1
|
Kumar S, Dubey N, Kumar V, Choi I, Jeon J, Kim M. Combating micro/nano plastic pollution with bioplastic: Sustainable food packaging, challenges, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125077. [PMID: 39369869 DOI: 10.1016/j.envpol.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The widespread use of plastic in food packaging provides significant challenges due to its non-biodegradability and the risk of hazardous chemicals seeping into food and the environment. This highlights the pressing need to come up with alternatives to traditional plastic that prioritize environmental sustainability, food quality, and safety. The current study presents an up-to-date examination of micro/nano plastic (MP/NP) consumption and their associated toxicity to human health, while also considering bioplastic as safer and eco-friendly alternative materials for packaging. The study contributes to a deeper comprehension of the primary materials utilized for bioplastic manufacturing and their potential for large-scale use. The key findings underscore the distinctive features of bioplastics, such as starch, polyhydroxyalkanoates, polylactic acid, and polybutylene succinate, as well as their blends with active agents, rendering them suitable for innovative food packaging applications. Moreover, the study includes a discussion of insights from various scientific literature, agency reports (governmental and non-governmental), and industry trends in bioplastic production and their potential to combat MP/NP pollution. In essence, the review highlights future research directions for the safe integration of bioplastics in food packaging, addresses outstanding questions, and proposes potential solutions to challenges linked with plastic usage.
Collapse
Affiliation(s)
- Subhash Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Namo Dubey
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Inho Choi
- Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
2
|
Guidotti G, Duelen R, Bloise N, Soccio M, Gazzano M, Aluigi A, Visai L, Sampaolesi M, Lotti N. The ad hoc chemical design of random PBS-based copolymers influences the activation of cardiac differentiation while altering the HYPPO pathway target genes in hiPSCs. BIOMATERIALS ADVANCES 2023; 154:213583. [PMID: 37604040 DOI: 10.1016/j.bioadv.2023.213583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
Cardiac tissue engineering is a cutting-edge technology aiming to replace irreversibly damaged cardiac tissue and restore contractile functionality. However, cardiac tissue engineering porous and perfusable scaffolds to enable oxygen supply in vitro and eventually promote angiogenesis in vivo are still desirable. Two fully-aliphatic random copolymers of poly(butylene succinate) (PBS), poly(butylene succinate/Pripol), P(BSBPripol), and poly(butylene/neopentyl glycol succinate), P(BSNS), containing two different subunits, neopentyl glycol and Pripol 1009, were successfully synthesized and then electrospun in tridimentional fibrous mats. The copolymers show different thermal and mechanical behaviours as result of their chemical structure. In particular, copolymerization led to a reduction in crystallinity and consequently PBS stiffness, reaching values of elastic modulus very close to those of soft tissues. Then, to check the biological suitability, human induced Pluripotent Stem Cells (hiPSCs) were directly seeded on both PBS-based copolymeric scaffolds. The results confirmed the ability of both the scaffolds to sustain cell viability and to maintain their stemness during cell expansion. Furthermore, gene expression and immunofluorescence analysis showed that P(BSBPripol) scaffold promoted an upregulation of the early cardiac progenitor and later-stage markers with a simultaneously upregulation of HYPPO pathway gene expression, crucial for mechanosensing of cardiac progenitor cells. These results suggest that the correct ad-hoc chemical design and, in turn, the mechanical properties of the matrix, such as substrate stiffness, together with surface porosity, play a critical role in regulating the behaviour of cardiac progenitors, which ultimately offers valuable insights into the development of novel bio-inspired scaffolds for cardiac tissue regeneration.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Robin Duelen
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, (PU), Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Via Salvatore Maugeri 4, 27100 Pavia, Italy
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
3
|
Thakur N, Raposo A. Development and application of fruit and vegetable based green films with natural bio-actives in meat and dairy products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6167-6179. [PMID: 37148159 DOI: 10.1002/jsfa.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
In recent years, foodborne outbreaks and food plastic waste accumulation in the environment have impelled a hunt for new, sustainable, novel and innovatory food packaging interventions to face microbial contamination, food quality and safety. Pollution caused from wastes generated by agricultural activities is one of chief rising concerns of the environmentalists across the globe. A solution to this problem is effective and economic valorization of residues from agriculture sector. It would ensure that the by-products/residues from one activity act as ingredients/raw materials for another industry. An example is fruit and vegetable waste based green films for food packaging. Edible packaging is a well-researched area of science where numerous biomaterials have been already explored. Along with dynamic barrier properties, these biofilms often exhibit antioxidant and antimicrobial properties as function of the bioactive additives (e.g. essential oils) often incorporated in them. Additionally, these films are made competent by use of recent technologies (e.g. encapsulation, nano-emulsions, radio-sensors) to ensure high end performance and meet the principles of sustainability. Livestock products such as meat, poultry and dairy products are highly perishable and depend largely upon the mercy of packaging materials to enhance their shelf life. In this review, all the above-mentioned aspects are thoroughly covered with a view to project fruit and vegetable based green films (FVBGFs) as a potential and viable packaging material for livestock products, along with a discussion on role of bio-additives, technological interventions, properties and potential applications of FVBGFs in livestock products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Livestock Products Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
4
|
Zaborowska M, Bernat K, Pszczółkowski B, Kulikowska D, Wojnowska-Baryła I. Assessment of biodegradability of cellulose and poly(butylene succinate)-based bioplastics under mesophilic and thermophilic anaerobic digestion with a view towards biorecycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:413-422. [PMID: 37354633 DOI: 10.1016/j.wasman.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Despite the increasing interest in bioplastics, there are still contradictory results on their actual biodegradability, which cause difficulties in choosing and developing appropriate sustainable treatment methods. Two biofoils (based on poly(butylene succinate) (PBS37) and cellulose (Cel37)) were anaerobically degraded during 100-day mesophilic (37 °C) and thermophilic (55 °C) tests (PBS55, Cel55). To overcome low degradation rates in mesophilic conditions, alkaline pre-treatment was also used (Pre-PBS37, Pre-Cel37). For comprehensive understanding of biodegradability, not only methane production (MP), but also the structure (topography, microscopic analysis), tensile properties, and FTIR spectra of the materials undergoing anaerobic degradation (AD) analysed. PBS37 and Pre-PBS37 were visible in 100-day degradation, and the cumulative MP reached 25.5 and 29.3 L/kg VS, respectively (4.3-4.9% of theoretical MP (TMP)). The biofoils started to show damage, losing their mechanical properties over 35 days. In contrast, PBS55 was visible for 14 days (cracks and fissures appeared), cumulative MP was 180.2 L/kg VS (30.2% of the TMP). Pieces of Cel were visible only during 2 days of degradation, and the MP was 311.4-315.0 L/kg VS (77.3-78.2% of the TMP) at 37 °C and 319.5 L/kg VS (79.3% of the TMP) at 55 °C. The FTIR spectra of Cel and PBS did not show shifts and formation of peaks. These findings showed differences in terms of the actual biodegradability of the bioplastics and provided a deeper understanding of their behaviour in AD, thus indicating limitations of AD as the final treatment of some materials, and also may support the establishment of guidelines for bioplastic management.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Katarzyna Bernat
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Bartosz Pszczółkowski
- Department of Materials and Machines Technology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dorota Kulikowska
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Irena Wojnowska-Baryła
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Savitha KS, Senthil Kumar M, Jagadish RL. Systematic approach in enhancing the selectivity of titanium tetrabutoxide towards high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
6
|
Savitha KS, Senthil Kumar M, Jagadish RL. Stannous Chloride Redefined: A Mild and an Efficient Catalyst System for Poly(butylene succinate) (PBS) Synthesis. ChemistrySelect 2023. [DOI: 10.1002/slct.202203395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Tubinakere Mandya India
| | - M. Senthil Kumar
- Alumnus, Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Tubinakere Mandya India
| |
Collapse
|
7
|
Ti(OBu)
4
/B(OBu)
3
: Deciphering the mechanism for the formation of high molecular weight poly(butylene succinate). J Appl Polym Sci 2023. [DOI: 10.1002/app.53842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
8
|
Irska I, Kramek G, Miądlicki K, Dunaj P, Berczyński S, Piesowicz E. Towards Highly Efficient, Additively Manufactured Passive Vibration Eliminators for Mechanical Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1250. [PMID: 36770255 PMCID: PMC9918935 DOI: 10.3390/ma16031250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Structural damping largely determines the dynamic properties of mechanical structures, especially those whose functioning is accompanied by time-varying loads. These loads may cause vibrations of a different nature, which adversely affects the functionality of the structure. Therefore, many studies have been carried out on vibration reduction methods over the last few years. Among them, the passive vibration damping method, wherein a suitable polymer system with appropriate viscoelastic properties is used, emerges as one of the simplest and most effective methods. In this view, a novel approach to conduct passive elimination of vibrations, consisting of covering elements of structures with low dynamic stiffness with polymeric pads, was developed. Herein, polymer covers were manufactured via fused filament fabrication technology (3D printing) and were joined to the structure by means of a press connection. Current work was focused on determining the damping properties of chosen polymeric materials, including thermoplastic elastomers (TPE). All investigated materials were characterized by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and mechanical properties (tensile test and Shore hardness). Lastly, the damping ability of pads made from different types of polymers were evaluated by means of dynamic tests.
Collapse
|
9
|
Savitha KS, Senthil Kumar M, Jagadish RL. Ti(
OBu
)
4
in combination with Sn(
Oct
)
2
: An efficient catalyst system for high molecular weight poly(butylene succinate) synthesis. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K. S. Savitha
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| | - M. Senthil Kumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - R. L. Jagadish
- Department of Polymer Science Sir M. Visvesvaraya Postgraduate Centre Mandya India
| |
Collapse
|
10
|
Tabanelli T, Soccio M, Quattrosoldi S, Siracusa V, Fiorini M, Lotti N. Priamine 1075 and catechol carbonate, a perfect match for ecofriendly production of a new renewable polyurea for sustainable flexible food packaging. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Schneider JK, Ove CA, Pirlo RK, Biffinger JC. Synthesis and characterization of thermoplastic poly(piperazine succinate) metallopolymers coordinated to ruthenium(
III
) or iron(
III
). JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Clarissa A. Ove
- Department of Chemistry University of Dayton Dayton Ohio USA
| | - Russell K. Pirlo
- Department of Chemical Engineering University of Dayton Dayton Ohio USA
| | | |
Collapse
|
12
|
Mao HI, Yang ZY, Chen CW, Rwei SP. Bio-based poly(hexamethylene 2,5-furandicarboxylate- co-2,6-naphthalate) copolyesters: a study of thermal, mechanical, and gas-barrier properties. SOFT MATTER 2022; 18:7631-7641. [PMID: 36168773 DOI: 10.1039/d2sm00689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of poly(hexamethylene 2,5-furandicarboxylate-co-2,6-naphthalate) copolyesters were synthesized using various amounts of poly(hexylene 2,5-furandicarboxylate) (PHF) and poly(hexylene 2,6-naphthalate) (PHN) via melt polymerization. The effects of introducing 2,6-naphthalene dicarboxylic acid (NDCA) on the thermal, mechanical, and gas-barrier properties were investigated. When the NDCA content was less than 30 mol%, the temperatures of crystallization (Tc) and melting (Tm) decreased as the amount of NDCA was increased owing to disturbance of the polymer-chain regularity. When the NDCA content was above 50 mol%, the Tc and Tm of the materials increased as the NDCA content was increased, showing that the dominant crystallization behavior varied from 2,5-furandicarboxylic acid to NDCA. Hence, the glass transition temperature (Tg) increased as the NDCA content was increased, which was attributed to the incorporation of NDCA with a more rigid naphthalate structure compared with the furan ring. The gas-barrier properties of the samples were observed to improve with the introduction of NDCA; this tendency could be explained by the β-relaxation behavior and free volume values of the samples in the amorphous state. The activation energy (Ea) of β-relaxation increased with the NDCA content, indicating that higher amounts of energy were needed to trigger the onset of long-range molecular motions. Free-volume calculations of the polymer structure showed that the introduction of NDCA hindered the space for gas penetration. For these reasons, the gas-barrier properties were improved and evaluated.
Collapse
Affiliation(s)
- Hsu-I Mao
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Zhi-Yu Yang
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| | - Syang-Peng Rwei
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road., Taipei, 10608, Taiwan.
| |
Collapse
|
13
|
Peñas MI, Pérez-Camargo RA, Hernández R, Müller AJ. A Review on Current Strategies for the Modulation of Thermomechanical, Barrier, and Biodegradation Properties of Poly (Butylene Succinate) (PBS) and Its Random Copolymers. Polymers (Basel) 2022; 14:1025. [PMID: 35267848 PMCID: PMC8914744 DOI: 10.3390/polym14051025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
The impact of plastics on the environment can be mitigated by employing biobased and/or biodegradable materials (i.e., bioplastics) instead of the traditional "commodities". In this context, poly (butylene succinate) (PBS) emerges as one of the most promising alternatives due to its good mechanical, thermal, and barrier properties, making it suitable for use in a wide range of applications. Still, the PBS has some drawbacks, such as its high crystallinity, which must be overcome to position it as a real and viable alternative to "commodities". This contribution covers the actual state-of-the-art of the PBS through different sections. The first section reviews the different synthesis routes, providing a complete picture regarding the obtained molecular weights and the greener alternatives. Afterward, we examine how different strategies such as random copolymerization and the incorporation of fillers can effectively modulate PBS properties to satisfy the needs for different applications. The impact of these strategies is evaluated in the crystallization behavior, crystallinity, mechanical and barrier properties, and biodegradation. The biodegradation is carefully analyzed, highlighting the wide variety of methodologies existing in the literature to measure PBS degradation through different routes (hydrolytic, enzymatic, and soil).
Collapse
Affiliation(s)
- Mario Iván Peñas
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Ricardo Arpad Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Rebeca Hernández
- Institute of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Aliotta L, Seggiani M, Lazzeri A, Gigante V, Cinelli P. A Brief Review of Poly (Butylene Succinate) (PBS) and Its Main Copolymers: Synthesis, Blends, Composites, Biodegradability, and Applications. Polymers (Basel) 2022; 14:polym14040844. [PMID: 35215757 PMCID: PMC8963078 DOI: 10.3390/polym14040844] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
PBS, an acronym for poly (butylene succinate), is an aliphatic polyester that is attracting increasing attention due to the possibility of bio-based production, as well as its balanced properties, enhanced processability, and excellent biodegradability. This brief review has the aim to provide the status concerning the synthesis, production, thermal, morphological and mechanical properties underlying biodegradation ability, and major applications of PBS and its principal copolymers.
Collapse
Affiliation(s)
- Laura Aliotta
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Maurizia Seggiani
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Vito Gigante
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| | - Patrizia Cinelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (L.A.); (M.S.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (V.G.); (P.C.)
| |
Collapse
|
15
|
Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers (Basel) 2022; 14:polym14040829. [PMID: 35215741 PMCID: PMC8878437 DOI: 10.3390/polym14040829] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022] Open
Abstract
Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today’s smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.
Collapse
|
16
|
K S S, Ravji Paghadar B, Kumar SP, R L J. Polybutylene Succinate, A potential bio-degradable polymer: Synthesis, copolymerization And Bio-degradation. Polym Chem 2022. [DOI: 10.1039/d2py00204c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(butylene succinate) is one of the emerging bio-degradable polymer, which has huge potential to be employed in a wide range of applications. Further, it is also recognized as one of...
Collapse
|
17
|
Potapov AG, Shundrina IK. Influence of Comonomers on the Properties of Butylene Succinate Copolyesters. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21050114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Guidotti G, Soccio M, Gazzano M, Siracusa V, Lotti N. Poly(Alkylene 2,5-Thiophenedicarboxylate) Polyesters: A New Class of Bio-Based High-Performance Polymers for Sustainable Packaging. Polymers (Basel) 2021; 13:polym13152460. [PMID: 34372066 PMCID: PMC8348809 DOI: 10.3390/polym13152460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the present study, 100% bio-based polyesters of 2,5-thiophenedicarboxylic acid were synthesized via two-stage melt polycondensation using glycols containing 3 to 6 methylene groups. The so-prepared samples were characterised from the molecular point of view and processed into free-standing thin films. Afterward, both the purified powders and the films were subjected to structural and thermal characterisation. In the case of thin films, mechanical response and barrier properties to O2 and CO2 were also evaluated. From the results obtained, it emerged that the length of glycolic sub-units is an effective tool to modulate the chain mobility and, in turn, the kind and amount of ordered phases developed in the samples. In addition to the usual amorphous and 3D crystalline phases, in all the samples investigated it was possible to evidence a further phase characterised by a lower degree of order (mesophase) than the crystalline one, whose amount is strictly related to the glycol sub-unit length. The relative fraction of all these phases is responsible for the different mechanical and barrier performances. Last, but not least, a comparison between thiophene-based homopolymers and their furan-based homologues was carried out.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (N.L.)
| | - Massimo Gazzano
- Institute of Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy;
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40126 Bologna, Italy
- Correspondence: (M.S.); (N.L.)
| |
Collapse
|
20
|
Chen L, Guo Y, Fu T, Zhao HB, Wang XL, Wang YZ. Targeted Copolymerization in Amorphous Regions for Constructing Crystallizable Functionalized Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lin Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
21
|
Sun Z, Jiang Z, Qiu Z. Thermal, crystallization and mechanical properties of branched Poly(butylene succinate) copolymers with 1,2-decanediol being the comonomer. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Properties of Biodegradable Films Based on Poly(butylene Succinate) (PBS) and Poly(butylene Adipate- co-Terephthalate) (PBAT) Blends †,‡. Polymers (Basel) 2020; 12:polym12102317. [PMID: 33050501 PMCID: PMC7600530 DOI: 10.3390/polym12102317] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Compression molded biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) at varying weights were prepared, and their relevant properties for packaging applications are here reported. The melt rheology of the blends was first studied, and the binary PBS/PBAT blends exhibited marked shear thinning and complex thermoreological behavior, due to the formation of a co-continuous morphology in the 50 wt% blend. The films were characterized by infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), mechanical tensile tests, scanning electron microscopy (SEM), and oxygen and water vapor permeability. PBS crystallization was inhibited in the blends with higher contents of PBAT, and FTIR and SEM analysis suggested that limited interactions occur between the two polymer phases. The films showed increasing stiffness as the PBS percentage increased; further, a sharp decrease in elongation at break was noticed for the films containing percentages of PBS greater than 25 wt%. Gas permeability decreased with increasing PBS content, indicating that the barrier properties of PBS can be tuned by blending with PBAT. The results obtained point out that the blend containing 25 wt% PBS is a good compromise between elastic modulus (135 MPa) and deformation at break (390%) values. Overall, PBS/PBAT blends represent an alternative for packaging films, as they combine biodegradability, good barrier properties and reasonable mechanical behavior.
Collapse
|
23
|
Little A, Pellis A, Comerford JW, Naranjo-Valles E, Hafezi N, Mascal M, Farmer TJ. Effects of Methyl Branching on the Properties and Performance of Furandioate-Adipate Copolyesters of Bio-Based Secondary Diols. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:14471-14483. [PMID: 33014637 PMCID: PMC7525809 DOI: 10.1021/acssuschemeng.0c04513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Furandioate-adipate copolyesters are an emerging class of bio-based biodegradable polymers with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT). Furandioate-adipate polyesters have almost exclusively been prepared with conventional primary (1°) alcohol diols, while secondary (2°) alcohol diol monomers have largely been overlooked until now, despite preliminary observations that using methyl-branched diols increases the T g of the resultant polyesters. Little is known of what impact the use of 2° alcohol diols has on other properties such as material strength, hydrophobicity, and rate of enzymatic hydrolysis-all key parameters for performance and end-of-life. To ascertain the effects of using 2° diols on the properties of furandioate-adipate copolyesters, a series of polymers from diethyl adipate (DEA) and 2,5-furandicarboxylic acid diethyl ester (FDEE) using different 1° and 2° alcohol diols was prepared. Longer transesterification times and greater excesses of diol (diol/diester molar ratio of 2:1) were found to be necessary to achieve M ws > 20 kDa using 2° alcohol diols. All copolyesters from 2° diols were entirely amorphous and exhibited higher T gs than their linear equivalents from 1° diols. Compared to linear poly(1,4-butyleneadipate-co-1,4-butylenefurandioate), methyl-branched, poly(2,5-hexamethyleneadipate-co-2,5-hexamethylenefurandioate) (0:7:0.3 furandioate/adipate ratio) displayed both higher modulus (67.8 vs 19.1 MPa) and higher extension at break (89.7 vs 44.5 mm). All other methyl-branched copolyesters displayed lower modulus but retained higher extension at break compared with their linear analogues. Enzymatic hydrolysis studies using Humicola insolens cutinase revealed that copolyesters from 2° alcohol diols have significantly decreased rates of biodegradation than their linear equivalents synthesized using 1° alcohol diols, allowing for fine-tuning of polymer stability. Hydrophobicity, as revealed by water contact angles, was also found to generally increase through the introduction of methyl branching, demonstrating potential for these materials in coatings applications.
Collapse
Affiliation(s)
- Alastair Little
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Alessandro Pellis
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
- Department of Agrobiotechnology, Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Straβe 20, Tulln an der Donau 3430, Austria
| | - James W Comerford
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Edwin Naranjo-Valles
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Nema Hafezi
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Mark Mascal
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, California 95616, United States
| | - Thomas J Farmer
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
24
|
Guidotti G, Soccio M, Posati T, Sotgiu G, Tiboni M, Barbalinardo M, Valle F, Casettari L, Zamboni R, Lotti N, Aluigi A. Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Quattrosoldi S, Soccio M, Gazzano M, Lotti N, Munari A. Fully biobased, elastomeric and compostable random copolyesters of poly(butylene succinate) containing Pripol 1009 moieties: Structure-property relationship. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Pérez-Camargo RA, Liu G, Cavallo D, Wang D, Müller AJ. Effect of the Crystallization Conditions on the Exclusion/Inclusion Balance in Biodegradable Poly(butylene succinate- ran-butylene adipate) Copolymers. Biomacromolecules 2020; 21:3420-3435. [PMID: 32662988 DOI: 10.1021/acs.biomac.0c00847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biomedical applications of polymers require precise control of the solid-state structure, which is of particular interest for biodegradable copolymers. In this work, we evaluated the influence of crystallization conditions on the comonomer exclusion/inclusion balance of biodegradable poly(butylene succinate-ran-butylene adipate) (PBSA) isodimorphic random copolymers. Regardless of the crystallization conditions, the copolymers retain their isodimorphic character, displaying a pseudo-eutectic behavior with crystallization in the entire composition range. This illustrates the thermodynamic nature of the isodimorphic behavior for PBSA random copolymers. However, depending on the composition, the crystallization conditions affect the exclusion/inclusion balance of the comonomers. Fast cooling favors butylene adipate (BA) inclusion inside the poly(butylene succinate) (PBS) crystals, whereas isothermal crystallization strongly limits it. PBA-rich compositions behave differently. Both fast and slow crystallization formed the β-phase, whereas BS unit inclusion is favored independently of the cooling conditions. During successive self-nucleation and annealing, the BA inclusion is intermediate between non-isothermal and isothermal conditions, while the crystalline structure of the PBA phase changes from the β-phase to the more stable α-phase. We propose a simple crystallographic model to explain the changes in the unit cell dimension of the copolymers.
Collapse
Affiliation(s)
- Ricardo Arpad Pérez-Camargo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Engineering Plastics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro J Müller
- POLYMAT and Polymer Sciences and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
27
|
Yang ZY, Chen CW, Rwei SP. Influence of asymmetric substituent group 2-methyl-1,3-propanediol on bio-based poly(propylene furandicarboxylate) copolyesters. SOFT MATTER 2020; 16:402-410. [PMID: 31789335 DOI: 10.1039/c9sm02081k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of bio-based poly(propylene-co-2-methyl-1,3-propanediol 2,5-furandicarboxylate) (PPMF) copolyesters, with various compositions from poly(propylene 2,5-furandicarboxylate) (PPF) to poly(2-methyl-1,3-propylene 2,5-furandicarboxylate) (PMePF), were synthesized by conventional melt polymerization. The effects of the substituent group to PPF on the thermal properties, mechanical properties, and gas barrier properties were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile testing, and the oxygen permeation test. The introduction of the methyl group with a hydrogen atom altered the thermal behavior and gas barrier properties of copolyesters, suggesting that the glass temperature (Tg) and the melting temperature (Tm) were decreased as the 2-methyl-1,3-propanediol (MPO) content increased. PPF exhibited the highest Tm and Tg of 175.9 °C and 83.0 °C with a melting enthalpy (ΔHm) of 38.6 J g-1, and poly(2-methyl-1,3-propylene 2,5-furandicarboxylate) formed as an amorphous polyester. Moreover, the effect of a substituent methyl group on the barrier properties was attributed to β relaxation and fraction free volume, which could be raised by replacing the methyl group with a hydrogen atom for PPF, weakening the barrier properties.
Collapse
Affiliation(s)
- Zhi-Yu Yang
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei, 10608, Taiwan, Republic of China.
| | | | | |
Collapse
|
28
|
Guidotti G, Soccio M, Lotti N, Siracusa V, Gazzano M, Munari A. New multi-block copolyester of 2,5-furandicarboxylic acid containing PEG-like sequences to form flexible and degradable films for sustainable packaging. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108963] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Potapov AG, Shundrina IK. Effect of Aliphatic Diols and Dicarboxylic Acids on the Properties of Ethylene Succinate Copolyesters. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19050146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Chakravartula SSN, Soccio M, Lotti N, Balestra F, Dalla Rosa M, Siracusa V. Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2454. [PMID: 31374873 PMCID: PMC6696009 DOI: 10.3390/ma12152454] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/30/2019] [Indexed: 12/05/2022]
Abstract
Edible films and coatings gained renewed interest in the food packaging sector with polysaccharide and protein blending being explored as a promising strategy to improve properties of edible films. The present work studies composite edible films in different proportions of pectin (P), alginate (A) and whey Protein concentrate (WP) formulated with a simplex centroid mixture design and evaluated for physico-chemical characteristics to understand the effects of individual components on the final film performance. The studied matrices exhibited good film forming capacity, except for whey protein at a certain concentration, with thickness, elastic and optical properties correlated to the initial solution viscosity. A whey protein component in general lowered the viscosity of the initial solutions compared to that of alginate or pectin solutions. Subsequently, a whey protein component lowered the mechanical strength, as well as the affinity for water, as evidenced from an increasing contact angle. The effect of pectin was reflected in the yellowness index, whereas alginate and whey protein affected the opacity of film. Whey protein favored higher opacity, lower gas barrier values and dense structures, resulting from the polysaccharide-protein aggregates. All films displayed however good thermal stability, with degradation onset temperatures higher than 170 °C.
Collapse
Affiliation(s)
- Swathi Sirisha Nallan Chakravartula
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Michela Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Federica Balestra
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences- DISTAL, University of Bologna, Campus of Food Science, P.zza Goidanich 60, 47521 Cesena, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| |
Collapse
|
31
|
Siracusa V. Microbial Degradation of Synthetic Biopolymers Waste. Polymers (Basel) 2019; 11:polym11061066. [PMID: 31226767 PMCID: PMC6630276 DOI: 10.3390/polym11061066] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 11/16/2022] Open
Abstract
Over the last ten years, the demand of biodegradable polymers has grown at an annual rate of 20–30%. However, the market share is about less than 0.1% of the total plastic production due to their lower performances, higher price and limited legislative attention in respect to the standard materials. The biodegradability as a functional added property is often not completely perceived from the final consumers. However, the opportunity to use renewable resources and to reduce the dependency from petroleum resources could become an incentive to accelerate their future growth. Renewable raw materials, coming from industrial wastes such as oilseed crops, starch from cereals and potatoes, cellulose from straw and wood, etc., can be converted into chemical intermediates and polymers, in order to substitute fossil fuel feedstock. The introduction of these new products could represent a significant contribution to sustainable development. However, the use of renewable resources and the production of the bioplastics are no longer a guarantee for a minimal environmental impact. The production process as well as their technical performances and their ultimate disposal has to be carefully considered. Bioplastics are generally biodegradable, but the diffusion of the composting technology is a prerequisite for their development. Efforts are required at industry level in order to develop less expensive and high performance products, with minimal environmental impact technologies.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
32
|
Qi J, Wu J, Chen J, Wang H. An investigation of the thermal and (bio)degradability of PBS copolyesters based on isosorbide. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2018.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Guidotti G, Soccio M, Siracusa V, Gazzano M, Munari A, Lotti N. Novel Random Copolymers of Poly(butylene 1,4-cyclohexane dicarboxylate) with Outstanding Barrier Properties for Green and Sustainable Packaging: Content and Length of Aliphatic Side Chains as Efficient Tools to Tailor the Material's Final Performance. Polymers (Basel) 2018; 10:E866. [PMID: 30960791 PMCID: PMC6404084 DOI: 10.3390/polym10080866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/05/2022] Open
Abstract
The present paper describes the synthesis of novel bio-based poly(butylene 1,4-cyclohexane dicarboxylate)-containing random copolymers for sustainable and flexible packaging applications. On one side, the linear butylene moiety has been substituted by glycol subunits with alkyl pendant groups of different length. On the other side, copolymers with different cis/trans isomer ratio of cyclohexane rings have been synthesized. The prepared samples were subjected to molecular, thermal, diffractometric, and mechanical characterization. The barrier performances to O₂, CO₂, and N₂ gases were also evaluated. The presence of side alkyl groups did not alter the thermal stability, whereas it significantly influences the formation of ordered phases that deeply affect the functional properties, mainly in terms of mechanical response and barrier performance. In particular, the final materials present higher flexibility and significantly improved barrier properties with respect to the homopolymer and most polymers widely employed for flexible packaging. The improvement due to copolymerization was more pronounced in the case of higher co-unit-containing copolymers and for the samples with cyclohexane rings in the trans conformation.
Collapse
Affiliation(s)
- Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.
| | - Andrea Munari
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
34
|
Hu H, Zhang R, Shi L, Ying WB, Wang J, Zhu J. Modification of Poly(butylene 2,5-furandicarboxylate) with Lactic Acid for Biodegradable Copolyesters with Good Mechanical and Barrier Properties. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02169] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Lei Shi
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Wu Bin Ying
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People’s Republic of China
| |
Collapse
|
35
|
Guidotti G, Soccio M, Lotti N, Gazzano M, Siracusa V, Munari A. Poly(propylene 2,5-thiophenedicarboxylate) vs. Poly(propylene 2,5-furandicarboxylate): Two Examples of High Gas Barrier Bio-Based Polyesters. Polymers (Basel) 2018; 10:E785. [PMID: 30960710 PMCID: PMC6403766 DOI: 10.3390/polym10070785] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022] Open
Abstract
Both academia and industry are currently devoting many efforts to develop high gas barrier bioplastics as substitutes of traditional fossil-based polymers. In this view, this contribution presents a new biobased aromatic polyester, i.e., poly(propylene 2,5-thiophenedicarboxylate) (PPTF), which has been compared with the furan-based counterpart (PPF). Both biopolyesters have been characterized from the molecular, thermo-mechanical and structural points of view. Gas permeability behavior has been evaluated with respect to 100% oxygen, carbon dioxide and nitrogen at 23 °C. In case of CO₂ gas test, gas transmission rate has been also measured at different temperatures. The permeability behavior at different relative humidity has been investigated for both biopolyesters, the thiophen-containing sample demonstrating to be better than the furan-containing counterpart. PPF's permeability behavior became worse than PPTF's with increasing RH, due to the more polar nature of the furan ring. Both biopolyesters under study are characterized by superior gas barrier performances with respect to PEF and PET. With the simple synthetic strategy adopted, the exceptional barrier properties render these new biobased polyesters interesting alternatives in the world of green and sustainable packaging materials. The different polarity and stability of heterocyclic rings was revealed to be an efficient tool to tailor the ability of crystallization, which in turn affects mechanical and barrier performances.
Collapse
Affiliation(s)
- Giulia Guidotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Michelina Soccio
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Massimo Gazzano
- Organic Synthesis and Photoreactivity Institute, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy.
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| |
Collapse
|
36
|
Siracusa V, Genovese L, Ingrao C, Munari A, Lotti N. Barrier Properties of Poly(Propylene Cyclohexanedicarboxylate) Random Eco-Friendly Copolyesters. Polymers (Basel) 2018; 10:E502. [PMID: 30966536 PMCID: PMC6415378 DOI: 10.3390/polym10050502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 11/16/2022] Open
Abstract
Random copolymers of poly(propylene 1,4-cyclohexanedicarboxylate) containing different amounts of neopentyl glycol sub-unit were investigated from the gas barrier point of view at the standard temperature of analysis (23 °C) with respect to the three main gases used in food packaging field: N₂, O₂, and CO₂. The effect of temperature was also evaluated, considering two temperatures close to the Tg sample (8 and 15 °C) and two above Tg (30 and 38 °C). Barrier performances were checked after food contact simulants and in different relative humidity (RH) environments obtained with two saturated saline solutions (Standard Atmosphere, 23 °C, 85% of RH, with saturated KCl solution; Tropical Climate, 38 °C, 90% RH, with saturated KNO₃ solution). The results obtained were compared to those of untreated film, which was used as a reference. The relationships between the gas transmission rate, the diffusion coefficients, the solubility, and the copolymer composition were established. The results highlighted a correlation between barrier performance and copolymer composition and the applied treatment. In particular, copolymerization did not cause a worsening of the barrier properties, whereas the different treatments differently influenced the gas barrier behavior, depending on the chemical polymer structure. After treatment, Fourier transform infrared analysis confirmed the chemical stability of these copolymers. Films were transparent, with a light yellowish color, slightly more intense after all treatments.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| | - Laura Genovese
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| | - Carlo Ingrao
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania (CT), Italy.
| | - Andrea Munari
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| | - Nadia Lotti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna (BO), Italy.
| |
Collapse
|
37
|
Hong G, Cheng H, Meng Y, Lin J, Chen Z, Zhang S, Song W. Mussel-Inspired Polydopamine as a Green, Efficient, and Stable Platform to Functionalize Bamboo Fiber with Amino-Terminated Alkyl for High Performance Poly(butylene succinate) Composites. Polymers (Basel) 2018; 10:E461. [PMID: 30966496 PMCID: PMC6415363 DOI: 10.3390/polym10040461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 11/17/2022] Open
Abstract
A new and eco-friendly mussel-inspired surface modification pathway for bamboo fiber (BF) is presented in this study. The self-assembly polydopamine (PDA) coating can firmly adhere on BF surface, which also serves as a bridge to graft octadecylamine (ODA) for hydrophobic surface preparation. The as-formed PDA/ODA hybrid layer could supply abundant hydrophobic long-chain alkyls groups and generated a marked increase in BF surface roughness and a marked decrease in surface free energy. These changes provided advantages to improve fiber⁻matrix interfacial adhesion and wettability. Consequently, high performance was achieved by incorporating the hybrid modified BF into the polybutylene succinate (PBS) matrix. The resultant composite exhibited excellent mechanical properties, particularly tensile strength, which markedly increased by 77.2%. Meanwhile, considerable high water resistance with an absorption rate as low as 5.63% was also achieved. The gratifying macro-performance was primarily attributed to the excellent interfacial adhesion attained by hydrogen bonding and physical intertwining between the PDA/ODA coating on the BF and the PBS matrix, which was further determined by fracture morphology observations and dynamic mechanical analysis. Owing to the superior adhesive capacity of PDA, this mussel-inspired surface modification method may result in wide-ranging applications in polymer composites and be adapted to all natural fibers.
Collapse
Affiliation(s)
- Gonghua Hong
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Haitao Cheng
- Department of Biomaterials, International Center for Bamboo and Rattan, Beijing 100102, China.
| | - Yang Meng
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianyong Lin
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhenghao Chen
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shuangbao Zhang
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Wei Song
- MOE Key Laboratory of Wooden Material Science and Application, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
38
|
Pérez-Camargo RA, Arandia I, Safari M, Cavallo D, Lotti N, Soccio M, Müller AJ. Crystallization of isodimorphic aliphatic random copolyesters: Pseudo-eutectic behavior and double-crystalline materials. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.02.037] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|