, nanofibers and films. While nerve guidance conduits and hydrogels were used as main structural scaffolds, the other forms including nanofibers and films were generally used as additional supporting materials. We also discuss the issues of ease of therapeutic implementation, drug release properties and therapeutic outcomes, together with potential future directions of research.
Collapse
Affiliation(s)
- Sergey O Solomevich
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Carlo M Oranges
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Daniel F Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland; Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Hejazi S, Restaino OF, Sabbah M, Zannini D, Di Girolamo R, Marotta A, D’Ambrosio S, Krauss IR, Giosafatto CVL, Santagata G, Schiraldi C, Porta R. Physicochemical Characterization of Chitosan/Poly-γ-Glutamic Acid Glass-like Materials. Int J Mol Sci 2023; 24:12495. [PMID: 37569870 PMCID: PMC10419765 DOI: 10.3390/ijms241512495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P400, Palestine;
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples “Federico II”, 80126 Naples, Italy;
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Florence, Italy
| | - C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Gabriella Santagata
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| |
Collapse
|
18
|
Kim HC, Kwon YR, Kim JS, So JH, Kim DH. Dual-Cure Adhesives Using a Newly Synthesized Itaconic Acid-Based Epoxy Acrylate Oligomer. Polymers (Basel) 2023; 15:3304. [PMID: 37571198 PMCID: PMC10422372 DOI: 10.3390/polym15153304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Herein, a novel biomass-derived itaconic acid (IA)-based epoxy acrylate oligomer (EAO) is synthesized by means of the esterification reaction of the epoxy group of bisphenol A diglycidyl ether (BADGE) with the carboxylic group of IA. The detailed chemical structure of the as-prepared bisphenol A diglycidyl ether diitaconate (BI) is characterized via the KOH value, FT-IR spectrum, and 1H-NMR spectrum. Further, a dual-cure adhesive system is formulated using BADGE, acrylic acid, and trimethylolpropane triacrylate with various BI contents, and the adhesive performance is investigated by measuring the thermal stability, adhesive properties, pencil hardness, and surface energy properties. Thus, the dual-cure adhesive with a BI content of 0.3 mol is shown to provide excellent thermal stability, along with an adhesive strength of 10.7 MPa, a pencil hardness of 2H, and a similar surface energy to that of a typical polycarbonate film. In addition, the properties of the BI-based dual-cure adhesive are compared with those of the dual-cure adhesives based on bisphenol A glycerolate diacrylate or bisphenol A glycerolate dimethacrylate.
Collapse
Affiliation(s)
- Hae-Chan Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Republic of Korea
| | - Yong-Rok Kwon
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan-si 15588, Republic of Korea
| | - Jung-Soo Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| | - Dong-Hyun Kim
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si 15588, Republic of Korea; (H.-C.K.); (Y.-R.K.); (J.-S.K.); (J.-H.S.)
| |
Collapse
|
19
|
Svyntkivska M, Makowski T, Shkyliuk I, Piorkowska E. Electrically conductive crystalline polylactide nonwovens obtained by electrospinning and modification with multiwall carbon nanotubes. Int J Biol Macromol 2023; 242:124730. [PMID: 37148928 DOI: 10.1016/j.ijbiomac.2023.124730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Polylactide nonwovens were electrospun from solutions and then crystallized, one in the α-form, and another, S-PLA made of poly(l-lactide) and poly(d-lactide) 1:1 blend, in scPLA crystals with high melting temperature, close to 220 °C. To make the nonwovens electrically conductive, they were coated with multiwall carbon nanotubes (MWCNT) by padding with an aqueous dispersion of MWCNT or dip-coating in this dispersion. The electrical conductivity evidenced the formation of the electrically conductive MWCNT network on the fiber surfaces. Depending on the coating method, the surface resistivity (Rs) of S-PLA nonwoven of 1.0 kΩ/sq. and 0.09 kΩ/sq. was reached. To study the effect of surface roughness, before the modification the nonwovens were etched with sodium hydroxide, which additionally made them hydrophilic. The effect of etching depended on the coating method and led to an increase or decrease of Rs, in the case of padding or dip-coating, respectively. All MWCNT-modified nonwovens, unetched and etched, were hydrophobic with water contact angles of 138-144°. Scanning electron microscopy corroborated the presence of MWCNT on the fiber surfaces. The impedance spectroscopy confirmed the dominant role of the network of MWCNT direct contacts on the electrical properties of MWCNT-modified nonwovens in a broad frequency range.
Collapse
Affiliation(s)
- Mariia Svyntkivska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| | - Inna Shkyliuk
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland
| | - Ewa Piorkowska
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
20
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
21
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
22
|
Sandhu A, Bhatia T. Hydrogels: From Design to Applications in Forensic Investigations. ChemistrySelect 2023. [DOI: 10.1002/slct.202204228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Anuradha Sandhu
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| | - Tejasvi Bhatia
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| |
Collapse
|
23
|
Wu X, De bruyn M, Trimmel G, Zangger K, Barta K. High-Performance Thermoplastics from a Unique Bicyclic Lignin-Derived Diol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:2819-2829. [PMID: 36844751 PMCID: PMC9945171 DOI: 10.1021/acssuschemeng.2c05998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
| | - Mario De bruyn
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Gregor Trimmel
- Institute
for Chemistry and Technology of Materials (ICTM), NAWI Graz, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Zangger
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| | - Katalin Barta
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Groningen, The Netherlands
- Department
of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010 Graz, Austria
| |
Collapse
|
24
|
Development and Evaluation of a Novel-Thymol@Natural-Zeolite/Low-Density-Polyethylene Active Packaging Film: Applications for Pork Fillets Preservation. Antioxidants (Basel) 2023; 12:antiox12020523. [PMID: 36830080 PMCID: PMC9952793 DOI: 10.3390/antiox12020523] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Sustainability, the circular economy, and the "greenhouse" effect have led the food packaging industry to use naturally available bio-compounds. The integration of such compounds in packaging films increases food safety and extends food shelf-life. The development of an active/antioxidant packaging film based on the widely commercially used low-density polyethylene, natural zeolite, and Thymol, a natural extract from thyme oil, is presented in this work. The obtained active films were characterized using X-Ray Diffraction, Fourier-Transform Infrared Spectroscopy, Scanning Electron Microscopy, and Differential Scanning Calorimetry techniques. The tensile strength, water-oxygen barrier properties, and total antioxidant activity were measured. Low-density polyethylene incorporated with Thymol@Natural Zeolite at a proportion of 15 wt% was the most promising material and was used as film to wrap-up pork fillets. The thiobarbituric acid (TBA) method and heme iron measurements indicated a delayed lipids oxidation using this film. A linear correlation between the TBA method and heme iron values seems to be established, which could result in a fast method to determine the degree of lipid oxidation in pork fillets. Finally, a two-stage diffusion process during Thymol release was observed, and the values of the diffusion coefficient was 2.09 × 10-7 and 1.21 × 10-8 cm2/s for each stage. The applied pseudo-second sorption model provided a rate constant k2 = 0.01647 (s-1). These results indicate the strong potential of such films to be used as food packaging materials free of E-number preservatives.
Collapse
|
25
|
Adjuik TA, Nokes SE, Montross MD. Biodegradability of bio‐based and synthetic hydrogels as sustainable soil amendments: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
- Department of Agronomy Iowa State University Ames Iowa USA
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering University of Kentucky Lexington Kentucky USA
| |
Collapse
|
26
|
Incorporating Graphene Nanoplatelets and Carbon Nanotubes in Biobased Poly(ethylene 2,5-furandicarboxylate): Fillers' Effect on the Matrix's Structure and Lifetime. Polymers (Basel) 2023; 15:polym15020401. [PMID: 36679281 PMCID: PMC9863989 DOI: 10.3390/polym15020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Poly(ethylene 2,5-furandicarboxylate) (PEF) nanocomposites reinforced with Graphene nanoplatelets (GNPs) and Carbon nanotubes (CNTs) were in situ synthesized in this work. PEF is a biobased polyester with physical properties and is the sustainable counterpart of Polyethylene Terephthalate (PET). Its low crystallizability affects the processing of the material, limiting its use to packaging, films, and textile applications. The crystallization promotion and the reinforcement of PEF can lead to broadening its potential applications. Therefore, PEF nanocomposites reinforced with various loadings of GNPs, CNTs, and hybrids containing both fillers were prepared, and the effect of each filler on their structural characteristics was investigated by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), and X-Ray Photoelectron Spectroscopy (XPS). The morphology and structural properties of a hybrid PEF nanocomposite were evaluated by Transmission Electron Microscopy (TEM). The thermo-oxidative degradation, as well as lifetime predictions of PEF nanocomposites, in an ambient atmosphere, were studied using Thermogravimetric Analysis (TGA). Results showed that the fillers' incorporation in the PEF matrix induced changes in the lamellar thickness and increased crystallinity up to 27%. TEM analysis indicated the formation of large CNTs aggregates in the case of the hybrid PEF nanocomposite as a result of the ultrasonication process. Finally, the presence of CNTs caused the retardation of PEF's carbonization process. This led to a slightly longer lifetime under isothermal conditions at higher temperatures, while at ambient temperature the PEF nanocomposites' lifetime is shorter, compared to neat PEF.
Collapse
|
27
|
Al-Tayyem BH, Sweileh BA. Synthesis and characterization of novel bio-based polyesters and poly(ester amide)s based on isosorbide and symmetrical cyclic anhydrides. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Pan S, Jiang Z, Qiu Z. Crystallization and mechanical property of fully biobased poly(hexamethylene 2,5-furandicarboxylate)/cellulose nanocrystals composites. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Storani A, Guerrero SA, Iglesias AA. Insights to improve the activity of glycosyl phosphorylases from Ruminococcus albus 8 with cello-oligosaccharides. Front Chem 2023; 11:1176537. [PMID: 37090251 PMCID: PMC10119399 DOI: 10.3389/fchem.2023.1176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The phosphorolysis of cello-oligosaccharides is a critical process played in the rumen by Ruminococcus albus to degrade cellulose. Cellodextrins, made up of a few glucosyl units, have gained lots of interest by their potential applications. Here, we characterized a cellobiose phosphorylase (RalCBP) and a cellodextrin phosphorylase (RalCDP) from R. albus 8. This latter was further analyzed in detail by constructing a truncated mutant (Ral∆N63CDP) lacking the N-terminal domain and a chimeric protein by fusing a CBM (RalCDP-CBM37). RalCBP showed a typical behavior with high activity on cellobiose. Instead, RalCDP extended its activity to longer soluble or insoluble cello-oligosaccharides. The catalytic efficiency of RalCDP was higher with cellotetraose and cellopentaose as substrates for both reaction directions. Concerning properties of Ral∆N63CDP, results support roles for the N-terminal domain in the conformation of the homo-dimer and conferring the enzyme the capacity to catalyze the phosphorolytic reaction. This mutant exhibited reduced affinity toward phosphate and increased to glucose-1-phosphate. Further, the CBM37 module showed functionality when fused to RalCDP, as RalCDP-CBM37 exhibited an enhanced ability to use insoluble cellulosic substrates. Data obtained from this enzyme's binding parameters to cellulosic polysaccharides agree with the kinetic results. Besides, studies of synthesis and phosphorolysis of cello-saccharides at long-time reactions served to identify the utility of these enzymes. While RalCDP produces a mixture of cello-oligosaccharides (from cellotriose to longer oligosaccharides), the impaired phosphorolytic activity makes Ral∆N63CDP lead mainly toward the synthesis of cellotetraose. On the other hand, RalCDP-CBM37 remarks on the utility of obtaining glucose-1-phosphate from cellulosic compounds.
Collapse
|
30
|
Ferrari F, Striani R, Fico D, Alam MM, Greco A, Esposito Corcione C. An Overview on Wood Waste Valorization as Biopolymers and Biocomposites: Definition, Classification, Production, Properties and Applications. Polymers (Basel) 2022; 14:polym14245519. [PMID: 36559886 PMCID: PMC9787771 DOI: 10.3390/polym14245519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Bio-based polymers, obtained from natural biomass, are nowadays considered good candidates for the replacement of traditional fossil-derived plastics. The need for substituting traditional synthetic plastics is mainly driven by many concerns about their detrimental effects on the environment and human health. The most innovative way to produce bioplastics involves the use of raw materials derived from wastes. Raw materials are of vital importance for human and animal health and due to their economic and environmental benefits. Among these, wood waste is gaining popularity as an innovative raw material for biopolymer manufacturing. On the other hand, the use of wastes as a source to produce biopolymers and biocomposites is still under development and the processing methods are currently being studied in order to reach a high reproducibility and thus increase the yield of production. This study therefore aimed to cover the current developments in the classification, manufacturing, performances and fields of application of bio-based polymers, especially focusing on wood waste sources. The work was carried out using both a descriptive and an analytical methodology: first, a description of the state of art as it exists at present was reported, then the available information was analyzed to make a critical evaluation of the results. A second way to employ wood scraps involves their use as bio-reinforcements for composites; therefore, the increase in the mechanical response obtained by the addition of wood waste in different bio-based matrices was explored in this work. Results showed an increase in Young's modulus up to 9 GPa for wood-reinforced PLA and up to 6 GPa for wood-reinforced PHA.
Collapse
|
31
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
32
|
Molecular Design of Reactive Flame Retardant for Preparing Biobased Flame Retardant Polyamide 56. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Silvianti F, Maniar D, Boetje L, Woortman AJJ, van Dijken J, Loos K. Greener Synthesis Route for Furanic-Aliphatic Polyester: Enzymatic Polymerization in Ionic Liquids and Deep Eutectic Solvents. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| |
Collapse
|
34
|
Harper E, Cunningham E, Connolly L. Using in vitro bioassays to guide the development of safer bio-based polymers for use in food packaging. FRONTIERS IN TOXICOLOGY 2022; 4:936014. [PMID: 36204697 PMCID: PMC9531239 DOI: 10.3389/ftox.2022.936014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Petroleum-based polymers traditionally used for plastic packaging production have been shown to leach dangerous chemicals such as bisphenol-A (BPA). Bio-based polymers are potentially safer alternatives, and many can be sustainably sourced from waste streams in the food industry. This study assesses bio-based polymers undergoing food packaging development for migration of endocrine disrupting leachates at the level of estrogen, androgen and progestagen nuclear receptor transcriptional activity. Reporter gene assays were coupled with migration testing, performed using standardised test conditions for storage and temperature. Test samples include nine bio-based polymers and four inorganic waste additives mixed with a traditional petroleum-based polymer, polypropylene. Thermoplastic starch material, polybutylene succinate, polycaprolactone, polybutylene adipate terephthalate (PBAT), two polylactic acid (PLA)/PBAT blends, polyhydroxybutyrate (PHB) and eggshell/polypropylene (10:90) presented no significant reduction in metabolic activity or hormonal activity under any test condition. Polypropylene (PP) presented no hormonal activity. Metabolic activity was reduced in the estrogen responsive cell line after 10 days migration testing of eggshell/polypropylene (0.1:99.9) in MeOH at 40°C, and PP in MeOH and dH20. Estrogenic agonist activity was observed after 10 days in poultry litter ash/polypropylene (10:90) in MeOH at 20°C and 40°C, poultry feather based polymer in MeOH and dH2O at 40°C, and eggshell/polypropylene (40:60) and PLA in dH2O at 40°C. Activity was within a range of 0.26-0.50 ng 17β-estradiol equivalents per ml, equating to an estrogenic potency of 3-∼2800 times less than the estrogenic leachate BPA. Poultry litter ash/polypropylene (10:90) in MeOH for 10 days presented estrogenic activity at 20°C and 40°C within the above range and anti-androgenic activity at 40°C. Progestagenic activity was not observed for any of the compounds under any test condition. Interestingly, lower concentrations of eggshell or PP may eliminate eggshell estrogenicity and PP toxicity. Alternatively eggshell may bind and eliminate the toxic elements of PP. Similarly, PLA estrogenic activity was removed in both PLA/PBAT blends. This study demonstrates the benefits of bioassay guidance in the development of safer and sustainable packaging alternatives to petroleum-based plastics. Manipulating the types of additives and their formulations alongside toxicological testing may further improve safety aspects.
Collapse
Affiliation(s)
- Emma Harper
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Eoin Cunningham
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
35
|
Klute M, Piontek A, Heim HP, Kabasci S. Effects of blending poly(lactic acid) and thermoplastic polyester polyurethanes on the mechanical and adhesive properties in two-component injection molding. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
One possible way to increase the use of bioplastics and thus contribute to a more resource-efficient and sustainable economy is to broaden the application range of such bioplastics. Poly(lactic acid) (PLA) is a promising and commercially available bio-based and biologically degradable polymer, which exhibits a high strength and stiffness but is very brittle. Blending with other polymers can lead to an enhancement of the ductility of the PLA. The goal of this work was to show that blending of PLA with a bio-based thermoplastic polyester-urethane elastomer (TPU) increases the ductility of the compound and also affects the adhesion of the layers when the materials – the modified PLA compound and the TPU – are processed via two-component (2C) injection molding to form corresponding composite parts. The results show that both goals – the increased ductility as well as the increased adhesion between the polymeric phases in 2C parts – can be reached by compounding PLA with two different bio-based polyester-based TPUs. Tensile strength and Young’s modulus of the compounds decrease according to a linear mixing rule with the addition of TPU. Elongation at break and notched Charpy impact strength increase by 750 and 200%, respectively. By addition of the TPU, the surface free energies of the compounds were increased, especially the polar parts. This led to reduced interfacial tensions between the produced compounds and the neat TPUs and thus increased the adhesion between them. For the softer TPU the adhesion was so strong that the TPU showed a cohesive failure in the 90° peel test and thus could not be separated from the compound substrate at all. For the harder TPU the bonding strength increased by 140% upon the addition of this TPU inside the hard component.
Collapse
Affiliation(s)
- Marco Klute
- University of Kassel, Institute of Material Engineering–Polymer Engineering , Mönchebergstr. 3, 34125 Kassel , Germany
| | - Alexander Piontek
- Fraunhofer UMSICHT, Institute for Environmental , Safety and Energy Technology, Osterfelder Str. 3, 46047 Oberhausen , Germany
| | - Hans-Peter Heim
- University of Kassel, Institute of Material Engineering–Polymer Engineering , Mönchebergstr. 3, 34125 Kassel , Germany
| | - Stephan Kabasci
- Fraunhofer UMSICHT, Institute for Environmental , Safety and Energy Technology, Osterfelder Str. 3, 46047 Oberhausen , Germany
| |
Collapse
|
36
|
Sawada R, Ando S. Colorless, Low Dielectric, and Optically Active Semialicyclic Polyimides Incorporating a Biobased Isosorbide Moiety in the Main Chain. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ririka Sawada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| | - Shinji Ando
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1-E4-5, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
37
|
Modification of the Maxwell-Wagner Heterogeneous Dielectric Model for Heterogeneous Polymers and Emulsions. Polymers (Basel) 2022; 14:polym14132743. [PMID: 35808788 PMCID: PMC9269600 DOI: 10.3390/polym14132743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
In heterogeneous polymers and emulsions, the volume fraction of the discrete phase and the frequency of electromagnetic waves affect the accuracy of the dielectric model. The integral method was used to modify the Maxwell–Wagner (M–W) heterogeneous dielectric theory, and a new model for the complex dielectric constant of polymers and emulsions was established. The experimental data were compared with the results of the M–W heterogeneous dielectric integral modification model and other theoretical models for different frequencies and volume fractions of the discrete phase. We discovered that with a decreasing volume fraction of the discrete phase, the dominant frequency range of the integral modification model expanded. When the volume fraction of the discrete phase is 10%, the dominant frequency range reaches 3 GHz. When the volume fraction of the discrete phase is 1%, the dominant frequency range reaches 4 GHz. When the volume fraction of the discrete phase is 0.06%, the dominant frequency range of the real part reaches 9.6 GHz, and the dominant frequency range of the imaginary part reaches 7.2 GHz. These results verify the advantages of the M–W modification model, which provides a theoretical basis to study the dielectric properties of polymers and emulsions, as well as for microwave measurement.
Collapse
|
38
|
Wu X, Galkin MV, Stern T, Sun Z, Barta K. Fully lignocellulose-based PET analogues for the circular economy. Nat Commun 2022; 13:3376. [PMID: 35697677 PMCID: PMC9192716 DOI: 10.1038/s41467-022-30735-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Polyethylene terephthalate is one of the most abundantly used polymers, but also a significant pollutant in oceans. Due to growing environmental concerns, polyethylene terephthalate alternatives are highly sought after. Here we present readily recyclable polyethylene terephthalate analogues, made entirely from woody biomass. Central to the concept is a two-step noble metal free catalytic sequence (Cu20-PMO catalyzed reductive catalytic fractionation and Raney Ni mediated catalytic funneling) that allows for obtaining a single aliphatic diol 4-(3-hydroxypropyl) cyclohexan-1-ol in high isolated yield (11.7 wt% on lignin basis), as well as other product streams that are converted to fuels, achieving a total carbon yield of 29.5%. The diol 4-(3-hydroxypropyl) cyclohexan-1-ol is co-polymerized with methyl esters of terephthalic acid and furan dicarboxylic acid, both of which can be derived from the cellulose residues, to obtain polyesters with competitive Mw and thermal properties (Tg of 70-90 °C). The polymers show excellent chemical recyclability in methanol and are thus promising candidates for the circular economy.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Maxim V Galkin
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Tobias Stern
- University of Graz, Institute of Systems Sciences, Innovation and Sustainability Research, Merangasse 18/I, 8010, Graz, Austria
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China.
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria.
| |
Collapse
|
39
|
Fadlallah S, Carboué Q, Mouterde LMM, Kayishaer A, Werghi Y, Peru AAM, Lopez M, Allais F. Synthesis and Enzymatic Degradation of Sustainable Levoglucosenone-Derived Copolyesters with Renewable Citronellol Side Chains. Polymers (Basel) 2022; 14:polym14102082. [PMID: 35631964 PMCID: PMC9146931 DOI: 10.3390/polym14102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, a renewable five-membered lactone containing citronellol (HBO-citro) was synthesized from levoglucosenone (LGO). A one-pot two-step pathway was then developed to produce a mixture of 5- and 6-membered Lactol-citro molecules (5ML and 6ML, respectively) from HBO-citro. Proton nuclear magnetic resonance (1H NMR) of a mixture of 5ML and 6ML at varying temperatures showed that the chemical shifts of the hydroxyls, as well as the 5ML:6ML ratio, are temperature-dependent. Indeed, a high temperature, such as 65 °C, led to an up-field shielding of the hydroxyl protons as well as a drop in the 5ML:6ML ratio. The monomers 5ML and 6ML were then engaged in polycondensation reactions involving diacyl chlorides. Renewable copolyesters with low glass transition temperatures (as low as −67 °C) and cross-linked citronellol chains were prepared. The polymers were then hydrolyzed using a commercial lipase from Thermomyces lanuginosus (Lipopan® 50 BG). A higher degradation rate was found for the polymers prepared using Lactol-citro molecules, compared to those obtained by the polycondensation reactions of diacyl chlorides with Triol-citro—a monomer recently obtained by the selective reduction of HBO-citro.
Collapse
|
40
|
Chabbah T, Chatti S, Zouaoui F, Jlalia I, Gaiji H, Abderrazak H, Casabianca H, Mercier R, Weidner SM, Errachid A, Marestin C, Jaffrezic-Renault N. New poly(ether-phosphoramide)s sulfides based on green resources as sensitive films for the specific impedimetric detection of nickel ions. Talanta 2022; 247:123550. [PMID: 35671579 DOI: 10.1016/j.talanta.2022.123550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
For the development of selective and sensitive chemical sensors, we have developed a new family of poly(ether-phosphoramide) polymers. These polymers were obtained with satisfactory yields by nucleophilic aromatic polycondensation using isosorbide as green resources, and bisphenol A with two novel difluoro phosphinothioic amide monomers. Unprecedented, the thiophosphorylated aminoheterocycles monomers, functionalized with two heterocyclic amine, N-methylpiperazine and morpholine were successfully obtained by nucleophilic substitution reaction of P(S)-Cl compound. The resulting polymers were characterized by different analytical techniques (NMR, MALDI-ToF MS, GPC, DSC, and ATG). The resulting partially green polymers, having tertiary phosphine sulfide with P-N side chain functionalities along the main chain of polymers are the sensitive film at the surface of a gold electrode for the impedimetric detection of Cd, Ni, Pb and Hg. The bio-based poly(ether-phosphoramide) functionalized with N-methylpiperazine modified sensor showed better analytical performance than petrochemical based polymers for the detection of Ni2+. A detection limit of 50 pM was obtained which is very low compared to the previously published electrochemical sensors for nickel detection.
Collapse
Affiliation(s)
- Taha Chabbah
- National Institute of Research and Physicochemical Analysis (INRAP), Biotechnopole of Sidi Thabet, 2020, Ariana, Tunisia; University of Tunis El Manar, Faculty of Sciences, Farhat Hached University Campus, 1068, Tunis, Tunisia
| | - Saber Chatti
- National Institute of Research and Physicochemical Analysis (INRAP), Biotechnopole of Sidi Thabet, 2020, Ariana, Tunisia
| | - Fares Zouaoui
- University of Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Ibtissem Jlalia
- National Institute of Research and Physicochemical Analysis (INRAP), Biotechnopole of Sidi Thabet, 2020, Ariana, Tunisia
| | - Houda Gaiji
- National Institute of Research and Physicochemical Analysis (INRAP), Biotechnopole of Sidi Thabet, 2020, Ariana, Tunisia
| | - Houyem Abderrazak
- National Institute of Research and Physicochemical Analysis (INRAP), Biotechnopole of Sidi Thabet, 2020, Ariana, Tunisia
| | - Hervé Casabianca
- University of Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Régis Mercier
- University of Lyon, Institute of Polymer Materials, UMR 5223, 5 Rue V. Grignard, 69622, Villeurbanne Cedex, France
| | - Steffen M Weidner
- BAM, Federal Institute of Material Research and Testing, Richard Willstätter Str. 11, D-12489, Berlin, Germany
| | - Abdelhamid Errachid
- University of Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Catherine Marestin
- University of Lyon, Institute of Polymer Materials, UMR 5223, 5 Rue V. Grignard, 69622, Villeurbanne Cedex, France
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR 5280, 5 Rue de la Doua, 69100, Villeurbanne, France.
| |
Collapse
|
41
|
Campisi S, Bellomi S, Chinchilla LE, Prati L, Villa A. Base‐free oxidative esterification of HMF over AuPd/nNiO‐TiO2. When alloying effects and metal‐support interactions converge in producing effective and stable catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sebastiano Campisi
- Università degli Studi di Milano: Universita degli Studi di Milano Chimica ITALY
| | - Silvio Bellomi
- Università degli Studi di Milano: Universita degli Studi di Milano Chimica ITALY
| | - Lidia E. Chinchilla
- University of Cadiz: Universidad de Cadiz Departamento de Ciencia de los Materiales SPAIN
| | - Laura Prati
- Università degli Studi di Milano: Universita degli Studi di Milano Chimica ITALY
| | - Alberto Villa
- Universit� degli Studi di Milano Dipartimento di Chimica via Golgi 19 20133 Milano ITALY
| |
Collapse
|
42
|
Sheldon RA, Brady D. Green Chemistry, Biocatalysis, and the Chemical Industry of the Future. CHEMSUSCHEM 2022; 15:e202102628. [PMID: 35026060 DOI: 10.1002/cssc.202102628] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
In the movement to decarbonize our economy and move away from fossil fuels we will need to harness the waste products of our activities, such as waste lignocellulose, methane, and carbon dioxide. Our wastes need to be integrated into a circular economy where used products are recycled into a manufacturing carbon cycle. Key to this will be the recycling of plastics at the resin and monomer levels. Biotechnology is well suited to a future chemical industry that must adapt to widely distributed and diverse biological chemical feedstocks. Our increasing mastery of biotechnology is allowing us to develop enzymes and organisms that can synthesize a widening selection of desirable bulk chemicals, including plastics, at commercially viable productivities. Integration of bioreactors with electrochemical systems will permit new production opportunities with enhanced productivities and the advantage of using a low-carbon electricity from renewable and sustainable sources.
Collapse
Affiliation(s)
- Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
- Department of Biotechnology, Delft University of Technology, Section BOC, van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2000, South Africa
| |
Collapse
|
43
|
Miccio LA, Borredon C, Casado U, Phan AD, Schwartz GA. Approaching Polymer Dynamics Combining Artificial Neural Networks and Elastically Collective Nonlinear Langevin Equation. Polymers (Basel) 2022; 14:polym14081573. [PMID: 35458323 PMCID: PMC9027377 DOI: 10.3390/polym14081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time-consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.
Collapse
Affiliation(s)
- Luis A. Miccio
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
- Donostia International Physics Center, P. M. de Lardizábal 4, 20018 San Sebastian, Spain
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Colon 10850, Mar del Plata 7600, Argentina;
- Correspondence: (L.A.M.); (G.A.S.)
| | - Claudia Borredon
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
| | - Ulises Casado
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), Colon 10850, Mar del Plata 7600, Argentina;
| | - Anh D. Phan
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam;
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi 12116, Vietnam
| | - Gustavo A. Schwartz
- Centro de Física de Materiales (CSIC-UPV/EHU)—Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain;
- Donostia International Physics Center, P. M. de Lardizábal 4, 20018 San Sebastian, Spain
- Correspondence: (L.A.M.); (G.A.S.)
| |
Collapse
|
44
|
Reznichenko A, Harlin A. Next generation of polyolefin plastics: improving sustainability with existing and novel feedstock base. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-04991-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
In this account, we present an overview of existing and emerging olefin production technologies, comparing them from the standpoint of carbon intensity, efficiency, feedstock type and availability. Olefins are indispensable feedstock for manufacture of polyolefin plastics and other base chemicals. Current methods of olefin production are associated with significant CO2 emissions and almost entirely rely of fossil feedstock. In order to assess potential alternatives, technical and economic maturity of six principal olefin production routes are compared in this paper. Coal (brown), oil and gas (grey), biomass (green), recycled plastic (pink) as well as carbon capture and storage (purple) and carbon capture and utilization (blue) technologies are considered. We conclude that broader adoption of biomass based “green” feedstock and introduction of recycled plastic based olefins may lead to reduced carbon footprint, however adoption of best available technologies and introduction of electrocracking to existing fossil-based “grey” olefin manufacture process can be the way to achieve highest impact most rapidly. Adoption of Power-to-X approaches to olefins starting from biogenic or atmospheric CO2 and renewable H2 can lead to ultimately carbon–neutral “blue” olefins in the long term, however substantial development and additional regulatory incentives are necessary to make the solution economically viable.
Article highlights
In this account, we introduce a color coding scheme to differentiate and compare carbon intensity and feedstock types for some of the main commercial and emerging olefin production routes.
Most viable short term improvements in CO2 emissions of olefin production will be achieved by discouraging “brown” coal based production and improving efficiency of “grey” oil and gas based processes.
Gradual incorporation of green and recycled feedstock to existing olefin production assets will allow to achieve substantial improvements in carbon efficiency in longer term.
Collapse
|
45
|
Gómez-Gast N, López Cuellar MDR, Vergara-Porras B, Vieyra H. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers. Polymers (Basel) 2022; 14:1114. [PMID: 35335445 PMCID: PMC8950292 DOI: 10.3390/polym14061114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
Initiatives to reduce plastic waste are currently under development worldwide. As a part of it, the European Union and private and public organizations in several countries are designing and implementing regulations for single-use plastics. For example, by 2030, plastic packaging and food containers must be reusable or recyclable. In another approach, researchers are developing biopolymers using biodegradable thermoplastics, such as polyhydroxyalkanoates (PHAs), to replace fossil derivatives. However, their production capacity, high production costs, and poor mechanical properties hinder the usability of these biopolymers. To overcome these limitations, biomaterials reinforced with natural fibers are acquiring more relevance as the world of bioplastics production is increasing. This review presents an overview of PHA-vegetal fiber composites, the effects of the fiber type, and the production method's impact on the mechanical, thermal, barrier properties, and biodegradability, all relevant for biopackaging. To acknowledge the behaviors and trends of the biomaterials reinforcement field, we searched for granted patents focusing on bio-packaging applications and gained insight into current industry developments and contributions.
Collapse
Affiliation(s)
- Natalia Gómez-Gast
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Ma Del Rocío López Cuellar
- Cuerpo Académico de Biotecnología Agroalimentaria (CABA), Institute of Food and Agricultural Sciences (ICAp), Autonomous University of Hidalgo State (UAEH), Av. Universidad Km. 1, Ex-Hda. De Aquetzalpa AP 32, Tulancingo de Bravo 43600, Mexico;
| | - Berenice Vergara-Porras
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Carretera Lago de Guadalupe 3.5, Colonia Margarita Maza de Juárez, Atizapán de Zaragoza 52926, Mexico; (N.G.-G.); (B.V.-P.)
| | - Horacio Vieyra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Eduardo Monroy Cardenas 2000, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
| |
Collapse
|
46
|
Star-Branched Polyamides as the Matrix in Thermoplastic Composites. Polymers (Basel) 2022; 14:polym14050942. [PMID: 35267765 PMCID: PMC8912622 DOI: 10.3390/polym14050942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study is the preparation of star-shaped branched polyamides (sPA6) with low melt viscosity, but also with improved mechanical properties by reactive extrusion. This configuration has been obtained by grafting a tri-functional, three-armed molecule: 5-aminoisophthalic-acid, used as a linking agent (LA). The balance between the fluidity, polarity and mechanical properties of sPA6s is the reason why these materials have been investigated for the impregnation of fabrics in the manufacture of thermoplastic composites. For these impregnation processes, the low viscosity of the melt has allowed the processing parameters (temperature, pressure and time) to be reduced, and its new microstructure has allowed the mechanical properties of virgin thermoplastic resins to be maintained. A significant improvement in the ultrasonic welding processes of the composites was also found when an energy director based on these materials was applied at the interface. In this work, an exhaustive microstructural characterization of the obtained sPAs is presented and related to the final properties of the composites obtained by film stacking.
Collapse
|
47
|
Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers (Basel) 2022; 14:polym14040844. [PMID: 35215757 PMCID: PMC8963078 DOI: 10.3390/polym14040844] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
PBS, an acronym for poly (butylene succinate), is an aliphatic polyester that is attracting increasing attention due to the possibility of bio-based production, as well as its balanced properties, enhanced processability, and excellent biodegradability. This brief review has the aim to provide the status concerning the synthesis, production, thermal, morphological and mechanical properties underlying biodegradation ability, and major applications of PBS and its principal copolymers.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| |
Collapse
|
48
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, El Fray M. Enzymatic Catalysis in Favor of Blocky Structure and Higher Crystallinity of Poly(Butylene Succinate)-Co-(Dilinoleic Succinate) (PBS-DLS) Copolymers of Variable Segmental Composition. MATERIALS 2022; 15:ma15031132. [PMID: 35161077 PMCID: PMC8838851 DOI: 10.3390/ma15031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
To systematically investigate the synthesis of poly(butylene succinate)-co-(dilinoleic succinate) (PBS-DLS) copolymers and to enrich the library of polyesters synthesized via a sustainable route, we conducted a two-step polycondensation using fully biobased monomers such as diethyl succinate (DS), 1,4-butanediol (1,4-BD) and dilinoleic diol (DLD) in diphenyl ether, using Candida Antarctica lipase B (CAL-B) as biocatalyst. A series of PBS-DLS copolyesters with a 90-10, 70-30 and 50-50 wt% of hard (PBS) to soft (DLS) segments ratio were compared to their counterparts, which were synthesized using heterogenous titanium dioxide/silicon dioxide (TiO2/SiO2) catalyst. Chemical structure and molecular characteristics of resulting copolymers were assessed using nuclear magnetic spectroscopy (1H- and 13C-NMR) and gel permeation chromatography (GPC), whereas thermal and thermomechanical properties as well as crystallization behavior were investigated by differential scanning microscopy (DSC), dynamic mechanical thermal analysis (DMTA), digital holographic microscopy (DHM) and X-ray diffraction (XRD). The obtained results showed that, depending on the type of catalyst, we can control parameters related to blockiness and crystallinity of copolymers. Materials synthesized using CAL-B catalysts possess more blocky segmental distribution and higher crystallinity in contrast to materials synthesized using heterogenous catalysts, as revealed by DSC, XRD and DHM measurements.
Collapse
Affiliation(s)
- Martyna Sokołowska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Al. Piastow 45, 71-311 Szczecin, Poland;
| | - Jagoda Nowak-Grzebyta
- Institute of Materials Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
| | - Ewa Stachowska
- Division of Metrology and Measurement Systems, Institute of Mechanical Technology, Poznan University of Technology, ul. Piotrowo 3, 60-965 Poznan, Poland;
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Al. Piastow 45, 71-311 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
49
|
Abstract
Large-scale worldwide production of plastics requires the use of large quantities of fossil fuels, leading to a negative impact on the environment. If the production of plastic continues to increase at the current rate, the industry will account for one fifth of global oil use by 2050. Bioplastics currently represent less than one percent of total plastic produced, but they are expected to increase in the coming years, due to rising demand. The usage of bioplastics would allow the dependence on fossil fuels to be reduced and could represent an opportunity to add some interesting functionalities to the materials. Moreover, the plastics derived from bio-based resources are more carbon-neutral and their manufacture generates a lower amount of greenhouse gasses. The substitution of conventional plastic with renewable plastic will therefore promote a more sustainable economy, society, and environment. Consequently, more and more studies have been focusing on the production of interesting bio-based building blocks for bioplastics. However, a coherent review of the contribution of fermentation technology to a more sustainable plastic production is yet to be carried out. Here, we present the recent advancement in bioplastic production and describe the possible integration of bio-based monomers as renewable precursors. Representative examples of both published and commercial fermentation processes are discussed.
Collapse
|
50
|
Rosenboom JG, Langer R, Traverso G. Bioplastics for a circular economy. NATURE REVIEWS. MATERIALS 2022; 7:117-137. [PMID: 35075395 PMCID: PMC8771173 DOI: 10.1038/s41578-021-00407-8] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 05/19/2023]
Abstract
Bioplastics - typically plastics manufactured from bio-based polymers - stand to contribute to more sustainable commercial plastic life cycles as part of a circular economy, in which virgin polymers are made from renewable or recycled raw materials. Carbon-neutral energy is used for production and products are reused or recycled at their end of life (EOL). In this Review, we assess the advantages and challenges of bioplastics in transitioning towards a circular economy. Compared with fossil-based plastics, bio-based plastics can have a lower carbon footprint and exhibit advantageous materials properties; moreover, they can be compatible with existing recycling streams and some offer biodegradation as an EOL scenario if performed in controlled or predictable environments. However, these benefits can have trade-offs, including negative agricultural impacts, competition with food production, unclear EOL management and higher costs. Emerging chemical and biological methods can enable the 'upcycling' of increasing volumes of heterogeneous plastic and bioplastic waste into higher-quality materials. To guide converters and consumers in their purchasing choices, existing (bio)plastic identification standards and life cycle assessment guidelines need revision and homogenization. Furthermore, clear regulation and financial incentives remain essential to scale from niche polymers to large-scale bioplastic market applications with truly sustainable impact.
Collapse
Affiliation(s)
- Jan-Georg Rosenboom
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|