1
|
Goncharuk O, Siryk O, Frąc M, Guzenko N, Samchenko K, Terpiłowski K, Sternik D, Szewczuk-Karpisz K. Synthesis, characterization and biocompatibility of hybrid hydrogels based on alginate, κ-carrageenan, and chitosan filled with montmorillonite clay. Int J Biol Macromol 2024; 278:134703. [PMID: 39151853 DOI: 10.1016/j.ijbiomac.2024.134703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
New hybrid hydrogel composites based on a mixture of natural polysaccharides (sodium alginate, κ-carrageenan, and chitosan) filled with the clay mineral of natural origin, montmorillonite (MMT), were studied. The structure of intercalated/flocculated MMT distribution in the interpenetrating network of polysaccharide matrix was characterized using FTIR, X-ray diffraction, and SEM techniques. Swelling kinetics was investigated using the weight analysis, whereas the phase transition of water in the composition of hybrid hydrogels, by DSC method. Their biosafety was estimated using the Nelyubov method, germination test on cress (L. sativum) seeds, and metabolic fingerprinting of microbial communities and dehydrogenase assay. The obtained results indicated promising water-retaining properties of the synthesized materials. The hydrogels had a good sorption affinity for cadmium (Cd) ions confining bioavailability of the selected toxic heavy metal. They were safe for soil microorganisms and did not generate metabolic stress for them. Moreover, they did not reduce the viability of pea seeds. Thus, the development of biosafe hybrid hydrogel composites with a comprehensive, good effect on the environment could be considered as successful.
Collapse
Affiliation(s)
- Olena Goncharuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskogo Blvd., 03142 Kyiv, Ukraine
| | - Olena Siryk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskogo Blvd., 03142 Kyiv, Ukraine
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Nataliia Guzenko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov str., 03164 Kyiv, Ukraine
| | - Kateryna Samchenko
- F.D. Ovcharenko Institute of Biocolloidal Chemistry, NAS of Ukraine, 42 Vernadskogo Blvd., 03142 Kyiv, Ukraine
| | - Konrad Terpiłowski
- Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq.3, 20-031 Lublin, Poland
| | - Dariusz Sternik
- Maria Curie-Sklodowska University, M. Curie-Sklodowska Sq.3, 20-031 Lublin, Poland
| | | |
Collapse
|
2
|
Serwecińska L, Font-Nájera A, Strapagiel D, Lach J, Tołoczko W, Bołdak M, Urbaniak M. Sewage sludge fertilization affects microbial community structure and its resistome in agricultural soils. Sci Rep 2024; 14:21034. [PMID: 39251745 PMCID: PMC11385149 DOI: 10.1038/s41598-024-71656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Global sewage sludge production is rapidly increasing, and its safe disposal is becoming an increasingly serious issue. One of the main methods of municipal sewage sludge management is based on its agricultural use. The wastewater and sewage sludge contain numerous antibiotic resistance genes (ARGs), and its microbiome differs significantly from the soil microbial community. The aim of the study was to assess the changes occurring in the soil microbial community and resistome after the addition of sewage sludge from municipal wastewater treatment plant (WWTP) in central Poland, from which the sludge is used for fertilizing agricultural soils on a regular basis. This study used a high-throughput shotgun metagenomics approach to compare the microbial communities and ARGs present in two soils fertilized with sewage sludge. The two soils represented different land uses and different physicochemical and granulometric properties. Both soils were characterized by a similar taxonomic composition of the bacterial community, despite dissimilarities between soils properties. Five phyla predominated, viz. Planctomycetes, Actinobacteria, Proteobacteria, Chloroflexi and Firmicutes, and they were present in comparable proportions in both soils. Network analysis revealed that the application of sewage sludge resulted in substantial qualitative and quantitative changes in bacterial taxonomic profile, with most abundant phyla being considerably depleted and replaced by Proteobacteria and Spirochaetes. In addition, the ratio of oligotrophic to copiotrophic bacteria substantially decreased in both amended soils. Furthermore, fertilized soils demonstrated greater diversity and richness of ARGs compared to control soils. The increased abundance concerned mainly genes of resistance to antibiotics most commonly used in human and animal medicine. The level of heavy metals in sewage sludge was low and did not exceed the standards permitted in Poland for sludge used in agriculture, and their level in fertilized soils was still inconsiderable.
Collapse
Affiliation(s)
- Liliana Serwecińska
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland.
| | - Arnoldo Font-Nájera
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90‑364, Lodz, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 139, 90-235, Lodz, Poland
| | - Wojciech Tołoczko
- Department of Physical Geography, Faculty of Geographical Sciences, University of Lodz, Narutowicza 88, 90-139, Lodz, Poland
| | - Małgorzata Bołdak
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Mickiewicza 21, 31-120, Kraków, Poland
| | - Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90‑237, Lodz, Poland
| |
Collapse
|
3
|
Mo X, Huang Q, Chen C, Xia H, Riaz M, Liang X, Li J, Chen Y, Tan Q, Wu S, Hu C. Characteristics of Rhizosphere Microbiome, Soil Chemical Properties, and Plant Biomass and Nutrients in Citrus reticulata cv. Shatangju Exposed to Increasing Soil Cu Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:2344. [PMID: 39273828 PMCID: PMC11397084 DOI: 10.3390/plants13172344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
The prolonged utilization of copper (Cu)-containing fungicides results in Cu accumulation and affects soil ecological health. Thus, a pot experiment was conducted using Citrus reticulata cv. Shatangju with five Cu levels (38, 108, 178, 318, and 388 mg kg-1) to evaluate the impacts of the soil microbial processes, chemistry properties, and citrus growth. These results revealed that, with the soil Cu levels increased, the soil total Cu (TCu), available Cu (ACu), organic matter (SOM), available potassium (AK), and pH increased while the soil available phosphorus (AP) and alkali-hydrolyzable nitrogen (AN) decreased. Moreover, the soil extracellular enzyme activities related to C and P metabolism decreased while the enzymes related to N metabolism increased, and the expression of soil genes involved in C, N, and P cycling was regulated. Moreover, it was observed that tolerant microorganisms (e.g., p_Proteobacteria, p_Actinobacteria, g_Lysobacter, g_Sphingobium, f_Aspergillaceae, and g_Penicillium) were enriched but sensitive taxa (p_Myxococcota) were suppressed in the citrus rhizosphere. The citrus biomass was mainly positively correlated with soil AN and AP; plant N and P were mainly positively correlated with soil AP, AN, and acid phosphatase (ACP); and plant K was mainly negatively related with soil β-glucosidase (βG) and positively related with the soil fungal Shannon index. The dominant bacterial taxa p_Actinobacteriota presented positively correlated with the plant biomass and plant N, P, and K and was negatively correlated with plant Cu. The dominant fungal taxa p_Ascomycota was positively related to plant Cu but negatively with the plant biomass and plant N, P, and K. Notably, arbuscular mycorrhizal fungi (p_Glomeromycota) were positively related with plant P below soil Cu 108 mg kg-1, and pathogenic fungi (p_Mortierellomycota) was negatively correlated with plant K above soil Cu 178 mg kg-1. These findings provided a new perspective on soil microbes and chemistry properties and the healthy development of the citrus industry at increasing soil Cu levels.
Collapse
Affiliation(s)
- Xiaorong Mo
- Guangxi Key Laboratory of Marine Environment Change and Disaster in Beibu Gulf, College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qichun Huang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Chuanwu Chen
- Guangxi Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Hao Xia
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences (AAAS), Hefei 230001, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaomin Liang
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinye Li
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yilin Chen
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Songwei Wu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengxiao Hu
- Microelement Research Center, Hubei Provincial Engineering Laboratory for New Fertilizers, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Baronti S, Montagnoli A, Beatrice P, Danieli A, Maienza A, Vaccari FP, Casini D, Di Gennaro SF. Above- and below-ground morpho-physiological traits indicate that biochar is a potential peat substitute for grapevine cuttings nursery production. Sci Rep 2024; 14:17185. [PMID: 39060320 PMCID: PMC11282078 DOI: 10.1038/s41598-024-67766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The growing demand for grapevine planting materials, due to growing global viticulture, is promoting research studies to improve vineyard sustainability. In greenhouse nurseries, peat is the most common growing medium component used although is an expensive and non-renewable material. Indeed, the reduction of peat exploitation is receiving great attention, and currently, several materials are being investigated as peat substitutes for composing the cultivation substrates. Biochar, a carbon-rich, recalcitrant charred organic co-product of the pyrolysis or gasification process, has emerged as a potentially promising replacement for soilless substrates in nursery plant material propagation. Although several studies carried out at greenhouse nurseries have shown that biochar, can improve plant growth, only a few studies have focused on the production of grapevine plant material. To fulfil this knowledge gap and push forward the sustainability of the nursery sector, we evaluated above and below-ground morpho-physiological traits of one-year-old potted grapevine cuttings growing with 30% volume of four different biochar types (i.e., from pyrolysis and gasification) mixed with commercial peat. The present study shows that biochar can be used in growing media mixes without adverse effects on roots, improves soil water retention and leaf water potential, and improves the effects on soil microbiology.
Collapse
Affiliation(s)
- S Baronti
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - A Montagnoli
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - P Beatrice
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy.
| | - A Danieli
- Department of Biotechnology and Life Science, University of Insubria, Via Dunant, 3, 21100, Varese, Italy
| | - A Maienza
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - F P Vaccari
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| | - D Casini
- RE-CORD-Renewable Energy Consortium for Research and Demonstration, Viale Kennedy, 182, 50038, Scarperia e San Piero, FI, Italy
| | - S F Di Gennaro
- Institute of BioEconomy - National Research Council (IBE CNR), Via Madonna del Piano 10, Sesto Fiorentino, 50019, Florence, Italy
| |
Collapse
|
5
|
Picariello E, De Nicola F. Recover of Soil Microbial Community Functions in Beech and Turkey Oak Forests After Coppicing Interventions. MICROBIAL ECOLOGY 2024; 87:86. [PMID: 38940921 PMCID: PMC11213729 DOI: 10.1007/s00248-024-02402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Forest management influences the occurrence of tree species, the organic matter input to the soil decomposer system, and hence, it can alter soil microbial community and key ecosystem functions it performs. In this study, we compared the potential effect of different forest management, coppice and high forest, on soil microbial functional diversity, enzyme activities and chemical-physical soil properties in two forests, turkey oak and beech, during summer and autumn. We hypothesized that coppicing influences soil microbial functional diversity with an overall decrease. Contrary to our hypothesis, in summer, the functional diversity of soil microbial community was higher in both coppice forests, suggesting a resilience response of the microbial communities in the soil after tree cutting, which occurred 15-20 years ago. In beech forest under coppice management, a higher content of soil organic matter (but also of soil recalcitrant and stable organic carbon) compared to high forest can explain the higher soil microbial functional diversity and metabolic activity. In turkey oak forest, although differences in functional diversity of soil microbial community between management were observed, for the other investigated parameters, the differences were mainly linked to seasonality. The findings highlight that the soil organic matter preservation depends on the type of forest, but the soil microbial community was able to recover after about 15 years from coppice intervention in both forest ecosystems. Thus, the type of management implemented in these forest ecosystems, not negatively affecting soil organic matter pool, preserving microbial community and potentially soil ecological functions, is sustainable in a scenario of climate change.
Collapse
Affiliation(s)
- Enrica Picariello
- Department of Sciences and Technologies, University of Sannio, 82100, Benevento, Italy.
| | - Flavia De Nicola
- Department of Sciences and Technologies, University of Sannio, 82100, Benevento, Italy
| |
Collapse
|
6
|
Urbaniak M, Mierzejewska-Sinner E, Bednarek A, Krauze K, Włodarczyk-Marciniak R. Microbial response to Nature-Based Solutions in urban soils: A comprehensive analysis using Biolog® EcoPlates™. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172360. [PMID: 38614349 DOI: 10.1016/j.scitotenv.2024.172360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The study presents a comprehensive examination of changes in soil microbial functional diversity (hereafter called microbial activity) following the implementation of Nature-Based Solutions (NBS) in urban areas. Utilizing the Biolog® EcoPlates™ technique, the study explored variations in microbial diversity in urban soil under NBSs implementation across timespan of two years. Significant differences in microbial activity were observed between control location and those with NBS implementations, with seasonal variations playing a crucial role. NBS positively impacted soil microbial activity especially at two locations: infiltration basin and wild flower meadow showing the most substantial increase after NBS implementation. The study links rainfall levels to microbial functional diversity, highlighting the influence of climatic conditions on soil microbiome. The research investigates also the utilization of different carbon sources by soil microorganisms, shedding light on the specificity of substrate utilization across seasons and locations. The results demonstrate that NBSs implementations lead to changes in substrate utilization patterns, emphasizing the positive influence of NBS on soil microbial communities. Likewise, biodiversity indices, such as Shannon-Weaver diversity (H'), Shannon Evenness Index (E), and substrate richness index (S), exhibit significant variations in response to NBS. Notably, NBS implementation positively impacted H' and E indexes, especially in infiltration basin and wild flower meadow, underlining the benefits of NBS for enhancing microbial diversity. The obtained results demonstrated valuable insight into the dynamic interactions between NBS implementation and soil microbial activity. The findings underscore the potential of NBS to positively influence soil microbial diversity in urban environments, contributing to urban sustainability and soil health. The study emphasizes the importance of monitoring soil microbial activity to assess the effectiveness of NBS interventions and guides sustainable urban development practices.
Collapse
Affiliation(s)
- Magdalena Urbaniak
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Elżbieta Mierzejewska-Sinner
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Agnieszka Bednarek
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| | - Kinga Krauze
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland.
| | | |
Collapse
|
7
|
Maj W, Pertile G, Różalska S, Skic K, Frąc M. Comprehensive antifungal investigation of natural plant extracts against Neosartorya spp. (Aspergillus spp.) of agriculturally significant microbiological contaminants and shaping their metabolic profile. Sci Rep 2024; 14:8399. [PMID: 38600229 PMCID: PMC11006677 DOI: 10.1038/s41598-024-58791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.
Collapse
Affiliation(s)
- Wiktoria Maj
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237, Łódź, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| |
Collapse
|
8
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Structural and Functional Shifts in the Microbial Community of a Heavy Metal-Contaminated Soil Exposed to Short-Term Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2024; 15:107. [PMID: 38254996 PMCID: PMC10815596 DOI: 10.3390/genes15010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The interplay between metal contamination and climate change may exacerbate the negative impact on the soil microbiome and, consequently, on soil health and ecosystem services. We assessed the response of the microbial community of a heavy metal-contaminated soil when exposed to short-term (48 h) variations in air temperature, soil humidity or ultraviolet (UV) radiation in the absence and presence of Enchytraeus crypticus (soil invertebrate). Each of the climate scenarios simulated significantly altered at least one of the microbial parameters measured. Irrespective of the presence or absence of invertebrates, the effects were particularly marked upon exposure to increased air temperature and alterations in soil moisture levels (drought and flood scenarios). The observed effects can be partly explained by significant alterations in soil properties such as pH, dissolved organic carbon, and water-extractable heavy metals, which were observed for all scenarios in comparison to standard conditions. The occurrence of invertebrates mitigated some of the impacts observed on the soil microbial community, particularly in bacterial abundance, richness, diversity, and metabolic activity. Our findings emphasize the importance of considering the interplay between climate change, anthropogenic pressures, and soil biotic components to assess the impact of climate change on terrestrial ecosystems and to develop and implement effective management strategies.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF (Center for Biotechnology and Fine Chemistry), School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Associate Laboratory TERRA, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
| | - M. Nazaret González-Alcaraz
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
- Department of Agricultural Engineering of the E.T.S.I.A., Technical University of Cartagena, 30203 Cartagena, Spain
| |
Collapse
|
9
|
Ndour PMS, Bargaz A, Rchiad Z, Pawlett M, Clark IM, Mauchline TH, Harris J, Lyamlouli K. Microbial Catabolic Activity: Methods, Pertinence, and Potential Interest for Improving Microbial Inoculant Efficiency. MICROBIAL ECOLOGY 2023; 86:2211-2230. [PMID: 37280438 DOI: 10.1007/s00248-023-02250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Microbial catabolic activity (MCA) defined as the degrading activity of microorganisms toward various organic compounds for their growth and energy is commonly used to assess soil microbial function potential. For its measure, several methods are available including multi-substrate-induced respiration (MSIR) measurement which allow to estimate functional diversity using selected carbon substrates targeting specific biochemical pathways. In this review, the techniques used to measure soil MCA are described and compared with respect to their accuracy and practical use. Particularly the efficiency of MSIR-based approaches as soil microbial function indicators was discussed by (i) showing their sensitivity to different agricultural practices including tillage, amendments, and cropping systems and (ii) by investigating their relationship with soil enzyme activities and some soil chemical properties (pH, soil organic carbon, cation exchange capacity). We highlighted the potential of these MSIR-based MCA measurements to improve microbial inoculant composition and to determine their potential effects on soil microbial functions. Finally, we have proposed ideas for improving MCA measurement notably through the use of molecular tools and stable isotope probing which can be combined with classic MSIR methods. Graphical abstract describing the interrelation between the different parts and the concepts developed in the review.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK.
| | - Adnane Bargaz
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zineb Rchiad
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mark Pawlett
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ian M Clark
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Jim Harris
- Cranfield Soil and AgriFood Institute, School of Applied Sciences, Cranfield University, Cranfield, MK43 0AL, UK
| | - Karim Lyamlouli
- College for Sustainable Agriculture and Environmental Sciences, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
10
|
Bertrans-Tubau L, Menard Y, Batisson I, Creusot N, Mazzella N, Millan-Navarro D, Moreira A, Morin S, Ponsá S, Abril M, Proia L, Romaní AM, Artigas J. Dissipation of pesticides by stream biofilms is influenced by hydrological histories. FEMS Microbiol Ecol 2023; 99:fiad083. [PMID: 37480243 DOI: 10.1093/femsec/fiad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Yoann Menard
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | | | | | | | | | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, F-33612 Cestas, France
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17005 Girona, Spain
| | - Joan Artigas
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Barros DJ, Carvalho GA, de Chaves MG, Vanzela LS, Kozusny-Andreani DI, Guarda EA, Neu V, de Morais PB, Tsai SM, Navarrete AA. Microbial metabolic activity in Amazon floodplain forest and agricultural soils. Front Microbiol 2023; 14:1144062. [PMID: 37293212 PMCID: PMC10244710 DOI: 10.3389/fmicb.2023.1144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Microorganisms play an essential role in ecosystem functions. An increasingly used method for conducting functional analyses of a soil microbial community is based on the physiological profile at the community level. This method allows the metabolic capacity of microorganisms to be assessed based on patterns of carbon consumption and derived indices. In the present study, the functional diversity of microbial communities was assessed in soils from seasonally flooded-forest (FOR) and -traditional farming systems (TFS) in Amazonian floodplains flooded with black, clear, and white water. The soils of the Amazon floodplains showed differences in the metabolic activity of their microbial communities, with a general trend in activity level of clear water floodplain > black water floodplain > white water floodplain. The redundancy analysis (RDA) indicated that soil moisture (flood pulse) was the most important environmental parameter in determining the metabolic activity of the soil microbial communities in the black, clear, and white floodplains. In addition, the variance partitioning analysis (VPA) indicated that the microbial metabolic activity of the soil was more influenced by water type (41.72%) than by seasonality (19.55%) and land use type (15.28%). The soil microbiota of the white water floodplain was different from that of the clear water and black water floodplains in terms of metabolic richness, as the white water floodplain was mainly influenced by the low substrate use during the non-flooded period. Taken together, the results show the importance of considering soils under the influence of flood pulses, water types, and land use as environmental factors when recognizing functional diversity and ecosystem functioning in Amazonian floodplains.
Collapse
Affiliation(s)
- Dayane J. Barros
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Glauber A. Carvalho
- Faculty of Engineering, Architecture and Urbanism, Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - Miriam G. de Chaves
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Luiz S. Vanzela
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| | | | - Emerson A. Guarda
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Vania Neu
- Federal Rural University of Amazonia (UFRA), Belém, Brazil
| | - Paula B. de Morais
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Acacio A. Navarrete
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| |
Collapse
|
12
|
Dubey A, Malla MA, Kumar A. Taxonomical and functional bacterial community profiling in disease-resistant and disease-susceptible soybean cultivars. Braz J Microbiol 2022; 53:1355-1370. [PMID: 35415800 PMCID: PMC9433584 DOI: 10.1007/s42770-022-00746-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Highly varied bacterial communities inhabiting the soybean rhizosphere perform important roles in its growth and production; nevertheless, little is known about the changes that occur in these communities under disease-stress conditions. The present study investigated the bacterial diversity and their metabolic profile in the rhizosphere of disease-resistant (JS-20-34) and disease-susceptible (JS-335) soybean (Glycine max (L.) Merr.) cultivars using 16S rRNA amplicon sequencing and community-level physiological profiling (CLPP). In disease-resistant soybean (AKADR) samples, the most dominating phyla were Actinobacteria (40%) followed by Chloroflexi (24%), Proteobacteria (20%), and Firmicutes (12%), while in the disease-susceptible (AKADS) sample, the most dominating phyla were Proteobacteria (35%) followed by Actinobacteria (27%) and Bacteroidetes (17%). Functional profiling of bacterial communities was done using the METAGENassist, and PICRUSt2 software, which shows that AKADR samples have more ammonifying, chitin degrading, nitrogen-fixing, and nitrite reducing bacteria compared to AKADS rhizosphere samples. The bacterial communities present in disease-resistant samples were significantly enriched with genes involved in nitrogen fixation, carbon fixation, ammonification, denitrification, and antibiotic production. Furthermore, the CLPP results show that carbohydrates and carboxylic acids were the most frequently utilized nutrients by the microbes. The principal component analysis (PCA) revealed that the AKADR soils had higher functional activity (strong association with the Shannon-Wiener index, richness index, and hydrocarbon consumption) than AKADS rhizospheric soils. Overall, our findings suggested that the rhizosphere of resistant varieties of soybean comprises of beneficial bacterial population over susceptible varieties.
Collapse
Affiliation(s)
- Anamika Dubey
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Muneer Ahmad Malla
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
- Department of Zoology, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
13
|
Woźniak M, Gałązka A, Marzec-Grządziel A, Frąc M. Microbial Community, Metabolic Potential and Seasonality of Endosphere Microbiota Associated with Leaves of the Bioenergy Tree Paulownia elongata × fortunei. Int J Mol Sci 2022; 23:ijms23168978. [PMID: 36012239 PMCID: PMC9409049 DOI: 10.3390/ijms23168978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The microbial structure and metabolic function of plant-associated endophytes play a key role in the ecology of various environments, including trees. Here, the structure and functional profiles of the endophytic bacterial community, associated with Paulownia elongata × fortunei, in correlation with seasonality, were evaluated using Biolog EcoPlates. Biolog EcoPlates was used to analyse the functional diversity of the microbiome. The total communities of leaf endophyte communities were investigated using 16S rRNA V5–V7 region amplicon deep sequencing via Illumina MiSeq. Community level physiological profiling (CLPP) analysis by the Biolog EcoPlate™ assay revealed that the carboxylic acids (19.67–36.18%) and amino acids (23.95–35.66%) were preferred by all by all communities, whereas amines and amides (0.38–9.46%) were least used. Seasonal differences in substrate use were also found. Based on the sequencing data, mainly phyla Proteobacteria (18.4–97.1%) and Actinobacteria (2.29–78.7%) were identified. A core microbiome could be found in leaf-associated endophytic communities in trees growing in different locations. This work demonstrates the application of Biolog EcoPlates in studies of the functional diversity of microbial communities in a niche other than soil and shows how it can be applied to the functional analyses of endomicrobiomes. This research can contribute to the popularisation of Biolog EcoPlates for the functional analysis of the endomicrobiome. This study confirms that the analysis of the structure and function of the plant endophytic microbiome plays a key role in the health control and the development of management strategies on bioenergy tree plantations.
Collapse
Affiliation(s)
- Małgorzata Woźniak
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
- Correspondence:
| | - Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Anna Marzec-Grządziel
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
14
|
Contrasting effects of extracts from invasive Reynoutria japonica on soil microbial biomass, activity, and community structure. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Silva I, Alves M, Malheiro C, Silva ARR, Loureiro S, Henriques I, González-Alcaraz MN. Short-Term Responses of Soil Microbial Communities to Changes in Air Temperature, Soil Moisture and UV Radiation. Genes (Basel) 2022; 13:genes13050850. [PMID: 35627235 PMCID: PMC9142034 DOI: 10.3390/genes13050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 01/31/2023] Open
Abstract
We analyzed the effects on a soil microbial community of short-term alterations in air temperature, soil moisture and ultraviolet radiation and assessed the role of invertebrates (species Enchytraeus crypticus) in modulating the community’s response to these factors. The reference soil, Lufa 2.2, was incubated for 48 h, with and without invertebrates, under the following conditions: standard (20 °C + 50% water holding capacity (WHC)); increased air temperature (15–25 °C or 20–30 °C + 50% WHC); flood (20 °C + 75% WHC); drought (20 °C + 25% WHC); and ultraviolet radiation (UV) (20 °C + 50% WHC + UV). BIOLOG EcoPlates and 16S rDNA sequencing (Illumina) were used to assess the microbial community’s physiological profile and the bacterial community’s structure, respectively. The bacterial abundance (estimated by 16S rDNA qPCR) did not change. Most of the conditions led to an increase in microbial activity and a decrease in diversity. The structure of the bacterial community was particularly affected by higher air temperatures (20–30 °C, without E. crypticus) and floods (with E. crypticus). Effects were observed at the class, genera and OTU levels. The presence of invertebrates mostly resulted in the attenuation of the observed effects, highlighting the importance of considering microbiome–invertebrate interactions. Considering future climate changes, the effects described here raise concern. This study provides fundamental knowledge to develop effective strategies to mitigate these negative outcomes. However, long-term studies integrating biotic and abiotic factors are needed.
Collapse
Affiliation(s)
- Isabel Silva
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Marta Alves
- CBQF—Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, 4169-005 Porto, Portugal;
| | - Catarina Malheiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Ana Rita R. Silva
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Susana Loureiro
- CESAM (Centre for Marine and Environmental Studies), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.M.); (A.R.R.S.); (S.L.)
| | - Isabel Henriques
- CEF (Center for Functional Ecology), Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal;
- Correspondence: (I.H.); (M.N.G.-A.)
| | - M. Nazaret González-Alcaraz
- Department of Agricultural Engineering of the E.T.S.I.A. & Soil Ecology and Biotechnology Unit of the Institute of Plant Biotechnology, Technical University of Cartagena, 30203 Cartagena, Spain
- Correspondence: (I.H.); (M.N.G.-A.)
| |
Collapse
|
16
|
Ssenku JE, Walusansa A, Oryem-Origa H, Ssemanda P, Ntambi S, Omujal F, Mustafa AS. Bacterial community and chemical profiles of oil-polluted sites in selected cities of Uganda: potential for developing a bacterial-based product for remediation of oil-polluted sites. BMC Microbiol 2022; 22:120. [PMID: 35505298 PMCID: PMC9063239 DOI: 10.1186/s12866-022-02541-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Background Oil spills are ranked among the greatest global challenges to humanity. In Uganda, owing to the forthcoming full-scale production of multi-billion barrels of oil, the country’s oil pollution burden is anticipated to escalate, necessitating remediation. Due to the unsuitability of several oil clean-up technologies, the search for cost-effective and environmentally friendly remediation technologies is paramount. We thus carried out this study to examine the occurrence of metabolically active indigenous bacterial species and chemical characteristics of soils with a long history of oil pollution in Uganda that can be used in the development of a bacterial-based product for remediation of oil-polluted sites. Results Total hydrocarbon analysis of the soil samples revealed that the three most abundant hydrocarbons were pyrene, anthracene and phenanthrene that were significantly higher in oil-polluted sites than in the control sites. Using the BIOLOG EcoPlate™, the study revealed that bacterial species richness, bacterial diversity and bacterial activity (ANOVA, p < 0.05) significantly varied among the sites. Only bacterial activity showed significant variation across the three cities (ANOVA, p < 0.05). Additionally, the study revealed significant moderate positive correlation between the bacterial community profiles with Zn and organic contents while correlations between the bacterial community profiles and the hydrocarbons were largely moderate and positively correlated. Conclusions This study revealed largely similar bacterial community profiles between the oil-polluted and control sites suggestive of the occurrence of metabolically active bacterial populations in both sites. The oil-polluted sites had higher petroleum hydrocarbon, heavy metal, nitrogen and phosphorus contents. Even though we observed similar bacterial community profiles between the oil polluted and control sites, the actual bacterial community composition may be different, owing to a higher exposure to petroleum hydrocarbons. However, the existence of oil degrading bacteria in unpolluted soils should not be overlooked. Thus, there is a need to ascertain the actual indigenous bacterial populations with potential to degrade hydrocarbons from both oil-polluted and unpolluted sites in Uganda to inform the design and development of a bacterial-based oil remediation product that could be used to manage the imminent pollution from oil exploration and increased utilization of petroleum products in Uganda. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02541-x.
Collapse
Affiliation(s)
- Jamilu E Ssenku
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Abdul Walusansa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Microbiology, Faculty of Health Sciences, Islamic University in Uganda, Kampala, Uganda.,Department of Medical Microbiology and Immunology, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Hannington Oryem-Origa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Paul Ssemanda
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.,Department of Biology and Chemistry, Universität Bremen, Bremen, Germany
| | - Saidi Ntambi
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda
| | - Francis Omujal
- Department of Chemistry, Natural Chemotherapeutics Research Institute (NCRI), Kampala, Uganda
| | - Abubakar Sadik Mustafa
- Department of Plant Sciences, Microbiology & Biotechnology, Makerere University, Kampala, Uganda.
| |
Collapse
|
17
|
Nature-Based Solutions for the Sustainable Management of Urban Soils and Quality of Life Improvements. LAND 2022. [DOI: 10.3390/land11040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rehabilitation and restoration of land-based ecosystems is a key strategy for recovering the services (goods and resources) ecosystems offer to humankind. The use of nature-based solutions (NBSs) to restore degraded soil functions and improve soil quality can be a sustainable and successful strategy to enhance their ecosystem services by working together with the forces of nature and using well-designed measures that require less maintenance, are more cost-effective, and if constructed in the right way may even be more effective over long periods because nature’s forces can increase the structural efficiency. In this study, we aimed to (i) evaluate the bioremediation capacity of some grasses and their suitability for lawn planting in settlements (in residential and non-residential areas, along roads, etc.) and (ii) propose technological solutions for their practical application in an urban environment. Emphasis was placed on the potential of some perennial grasses and their application for the bioremediation of polluted urban soils, including perennial ryegrass (Lolium perenne L.), crested wheatgrass (Agropyron cristatum L.), tall fescue (Festuca arundinacea Schreb), and bird’s foot trefoil (Lotus corniculatus L.). A case study from the city of Plovdiv (Bulgaria) is presented, together with an effective technological solution for the establishment of urban lawns and the roadside green buffer patches.
Collapse
|
18
|
Furtak K, Grządziel J, Gałązka A. Can Model Experiments Give Insight into the Response of the Soil Environment to Flooding? A Comparison of Microcosm and Natural Event. BIOLOGY 2022; 11:biology11030386. [PMID: 35336760 PMCID: PMC8945539 DOI: 10.3390/biology11030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022]
Abstract
Studies using soil microcosms are very common, but few involve flooded soils, and comparing the results from such an experiment with natural conditions is unheard of. In the present study, we investigated the biological activity of soil (pH value, dehydrogenases and phosphatase activities) and the metabolic potential (EcoPlate™ Biolog®) of soil microorganisms in three fluvisol subjected to flooding under laboratory and natural conditions. The results indicate that soil flooding under both natural and laboratory conditions affected soil pH, enzymatic activity and metabolic potential (AWCD, average well colour development) of soil microorganisms. Changes in these parameters are more pronounced in the microcosmic experiment than in the field conditions. Furthermore, depending on the characteristics of the soil (i.e., its type, structure, vegetation) some of the soil quality parameters may return to their preflood state. Microcosm studies are needed in environmental ecology and microbiology to predict changes due to various factors, but their scale and course must be carefully planned.
Collapse
|
19
|
Li Y, Wang Y, Shen C, Xu L, Yi S, Zhao Y, Zuo W, Gu C, Shan Y, Bai Y. Structural and Predicted Functional Diversities of Bacterial Microbiome in Response to Sewage Sludge Amendment in Coastal Mudflat Soil. BIOLOGY 2021; 10:biology10121302. [PMID: 34943217 PMCID: PMC8698727 DOI: 10.3390/biology10121302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
The study investigated the influence of sewage sludge application at rates of 0 (CK), 30 (ST), 75 (MT), and 150 (HT) t ha−1 to mudflats on bacterial community diversity and predicted functions using amplicon-based sequencing. Soils under sewage sludge treatments, especially the HT treatment, exhibited lower pH, salinity and higher nutrient contents (C, N, and P). Moreover, restructured bacterial communities with significantly higher diversities and distinct core and unique microbiomes were observed in all sewage sludge-amended soils as compared to the control. Specifically, core bacterial families, such as Hyphomicrobiaceae, Cytophagaceae, Pirellulaceae Microbacteriaceae, and Phyllobacteriaceae, were significantly enriched in sewage sludge-amended soils. In addition, sewage sludge amendment significantly improved predicted functional diversities of core microbiomes, with significantly higher accumulative relative abundances of functions related to carbon and nitrogen cycling processes compared to the unamended treatment. Correlation analyses showed that modified soil physicochemical properties were conducive for the improvement of diversities of bacterial communities and predicted functionalities. These outcomes demonstrated that sewage sludge amendment not only alleviated saline–sodic and nutrient deficiency conditions, but also restructured bacterial communities with higher diversities and versatile functions, which may be particularly important for the fertility formation and development of mudflat soils.
Collapse
Affiliation(s)
- Yunlong Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Yimin Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Chao Shen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Lu Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Siqiang Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Yilin Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Wengang Zuo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
| | - Chuanhui Gu
- Environmental Research Center, Duke Kunshan University, Kunshan 215316, China;
| | - Yuhua Shan
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Yanchao Bai
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.L.); (Y.W.); (C.S.); (L.X.); (S.Y.); (Y.Z.); (W.Z.); (Y.S.)
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
20
|
Kumar A, Dubey A, Malla MA, Dames J. Pyrosequencing and phenotypic microarray to decipher bacterial community variation in Sorghum bicolor (L.) Moench rhizosphere. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100025. [PMID: 34841316 PMCID: PMC8610313 DOI: 10.1016/j.crmicr.2021.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/17/2022] Open
Abstract
Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities. This work, investigated the changes in bacterial community composition at taxonomic and functional level in rhizosphere soil of sweet sorghum under extensive cultivation practices at three different field sites of South Africa. 16S rRNA amplicon sequencing data revealed that at the phylum level, the dominant group was Cyanobacteria with a relative abundance of 63.3%, 71.8% and 81.6% from ASHSOIL1, ASHSOIL2, and ASHSOIL3, respectively. Community-level physiological profiling (CLPP) analysis revealed that the metabolic activity of the bacterial community in ASHSOIL3 was the highest, followed by ASHSOIL1 and ASHSOIL2. Overall, this study showed that soil pH, nutrient availability and cultivation practices played significant roles in governing the bacterial community composition in sorghum rhizosphere.
Different cultivation practices and climatic conditions play an important role in governing and modulating soil microbial communities as well as soil health. This study investigated, for the first time, keystone microbial taxa inhabiting the rhizosphere of sweet sorghum (Sorghum bicolor) under extensive cultivation practices at three different field sites of South Africa (North West-South (ASHSOIL1); Mpumalanga-West – (ASHSOIL2); and Free State-North West – (ASHSOIL3)). Soil analysis of these sites revealed differences in P, K, Mg, and pH. 16S rRNA amplicon sequencing data revealed that the rhizosphere bacterial microbiome differed significantly both in the structure and composition across the samples. The sequencing data revealed that at the phylum level, the dominant group was Cyanobacteria with a relative abundance of 63.3%, 71.8%, and 81.6% from ASHSOIL1, ASHSOIL2, and ASHSOIL3, respectively. Putative metabolic requirements analyzed by METAGENassist software revealed the ASHSOIL1 sample as the prominent ammonia degrader (21.1%), followed by ASHSOIL3 (17.3%) and ASHSOIL2 (11.1%). The majority of core-microbiome taxa were found to be from Cyanobacteria, Bacteroidetes, and Proteobacteria. Functionally, community-level physiological profiling (CLPP) analysis revealed that the metabolic activity of the bacterial community in ASHSOIL3 was the highest, followed by ASHSOIL1 and ASHSOIL2. This study showed that soil pH and nutrient availability and cultivation practices played significant roles in governing the bacterial community composition in the sorghum rhizosphere across the different sites.
Collapse
Affiliation(s)
- Ashwani Kumar
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
- Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
- Corresponding author at: Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India.
| | - Anamika Dubey
- Metagenomics and Secretomics Research laboratory, Department of Botany, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
| | - Muneer Ahmad Malla
- Department of Zoology, Dr. Harisingh Gour University (Central University), Sagar 470003, MP, India
| | - Joanna Dames
- Mycorrhizal Research Laboratory, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
21
|
Hu Y, Khomenko O, Shi W, Velasco-Sánchez Á, Ashekuzzaman SM, Bennegadi-Laurent N, Daly K, Fenton O, Healy MG, Leahy JJ, Sørensen P, Sommer SG, Taghizadeh-Toosi A, Trinsoutrot-Gattin I. Systematic Review of Dairy Processing Sludge and Secondary STRUBIAS Products Used in Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.763020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Worldwide dairy processing plants produce high volumes of dairy processing sludge (DPS), which can be converted into secondary derivatives such as struvite, biochar and ash (collectively termed STRUBIAS). All of these products have high fertilizer equivalent values (FEV), but future certification as phosphorus (P)-fertilizers in the European Union will mean they need to adhere to new technical regulations for fertilizing materials i.e., content limits pertaining to heavy metals (Cd, Cu, Hg, Ni, Pb, and Zn), synthetic organic compounds and pathogens. This systematic review presents the current state of knowledge about these bio-based fertilizers and identifies knowledge gaps. In addition, a review and calculation of greenhouse gas emissions from a range of concept dairy sludge management and production systems for STRUBIAS products [i.e., biochar from pyrolysis and hydrochar from hydrothermal carbonization (HTC)] is presented. Results from the initial review showed that DPS composition depends on product type and treatment processes at a given processing plant, which leads to varied nutrient, heavy metal and carbon contents. These products are all typically high in nutrients and carbon, but low in heavy metals. Further work needs to concentrate on examining their pathogenic microorganism and emerging contaminant contents, in addition to conducting an economic assessment of production and end-user costs related to chemical fertilizer equivalents. With respect to STRUBIAS products, contaminants not present in the raw DPS may need further treatment before being land applied in agriculture e.g., heated producing ashes, hydrochar, or biochar. An examination of these products from an environmental perspective shows that their water quality footprint could be minimized using application rates based on P incorporation of these products into nutrient management planning and application by incorporation into the soil. Results from the concept system showed that elimination of methane emissions was possible, along with a reduction in nitrous oxide. Less carbon (C) is transferred to agricultural fields where DPS is processed into biochar and hydrochar, but due to high recalcitrance, the C in this form is retained much longer in the soil, and therefore STRUBIAS products represent a more stable and long-term option to increase soil C stocks and sequestration.
Collapse
|
22
|
Lin H, Wang Q, Zhou J, Wang D, Men Y, Bai Y, Qu J. Recovery trajectories and community resilience of biofilms in receiving rivers after wastewater treatment plant upgrade. ENVIRONMENTAL RESEARCH 2021; 199:111349. [PMID: 34019892 DOI: 10.1016/j.envres.2021.111349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment plant (WWTP) upgrades can reduce both nutrient and micropollutant emissions into receiving rivers, thus modifying the composition and function of biological communities. However, how microbial communities vary and whether they can be restored to levels found in less-polluted rivers remains uncertain. Aquatic biofilms are sensitive to environmental change and respond rapidly to bottom-up pressure. Thus, we used 12 flumes configured in three experimental treatments to mimic the dynamic processes of biofilm microbial communities occurring in a wastewater-receiving river following WWTP upgrade, with rivers containing two levels of nutrients and micropollutants used as references. We compared the biofilm microbial biomass, carbon source utilization, and community composition among the three "blocks". Results showed that the metabolic patterns of the carbon sources and composition of the biofilm bacterial communities in the flumes mimicking a receiving river with WWTP upgrade recovered over time to those mimicking a less-disturbed river. The restoration of potential carboxylic acid-consuming denitrifying bacteria (i.e., Zoogloea, Comamonas, Dechloromonas, and Acinetobacter) likely played a significant role in this process. Combining quantitative analysis of the denitrification genes nirS and nosZ, we confirmed that the denitrification function of the river biofilms recovered after WWTP upgrade, consistent with our previous field investigation.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
23
|
Weng X, Li J, Sui X, Li M, Yin W, Ma W, Yang L, Mu L. Soil microbial functional diversity responses to different vegetation types in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01638-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The soil microbial community is an important bioactive component of terrestrial ecosystems. Its structural and functional diversity directly affects carbon and nitrogen processes. This study aimed to investigate the variations in the functional diversity of soil microbial communities in forests with different types of vegetation.
Methods
We selected three typical vegetation types, larch (LG), black birch (BD), and larch and black birch mixed (LGBD) forests, located in the Heilongjiang Zhongyangzhan Black-billed Capercaillie Nature Reserve. The Biolog-Eco microplate technology was selected to perform these analyses.
Result
Our results showed clear differences between microorganisms in the three typical forests. The average well colour development (AWCD) change rate gradually increased with incubation time. The BD type had the highest AWCD value, followed by LGBD; the LG forest type had the lowest value. The difference in the soil microbial alpha diversity index between BD and LG was significant. A principal component analysis showed that PC1 and PC2 respectively explained 62.77% and 13.3% of the variance observed. The differences in the soil microbial carbon-source utilisation patterns under different vegetation types were mainly caused by esters and carbohydrates. Redundancy analysis showed that soil microbial functional diversity was strongly affected by soil physicochemistrical properties (e.g. organic carbon, total nitrogen and pH).
Conclusion
These results provide a reference for further exploring the relationship between forest communities and soil microbes during the process of forest succession.
Collapse
|
24
|
Németh I, Molnár S, Vaszita E, Molnár M. The Biolog EcoPlate™ Technique for Assessing the Effect of Metal Oxide Nanoparticles on Freshwater Microbial Communities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1777. [PMID: 34361164 PMCID: PMC8308119 DOI: 10.3390/nano11071777] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
The application of Biolog EcoPlate™ for community-level physiological profiling of soils is well documented; however, the functional diversity of aquatic bacterial communities has been hardly studied. The objective of this study was to investigate the applicability of the Biolog EcoPlate™ technique and evaluate comparatively the applied endpoints, for the characterisation of the effects of metal oxide nanoparticles (MONPs) on freshwater microbial communities. Microcosm experiments were run to assess the effect of nano ZnO and nano TiO2 in freshwater at 0.8-100 mg/L concentration range. The average well colour development, substrate average well colour development, substrate richness, Shannon index and evenness, Simpson index, McIntosh index and Gini coefficient were determined to quantify the metabolic capabilities and functional diversity. Comprehensive analysis of the experimental data demonstrated that short-term exposure to TiO2 and ZnO NPs affected the metabolic activity at different extent and through different mechanisms of action. TiO2 NPs displayed lower impact on the metabolic profile showing up to 30% inhibition. However, the inhibitory effect of ZnO NPs reached 99% with clearly concentration-dependent responses. This study demonstrated that the McIntosh and Gini coefficients were well applicable and sensitive diversity indices. The parallel use of general metabolic capabilities and functional diversity indices may improve the output information of the ecological studies on microbial communities.
Collapse
Affiliation(s)
| | | | | | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (I.N.); (S.M.); (E.V.)
| |
Collapse
|
25
|
Stefanowicz AM, Kapusta P, Stanek M, Frąc M, Oszust K, Woch MW, Zubek S. Invasive plant Reynoutria japonica produces large amounts of phenolic compounds and reduces the biomass but not activity of soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145439. [PMID: 33636782 DOI: 10.1016/j.scitotenv.2021.145439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Reynoutria japonica is one of the most invasive plant species. Its success in new habitats may be associated with the release of secondary metabolites. The aim of this study was to compare phenolic concentrations in plant biomass and soils between plots with R. japonica and resident plants (control), and determine the effects of these compounds on soil microbial communities. Samples of plant shoots and rhizomes/roots, and soil were collected from 25 paired plots in fallow and riparian habitats in Poland. We measured concentrations of total phenolics, condensed tannins, catechin, chlorogenic acid, emodin, epicatechin, hyperoside, physcion, piceatannol, polydatin, procyanidin B3, quercetin, resveratrol, and resveratroloside. Soil microbial parameters were represented by acid and alkaline phosphomonoesterases, β-glucosidase, phenoloxidase, and peroxidase activity, culturable bacteria activity and functional diversity measured with Biolog Ecoplates, and microbial biomass and community structure measured with phospholipid fatty acid (PLFA) analysis. We found that concentrations of total phenolics and condensed tannins were very high in R. japonica leaves and rhizomes/roots, and concentrations of most phenolic compounds were very high in R. japonica rhizomes/roots when compared to resident plant species. Concentrations of most phenolics in mineral soil did not differ between R. japonica and control plots; the only exceptions were catechin and resveratrol which were higher and lower, respectively, under the invader. Total microbial and bacterial (G+, G-) biomass was decreased by approx. 30% and fungal biomass by approx. 25% in invaded soils in comparison to control. Among soil functional microbial parameters, only peroxidase activity and functional diversity differed between R. japonica and resident plant plots; peroxidase activity was higher, while functional diversity was lower in soil under R. japonica. The negative effects of R. japonica on microbial biomass may be related to catechin or its polymers (proanthocyanidins) or to other phenolics contained in high concentrations in R. japonica rhizomes.
Collapse
Affiliation(s)
- Anna M Stefanowicz
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Paweł Kapusta
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Małgorzata Stanek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Marcin W Woch
- Institute of Biology, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland.
| | - Szymon Zubek
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| |
Collapse
|
26
|
Soil Microbial Community Profiling and Bacterial Metabolic Activity of Technosols as an Effect of Soil Properties following Land Reclamation: A Case Study from the Abandoned Iron Sulphide and Uranium Mine in Rudki (South-Central Poland). AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10111795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aims of the study were (1) to recognize the structure of bacteria diversity in Technosols developed from mine spoils containing iron (Fe) sulphides with the use of culture-independent technique, and (2) to determine microbial metabolic activities, in the context of their potential to be an adequate indicators of soil properties being the consequence of land reclamation. The study site was located in the vicinity of the abandoned Fe sulphide and uranium mine in Rudki village (Holy Cross Mts., Poland). Three soil profiles with different chemical properties (pH, content of carbonates, soil salinity, content of total organic carbon and total nitrogen) were studied. Biodiversity was determined with the use of meta-barcoding of 16S rRNA community profiling analysis based on the hypervariable V3-V4 region of 16S rRNA gene (MiSeq, Illumina). The catabolic fingerprinting of soil microbial communities was evaluated with the use of Biolog®EcoPlates™ System. It was evidenced that changes in microbial structure and their metabolic activity were the consequence of a combined effect of both the soil depth and soil chemical properties being the final result of reclamation process. Consequently, microbial indicators (from phyla to genera level) indirectly testifying about success or ineffectiveness of reclamation in technogenic soils were recommended. To our best knowledge, the present study is the first insight into Polish Technosols biodiversity and catabolic activity.
Collapse
|
27
|
Mącik M, Gryta A, Sas-Paszt L, Frąc M. The Status of Soil Microbiome as Affected by the Application of Phosphorus Biofertilizer: Fertilizer Enriched with Beneficial Bacterial Strains. Int J Mol Sci 2020; 21:E8003. [PMID: 33121206 PMCID: PMC7663420 DOI: 10.3390/ijms21218003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Regarding the unfavourable changes in agroecosystems resulting from the excessive application of mineral fertilizers, biopreparations containing live microorganisms are gaining increasing attention. We assumed that the application of phosphorus mineral fertilizer enriched with strains of beneficial microorganisms contribute to favourable changes in enzymatic activity and in the genetic and functional diversity of microbial populations inhabiting degraded soils. Therefore, in field experiments conditions, the effects of phosphorus fertilizer enriched with bacterial strains on the status of soil microbiome in two chemically degraded soil types (Brunic Arenosol - BA and Abruptic Luvisol - AL) were investigated. The field experiments included treatments with an optimal dose of phosphorus fertilizer (without microorganisms - FC), optimal dose of phosphorus fertilizer enriched with microorganisms including Paenibacillus polymyxa strain CHT114AB, Bacillus amyloliquefaciens strain AF75BB and Bacillus sp. strain CZP4/4 (FA100) and a dose of phosphorus fertilizer reduced by 40% and enriched with the above-mentioned bacteria (FA60). The analyzes performed included: the determination of the activity of the soil enzymes (protease, urease, acid phosphomonoesterase, β-glucosidase), the assessment of the functional diversity of microorganisms with the application of BIOLOGTM plates and the characterization of the genetic diversity of bacteria, archaea and fungi with multiplex terminal restriction fragment length polymorphism and next generation sequencing. The obtained results indicated that the application of phosphorus fertilizer enriched with microorganisms improved enzymatic activity, and the genetic and functional diversity of the soil microbial communities, however these effects were dependent on the soil type.
Collapse
Affiliation(s)
- Mateusz Mącik
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.M.); (A.G.)
| | - Agata Gryta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.M.); (A.G.)
| | - Lidia Sas-Paszt
- Institute of Horticulture in Skierniewice, Pomologiczna 18, 96-100 Skierniewice, Poland;
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (M.M.); (A.G.)
| |
Collapse
|
28
|
Skic K, Sokołowska Z, Boguta P, Skic A. The effect of application of digestate and agro-food industry sludges on Dystric Cambisol porosity. PLoS One 2020; 15:e0238469. [PMID: 32877469 PMCID: PMC7467315 DOI: 10.1371/journal.pone.0238469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/16/2020] [Indexed: 11/24/2022] Open
Abstract
The spatial arrangement and pore size distribution play an important role in accumulation and protection of exogenous organic matter (EOM) in the soil, but how different organic materials contribute to modify pore structure is poorly understood. We aimed at exploring possible changes in the complexity of the soil phase during fertilization with different doses of digestate and sludges sourced from the agro-food industry. For this purpose, the short-term effects—one year, of soil fertilization, were investigated in several sampling periods and within two depths (0–25 cm and 25–40 cm). Changes in the specific surface area (SSA), total pore volume (VMIP), total pore area (SMIP), average pore radius (RMIP) and pore size distribution (PSD) were monitored using N2 adsorption/desorption (NAD) and mercury porosimetry (MIP) methods. Our results showed that the intensity of observed changes depended on the type and dose of organic material, soil depth and sampling date. Accumulation of EOM increased with soil depth, masking a large proportion of SSA. Deeper soil layer was more susceptible to changes in the pore size distributions due to the formation of new elongated pores. We concluded that this specific structural porosity was related to the decomposition of organic matter during the formation of soil aggregates.
Collapse
Affiliation(s)
- Kamil Skic
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
- * E-mail:
| | - Zofia Sokołowska
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Patrycja Boguta
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Anna Skic
- Department of Mechanical Engineering and Automatic Control, University of Life Sciences, Lublin, Poland
| |
Collapse
|
29
|
Stabili L, Rizzo L, Basso L, Marzano M, Fosso B, Pesole G, Piraino S. The Microbial Community Associated with Rhizostoma pulmo: Ecological Significance and Potential Consequences for Marine Organisms and Human Health. Mar Drugs 2020; 18:md18090437. [PMID: 32839397 PMCID: PMC7551628 DOI: 10.3390/md18090437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 01/02/2023] Open
Abstract
Jellyfish blooms are frequent and widespread in coastal areas worldwide, often associated with significant ecological and socio-economic consequences. Recent studies have also suggested cnidarian jellyfish may act as vectors of bacterial pathogens. The scyphomedusa Rhizostoma pulmo is an outbreak-forming jellyfish widely occurring across the Mediterranean basin. Using combination of culture-based approaches and a high-throughput amplicon sequencing (HTS), and based on available knowledge on a warm-affinity jellyfish-associated microbiome, we compared the microbial community associated with R. pulmo adult jellyfish in the Gulf of Taranto (Ionian Sea) between summer (July 2016) and winter (February 2017) sampling periods. The jellyfish-associated microbiota was investigated in three distinct compartments, namely umbrella, oral arms, and the mucus secretion. Actinobacteria, Bacteroidetes, Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Rhodothermaeota, Spirochaetes, Tenericutes, and Thaumarchaeota were the phyla isolated from all the three R. pulmo compartments in the sampling times. In particular, the main genera Mycoplasma and Spiroplasma, belonging to the class Mollicutes (phylum Tenericutes), have been identified in all the three jellyfish compartments. The taxonomic microbial data were coupled with metabolic profiles resulting from the utilization of 31 different carbon sources by the BIOLOG Eco-Plate system. Microorganisms associated with mucus are characterized by great diversity. The counts of culturable heterotrophic bacteria and potential metabolic activities are also remarkable. Results are discussed in terms of R. pulmo ecology, the potential health hazard for marine and human life as well as the potential biotechnological applications related to the associated microbiome.
Collapse
Affiliation(s)
- Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- Institute of Water Research of the National Research Council, S.S. di Taranto, Via Roma 3, 74123 Taranto, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lucia Rizzo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Correspondence: (L.S.); (L.R.); (M.M.)
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, 70126 Bari, Italy; (B.F.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Lecce Monteroni, 73100 Lecce, Italy; (L.B.); (S.P.)
- CoNISMa, Piazzale Flaminio 9, 00196 Rome, Italy
| |
Collapse
|
30
|
Pradhan SK, Kumar U, Singh NR, Thatoi H. Functional diversity and metabolic profile of microbial community of mine soils with different levels of chromium contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2020; 30:461-473. [PMID: 30950639 DOI: 10.1080/09603123.2019.1601686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 05/27/2023]
Abstract
Microbial communities provide useful information about any chemical and physical changes in the environment and play an essential role in maintaining soil fertility. Biolog® eco-plates method was used to study the functional diversity of microbial communities, and their correlation with soil organic carbon (OC), microbial biomass and activities, under three different soil conditions of Sukinda chromite mining area of Odisha, India during August 2016. The OC, available nitrogen, available phosphorus and available potash were significantly (p < 0.05) lower in in situ and overburden soils as compared to forest soil. The average development rate of average well color development values decreased with incubation time in all soil conditions. The utilization of six categories of carbon sources by soil microbes decreased with the increase in chromium load and biplot analysis suggested that carbohydrate, polymer and amino acid utilizing microbes were dominant in mining soils. The ecotoxicological status of chromite mine soil would be useful for formulating strategies of possible bioremediation program.
Collapse
Affiliation(s)
- Sukanta Kumar Pradhan
- BIF Centre, Department of Bioinformatics, Orissa University of Agriculture and Technology , Bhubaneswar, India
- Department of Biotechnology, School of Life Sciences, Ravenshaw University , Cuttack, India
| | - Upendra Kumar
- Crop Production Division, ICAR - National Rice Research Institute , Cuttack, India
| | - Nihar Ranjan Singh
- Department of Botany, School of Life Sciences, Ravenshaw University , Cuttack, India
| | | |
Collapse
|
31
|
Urra J, Alkorta I, Mijangos I, Garbisu C. Commercial and farm fermented liquid organic amendments to improve soil quality and lettuce yield. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110422. [PMID: 32217314 DOI: 10.1016/j.jenvman.2020.110422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The anaerobic decomposition of organic wastes might lead to the formation of organic-byproducts which can then be successfully used as organic fertilizers. This study evaluated the impact of the application of two fermented liquid organic amendments (commercial vs. farm-made) at two doses of application (optimal vs. suboptimal), compared to mineral fertilization, on lettuce growth and soil quality. To this purpose, two experiments were conducted at microcosm- and field-scale, respectively. In the microcosm experiment, organically amended soils resulted in lower lettuce yield than minerally fertilized soil but, in contrast, they enhanced microbial activity and biomass, thus leading to an improvement in soil quality. The fertilization regime (organic vs. inorganic) significantly affected soil microbial composition but did not have any significant effect on structural or functional prokaryotic diversity. In the field experiment, at the optimal dose of application, organically-amended soils resulted in comparable lettuce yield to that displayed by minerally fertilized soils. The application of organic amendments did not result in an enhanced microbial activity and biomass, compared to mineral fertilization, but led to a higher soil prokaryotic diversity. Among the organically-amended plots, the optimal application dose resulted in a higher lettuce yield and soil microbial activity and biomass, but led to a decline in soil prokaryotic diversity, compared to the suboptimal application dose. Our results indicate that commercial and farm-made fermented liquid organic amendments possess the potential to ameliorate soil quality while sustaining crop yield. Given the strong influence of other factors (e.g., type of soil, dose of application) on the effects exerted by such amendments on soil quality and fertility, we recommend that an exhaustive characterization of both the amendments and the recipient soils should be carried out prior to their application, in order to better ensure their potential beneficial effects.
Collapse
Affiliation(s)
- Julen Urra
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160, Derio, Spain.
| | - Itziar Alkorta
- Department of Biochemistry and Molecular Biology, Instituto BIOFISIKA (CSIC, UPV/EHU), University of the Basque Country, P.O. Box 644, 48080, Bilbao, Spain
| | - Iker Mijangos
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160, Derio, Spain
| | - Carlos Garbisu
- NEIKER, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160, Derio, Spain
| |
Collapse
|
32
|
Gryta A, Frąc M. Methodological Aspects of Multiplex Terminal Restriction Fragment Length Polymorphism-Technique to Describe the Genetic Diversity of Soil Bacteria, Archaea and Fungi. SENSORS 2020; 20:s20113292. [PMID: 32527006 PMCID: PMC7309186 DOI: 10.3390/s20113292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/24/2023]
Abstract
The molecular fingerprinting methods used to evaluate soil microbial diversity could also be used as effective biosensors for the purposes of monitoring ecological soil status. The biodiversity of microorganisms is a relevant index of soil activity and there is a necessity to develop tools to generate reliable results for an emerging approach in the field of environmental control using microbial diversity biosensors. This work reports a method under development for determining soil microbial diversity using high efficiency Multiplex PCR-Terminal Restriction Fragment Length Polymorphism (M-T-RFLP) for the simultaneous detection of bacteria, archaea and fungi. Three different primer sets were used in the reaction and the analytical conditions were optimized. Optimal analytical conditions were achieved using 0.5 µM of primer for bacteria and 1 µM for archaea and fungi, 4 ng of soil DNA template, and HaeIII restriction enzyme. Comparative tests using the proposed analytical approach and a single analysis of each microorganism group were carried out to indicate that both genetic profiles were similar. The Jaccard similarity coefficient between single and multiplexing approach ranged from 0.773 to 0.850 for bacteria and fungi, and 0.208 to 0.905 for archaea. In conclusion, the multiplexing and pooling approaches significantly reduced the costs and time required to perform the analyses, while maintaining a proper effectiveness.
Collapse
|
33
|
Zhang C, Song P, Xia Q, Li X, Wang J, Zhu L, Wang J. Responses of Microbial Community to Di-(2-ethylhcxyl) Phthalate Contamination in Brown Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:820-827. [PMID: 32424434 DOI: 10.1007/s00128-020-02878-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Di-(2-ethylhcxyl) phthalate (DEHP) is applied as plasticizer, which results in the pollution of environment. In this study, the effects of DEHP on soil microbial functions, structure and genetic diversity were investigated. The concentration of DEHP in the soil were 0, 0.1, 1, 10 and 50 mg/kg, and the experimental period were 28 days. DEHP reduced the quantity, abundance, species dominance and homogeneity of soil microbes during the first 14 days. In addition, microbial utilization efficiency of carbon (carbohydrates, aliphatics, amino acids, metabolites) was impacted after 28 days, though the effects gradually weakened. Based on denaturing gradient gel electrophoresis and clone library analysis, in the presence of DEHP, the dominant microbes in the DEHP-contaminated soil were Sphingomonas and Bacillus, which belonged to the Acidobacteria and Proteobacteriav, respectively. With 0.1 or 1 mg/kg of DEHP, the relative abundances of Acidobacteria were higher, and with 10 or 50 mg/kg of DEHP, the relative abundances of Proteobacteria were higher.
Collapse
Affiliation(s)
- Cui Zhang
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Peipei Song
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Qingbing Xia
- Tai'an City Public Security Bureau in Shandong Province, Tai'an, People's Republic of China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agriculture Environment, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
34
|
Clairmont LK, Slawson RM. Contrasting Water Quality Treatments Result in Structural and Functional Changes to Wetland Plant-Associated Microbial Communities in Lab-Scale Mesocosms. MICROBIAL ECOLOGY 2020; 79:50-63. [PMID: 31144004 DOI: 10.1007/s00248-019-01389-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
The impact of contrasting water quality treatments on wetland plant-associated microbial communities was investigated in this study using 12 lab-scale wetland mesocosms (subsurface flow design) planted with reed canary grass (Phalaris arundinacea) or water speedwell (Veronica anagallis-aquatica) over a 13-week period. Mesocosms received water collected from two sites along the Grand River (Ontario, Canada) designated as having either high or poor water quality according to Grand River Conservation Authority classifications. All mesocosms were established using sediment collected from the high water quality site and received water from this source pre-treatment. Resulting changes to microbial community structure were assessed using PCR-denaturing gel gradient electrophoresis (DGGE) on microbial 16S rDNA sequences extracted from rhizoplane, rhizosphere, and water samples before and after exposure to water quality treatments. Functional community changes were determined using Biolog™ EcoPlates which assess community-level carbon source utilization profiles. Wetland mesocosm removal of inorganic nutrients (N, P) and fecal coliforms was also determined, and compared among treatments. Treatment-specific effects were assessed using a repeated measures restricted maximum likelihood (REML) analysis. Structural and functional characteristics of rhizoplane microbial communities were significantly influenced by the interaction between plant species and water treatment (P = 0.04, P = 0.01). Plant species-specific effects were observed for rhizosphere structural diversity (P = 0.01) and wetland water community metabolic diversity (P = 0.03). The effect of water treatment alone was significant for structural diversity measurements in wetland water communities (P = 0.03). The effect of plant species, water quality treatment, and the interaction between the two is dependent on the microhabitat type (rhizoplane, rhizosphere, or water). Rhizoplane communities appear to be more sensitive to water quality-specific environmental changes and may be a good candidate for microbial community-based monitoring of wetland ecosystems.
Collapse
Affiliation(s)
- Lindsey K Clairmont
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada.
| | - Robin M Slawson
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| |
Collapse
|
35
|
Basso L, Rizzo L, Marzano M, Intranuovo M, Fosso B, Pesole G, Piraino S, Stabili L. Jellyfish summer outbreaks as bacterial vectors and potential hazards for marine animals and humans health? The case of Rhizostoma pulmo (Scyphozoa, Cnidaria). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:305-318. [PMID: 31349170 DOI: 10.1016/j.scitotenv.2019.07.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Jellyfish represent an important component of marine food webs characterized by large fluctuations of population density, with the ability to abruptly form outbreaks, followed by rarity periods. In spite of considerable efforts to investigate how jellyfish populations are responding globally to anthropogenic change, available evidence still remains unclear. In the last 50 years, jellyfish are seemingly on the rise in a number of coastal areas, including the Mediterranean Sea, where jellyfish blooms periodically become an issue to marine and maritime human activities. Their impacts on marine organism welfare have been poorly quantified. The jellyfish, Rhizostoma pulmo, is an outbreak-forming scyphomedusa whose large populations spread across the Mediterranean, with increasing periodicity and variable abundance. Studies on cnidarian jellyfish suggested being important vectors of bacterial pathogens. In the present study, by combination of conventional culture-based methods and a high-throughput amplicon sequencing (HTS) approach, we characterized the diversity of the bacterial community associated with this jellyfish during their summer outbreak. Three distinct jellyfish compartments, namely umbrella, oral arms, and the mucus secretion obtained from whole specimens were screened for specifically associated microbiota. A total of 17 phyla, 30 classes, 73 orders, 146 families and 329 genera of microbial organisms were represented in R. pulmo samples with three major clades (i.e. Spiroplasma, Mycoplasma and Wolinella) representing over 90% of the retrieved total sequences. The taxonomic microbial inventory was then combined with metabolic profiling data obtained from the Biolog Eco-Plate system. Significant differences among the jellyfish compartments were detected in terms of bacterial abundance, diversity and metabolic utilization of 31 different carbon sources with the highest value of abundance and metabolic potential in the mucus secretion compared to the umbrella and oral arms. Results are discussed in the framework of the species ecology as well as the potential health hazard for marine organisms and humans.
Collapse
Affiliation(s)
- Lorena Basso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy
| | - Lucia Rizzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy; Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marinella Marzano
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Marianna Intranuovo
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Bruno Fosso
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari (IBIOM), CNR, Bari, Italy; Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| | - Stefano Piraino
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, CoNISMa, Piazzale Flaminio 9, 00196 Roma, Italy.
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Water Research Institute of the National Research Council, (IRSA-CNR), Taranto, Italy.
| |
Collapse
|
36
|
Singh G, Pankaj U, Ajayakumar PV, Verma RK. Phytoremediation of sewage sludge by Cymbopogon martinii (Roxb.) Wats. var. motia Burk. grown under soil amended with varying levels of sewage sludge. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 22:540-550. [PMID: 31738576 DOI: 10.1080/15226514.2019.1687422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sewage sludge used as agriculture fertilizers contains a conspicuous amount of potentially toxic metals. In order to prevent the contamination in the food chain, there is an urgent need for the development of sewage sludge clean up technology. The use of non-food, multi-harvest aromatic crops for phytoremediation of sewage sludge has many benefits. Besides the eco-friendly approach, plant biomass generated can be used to extract economically important essential oil free of heavy metals. Cymbopogon martinii was grown in soil (s) amended with different ratios of sewage sludge (ss), that is, 100s:0ss (control), 80s:20ss, 60s:40ss, 40s:60ss, 20s:80ss, and 0s:100ss. The experiment was conducted in a plastic sack under an open environment for 1 year and harvesting was done thrice. Plant growth and essential oil yield were significantly increased with the increasing dose of sewage sludge. Accumulation of toxic metal (Cd, Cr, Pb, Ni) and micronutrient (Fe, Zn, Cu, Mn) increased significantly in the shoot tissues confirmed by estimation of bioaccumulation and bioconcentration, and scanning electron microscopy and X-ray microanalyses. Soil enzyme activities were significantly improved with the plant growth period and increased doses of sludge. Results showed C. martinii acts as hyper-accumulator and thus could be used for phytoremediation of sewage sludge.
Collapse
Affiliation(s)
- Geetu Singh
- Department of Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Umesh Pankaj
- Department of Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - P V Ajayakumar
- Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Rajesh Kumar Verma
- Department of Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
37
|
The Contingency of Soil Microorganisms and the Selected Soil Biotic and Abiotic Parameters Under Different Land-Uses. EKOLÓGIA (BRATISLAVA) 2019. [DOI: 10.2478/eko-2019-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Land use changes are local phenomena with global impact. They have an impact in a cumulative sense on biodiversity or soil degradation. This study aimed to examine the effects of different land-uses (arable land, permanent grasslands, abandoned grasslands, forest land) on the selected biotic and abiotic soil parameters in the Slovak mountain study sites Liptovská Teplička and Tajov. Biotic (microbial community structure, earthworm number and fresh body biomass, arthropod number and fresh body biomass), and abiotic chemical soil parameters (pH, total organic carbon, total nitrogen, nutrients) were measured. According to MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight), several bacterial strains were identified. Mutual relations between soil microorganisms and soil biotic and abiotic properties determined by different land uses were analysed. Microbial response expressed as average well-colour development (AWCD) values indicated relations between higher microbial diversity and higher nutrient availability at both study sites. In the comparison of land use types, permanent grasslands (PG) showed the lowest microbial activity in the depth of 0–0.1 m. But in the depth of 0.2-0.3 m in PG of both study sites, the higher microbial activity was recorded compared to the depth of 0-0.1 m. In addition, lower AWCD values in PG were in line with the lower available P and K content but higher earthworm density and biomass.
Collapse
|
38
|
Gómez-Brandón M, Lores M, Insam H, Domínguez J. Strategies for recycling and valorization of grape marc. Crit Rev Biotechnol 2019; 39:437-450. [PMID: 30939940 DOI: 10.1080/07388551.2018.1555514] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Grapes are one of the most cultivated fruit crops worldwide. Either for wine or juice production, grape processing generates a large amount of residues that must be treated, disposed of or reused properly to reduce their pollution load before being applied to the soil. In this review, a special focus is given to the treatment and valorization of the winemaking by-product like grape marc via anaerobic digestion, composting and vermicomposting at laboratory, pilot, and industrial scales. The impact of the final products (digestates, composts, and vermicomposts) on soil properties is briefly addressed. Moreover, the role of grape marc and seeds as a valuable source of natural phytochemicals that include polyphenols and other bioactive compounds of interest for pharmaceutical, cosmetic, and food industries is also discussed. This is of paramount importance given the fact that sustainability requires the use of management and valorization strategies that allow the recovery of valuable compounds (e.g. antioxidants) with minimum disposal of waste streams.
Collapse
Affiliation(s)
- María Gómez-Brandón
- a Departamento de Ecoloxía e Bioloxía Animal , Universidade de Vigo , Vigo , Spain
| | - Marta Lores
- b Departamento de Química Analítica, Laboratorio de Investigación y Desarrollo de Soluciones Analíticas (LIDSA) , Nutrición y Bromatología, Universidade de Santiago de Compostela, Facultad de Quimica, Avda das Ciencias s/n , Santiago de Compostela , Spain
| | - Heribert Insam
- c Institute of Microbiology , University of Innsbruck , Innsbruck , Austria
| | - Jorge Domínguez
- a Departamento de Ecoloxía e Bioloxía Animal , Universidade de Vigo , Vigo , Spain
| |
Collapse
|
39
|
Si P, Shao W, Yu H, Yang X, Gao D, Qiao X, Wang Z, Wu G. Rhizosphere Microenvironments of Eight Common Deciduous Fruit Trees Were Shaped by Microbes in Northern China. Front Microbiol 2018; 9:3147. [PMID: 30619213 PMCID: PMC6305578 DOI: 10.3389/fmicb.2018.03147] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022] Open
Abstract
The rhizosphere microenvironment is the site of nutrient circulation and microbial community formation, and thus is an ongoing topic of research. Although research on this topic is extensive, studies into the rhizosphere microenvironment of fruit trees remain rare. To elucidate the mechanisms driving the fruit tree rhizosphere microenvironment, we assessed soil physicochemical properties, enzyme activities, the community-level physiological profile (CLPP) and microbial diversity in rhizospheric soils of eight common deciduous fruit trees in northern China. We found that the available minerals, pH, enzyme activities, microbial utilization of six types of carbon (C) substrates, and microbial diversity in the rhizosphere varied among tree species. Redundancy analysis (RDA) showed that rhizosphere microenvironmental parameters (ammonia nitrogen content, soil pH and invertase activity) were closely related to the soil microbial community. Further analysis revealed that the soil microbial utilization of six C sources, nitrate nitrogen content, and invertase activity were negatively correlated with Ambiguous species and Alternaria; however, these groups were positively correlated with pH. The ammonia nitrogen content was positively correlated with C source utilization and negatively correlated with Ambiguous, Lysobacter, Nitrospira, Alternaria, Fusarium, and Colletotrichum. Interestingly, invertase was closely linked to the microbial community, especially fungal diversity, and was positively correlated with plant-beneficial microbes such as Mortierella, Geomyces, Lysobacter, and Chaetomium, but negatively correlated with pathogenic microbes such as Alternaria, Fusarium, and Colletotrichum. Hence, rhizosphere soil physicochemical properties, enzyme activities and microbial community were significantly affected by tree species. Additionally, a variety of environmental factors were closely related to the microbial community in the rhizospheric soils of eight species of deciduous fruit trees.
Collapse
Affiliation(s)
- Peng Si
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Wei Shao
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Huili Yu
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaojing Yang
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dengtao Gao
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiansheng Qiao
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiqiang Wang
- Laboratory of Cultivation Physiology, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoliang Wu
- College of Forestry, Henan Agricultural University, Zhengzhou, China.,College of Horticulture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
40
|
Catabolic Fingerprinting and Diversity of Bacteria in Mollic Gleysol Contaminated with Petroleum Substances. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study focused on the determination of both catabolic and genetic fingerprinting of bacteria inhabiting soil contaminated with car fuels. A surface layer (0–20 cm) of Mollic Gleysol was used for the experiment and was contaminated with car fuels—unleaded 95-octane petrol and diesel at a dose of 15 g per 10 g of soil. The experiment lasted 42 days and was performed at 20 °C. The metabolic potential of soil bacterial communities was evaluated using the Biolog EcoPlate system. The results demonstrated that petroleum substances influenced the structure of the microbial populations and their catabolic activity. The Arthrobacter, Paenibacillus, and Pseudomonas genera were found in diesel-contaminated soil, whilst Bacillus and Microbacterium were found in petrol-contaminated soil. Rhodococcus species were identified in both variants of impurities, suggesting the widest capability of car fuel degradation by this bacterial genus. The contamination with unleaded 95-octane petrol caused rapid inhibition of the metabolic activity of soil bacteria in contrast to the diesel treatment, where high metabolic activity of bacteria was observed until the end of the incubation period. Higher toxicity of petrol in comparison with diesel car fuel was evidenced.
Collapse
|
41
|
Jeszka-Skowron M, Oszust K, Zgoła-Grześkowiak A, Frąc M. Quality assessment of goji fruits, cranberries, and raisins using selected markers. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3125-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Fernandes CC, Kishi LT, Lopes EM, Omori WP, Souza JAMD, Alves LMC, Lemos EGDM. Bacterial communities in mining soils and surrounding areas under regeneration process in a former ore mine. Braz J Microbiol 2018; 49:489-502. [PMID: 29452849 PMCID: PMC6066727 DOI: 10.1016/j.bjm.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023] Open
Abstract
Human activities on the Earth's surface change the landscape of natural ecosystems. Mining practices are one of the most severe human activities, drastically altering the chemical, physical and biological properties of the soil environment. Bacterial communities in soil play an important role in the maintenance of ecological relationships. This work shows bacterial diversity, metabolic repertoire and physiological behavior in five ecosystems samples with different levels of impact. These ecosystems belong to a historical area in Iron Quadrangle, Minas Gerais, Brazil, which suffered mining activities until its total depletion without recovery since today. The results revealed Proteobacteria as the most predominant phylum followed by Acidobacteria, Verrucomicrobia, Planctomycetes, and Bacteroidetes. Soils that have not undergone anthropological actions exhibit an increase ability to degrade carbon sources. The richest soil with the high diversity was found in ecosystems that have suffered anthropogenic action. Our study shows profile of diversity inferring metabolic profile, which may elucidate the mechanisms underlying changes in community structure in situ mining sites in Brazil. Our data comes from contributing to know the bacterial diversity, relationship between these bacteria and can explore strategies for natural bioremediation in mining areas or adjacent areas under regeneration process in iron mining areas.
Collapse
Affiliation(s)
- Camila Cesário Fernandes
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Luciano Takeshi Kishi
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Erica Mendes Lopes
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Wellington Pine Omori
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia Aplicada à Agropecuária, Laboratório de Genética Aplicada, Jaboticabal, SP, Brazil
| | - Jackson Antonio Marcondes de Souza
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Biologia Aplicada à Agropecuária, Laboratório de Genética Aplicada, Jaboticabal, SP, Brazil
| | - Lucia Maria Carareto Alves
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil.
| |
Collapse
|
43
|
Nowak A, Mrozik A. Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 215:216-229. [PMID: 29573672 DOI: 10.1016/j.jenvman.2018.03.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/06/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Soil contamination with chlorophenols is a serious problem all over the world due to their common use in different branches of industry and agriculture. The objective of this study was to determine whether bioaugmenting soil with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2 and additional carbon sources such as phenol (P) and sodium benzoate (SB) could enhance the degradation of 4-chlorophenol (4-CP). During the degradation experiment, the number of bacteria as well as the structural and functional diversity of the soil microbial communities were determined. It was found that the most effective degradation of 4-CP in the soil was observed after it was inoculated with CF600 and the addition of SB. The biodegradation of five doses of 4-CP in this soil proceeded within 100 days. At the same time, the rate of the disappearance of 4-CP in the soil that had been bioaugmented with CF600 and contaminated with 4-CP and P was 5-6.5 times lower compared to its rate of disappearance in the soil that had been contaminated with 4-CP. The biodegradation of 4-CP in all of the treated and untreated soils was accompanied by a systematic decrease in the number of heterotrophic bacteria (THB) ranging between 13 and 40%. It was also proven that the tested aromatic compounds affected the soil microbial community structure through an increase in the marker fatty acids for Gram-negative bacteria (BG-) and fungi (F). The essential changes in the patterns of the fatty acid methyl esters (FAMEs) for the polluted soil included an increase in the fatty acid saturation and hydroxy fatty acid abundance. The obtained results also indicated that the introduction of CF600 into the soil contaminated with 4-CP and SB or P caused an increase in the functional diversity of the soil microorganisms. In contrast, in the soil that had been inoculated with KB2 and in the non-inoculated soil, the addition of 4-CP and P decreased the microbial activity. In conclusion, the inoculation of both strains into contaminated soil with aromatic compounds caused irreversible changes in the functional and structural diversity of the soil microbial communities.
Collapse
Affiliation(s)
- Agnieszka Nowak
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| |
Collapse
|
44
|
Pertile G, Panek J, Oszust K, Siczek A, Frąc M. Intraspecific functional and genetic diversity of Petriella setifera. PeerJ 2018; 6:e4420. [PMID: 29507826 PMCID: PMC5834937 DOI: 10.7717/peerj.4420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was an analysis of the intraspecific genetic and functional diversity of the new isolated fungal strains of P. setifera. This is the first report concerning the genetic and metabolic diversity of Petriella setifera strains isolated from industrial compost and the first description of a protocol for AFLP fingerprinting analysis optimised for these fungal species. The results showed a significant degree of variability among the isolates, which was demonstrated by the clearly subdivision of all the isolates into two clusters with 51% and 62% similarity, respectively. For the metabolic diversity, the BIOLOG system was used and this analysis revealed clearly different patterns of carbon substrates utilization between the isolates resulting in a clear separation of the five isolates into three clusters with 0%, 42% and 54% of similarity, respectively. These results suggest that genetic diversity does not always match the level of functional diversity, which may be useful in discovering the importance of this fungus to ecosystem functioning. The results indicated that P. setifera strains were able to degrade substrates produced in the degradation of hemicellulose (D-Arabinose, L-Arabinose, D-Glucuronic Acid, Xylitol, γ-Amino-Butyric Acid, D-Mannose, D-Xylose and L-Rhamnose), cellulose (α-D-Glucose and D-Cellobiose) and the synthesis of lignin (Quinic Acid) at a high level, showing their importance in ecosystem services as a decomposer of carbon compounds and as organisms, which make a significant contribution to carbon cycling in the ecosystem.The results showed for the first time that the use of molecular biology techniques (such as AFLP and BIOLOG analyses) may allow for the identification of intraspecific diversity of as yet poorly investigated fungal species with favourable consequences for our understanding their ecosystem function.
Collapse
Affiliation(s)
- Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Anna Siczek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| |
Collapse
|
45
|
Oszust K, Panek J, Pertile G, Siczek A, Oleszek M, Frąc M. Metabolic and Genetic Properties of Petriella setifera Precultured on Waste. Front Microbiol 2018; 9:115. [PMID: 29472904 PMCID: PMC5809421 DOI: 10.3389/fmicb.2018.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/18/2018] [Indexed: 02/03/2023] Open
Abstract
Although fungi that belong to Petriella genus are considered to be favorable agents in the process of microbial decomposition or as plant endophytes, they may simultaneously become plant pests. Hence, nutrition factors are supposed to play an important role. Therefore, it was hypothesized that Petriella setifera compost isolates, precultured on three different waste-based media containing oak sawdust, beet pulp (BP) and wheat bran (WB) will subsequently reveal different metabolic properties and shifts in genetic fingerprinting. In fact, the aim was to measure the influence of selected waste on the properties of P. setifera. The metabolic potential was evaluated by the ability of five P. setifera strains to decompose oak sawdust, BP and WB following the MT2 plate® method and the catabolic abilities of the fungus to utilize the carbon compounds located on filamentous fungi (FF) plates®. Genetic diversity was evaluated using Amplified Fragment Length Polymorphism analysis performed both on DNA sequences and on transcript-derived fragments. P. setifera isolates were found to be more suitable for decomposing waste materials rich in protein, N, P, K and easily accessible sugars (as found in WB and BP), than those rich in lignocellulose (oak sawdust). Surprisingly, among the different waste media, lignocellulose-rich sawdust-based culture chiefly triggered changes in the metabolic and genetic features of P. setifera. Most particularly, it contributed to improvements in the ability of the fungus to utilize waste-substrates in MT2 plate® and two times increase the ability to catabolize carbon compounds located in FF plates®. Expressive metabolic properties resulting from being grown in sawdust-based substrate were in accordance with differing genotype profiles but not transcriptome. Intraspecific differences among P. setifera isolates are described.
Collapse
Affiliation(s)
- Karolina Oszust
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Jacek Panek
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Giorgia Pertile
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Anna Siczek
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Marta Oleszek
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Magdalena Frąc
- Laboratory of Molecular and Environmental Microbiology, Department of Soil and Plant System, Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
46
|
Gałązka A, Grządziel J. Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques. Front Microbiol 2018; 9:76. [PMID: 29441054 PMCID: PMC5797640 DOI: 10.3389/fmicb.2018.00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/12/2018] [Indexed: 11/17/2022] Open
Abstract
Fungal diversity in the soil may be limited under natural conditions by inappropriate environmental factors such as: nutrient resources, biotic and abiotic factors, tillage system and microbial interactions that prevent the occurrence or survival of the species in the environment. The aim of this paper was to determine fungal genetic diversity and community level physiological profiling of microbial communities in the soil under long-term maize monoculture. The experimental scheme involved four cultivation techniques: direct sowing (DS), reduced tillage (RT), full tillage (FT), and crop rotation (CR). Soil samples were taken in two stages: before sowing of maize (DSBS-direct sowing, RTBS-reduced tillage, FTBS-full tillage, CRBS-crop rotation) and the flowering stage of maize growth (DSF-direct sowing, RTF-reduced tillage, FTF-full tillage, CRF-crop rotation). The following plants were used in the crop rotation: spring barley, winter wheat and maize. The study included fungal genetic diversity assessment by ITS-1 next generation sequencing (NGS) analyses as well as the characterization of the catabolic potential of microbial communities (Biolog EcoPlates) in the soil under long-term monoculture of maize using different cultivation techniques. The results obtained from the ITS-1 NGS technique enabled to classify and correlate the fungi species or genus to the soil metabolome. The research methods used in this paper have contributed to a better understanding of genetic diversity and composition of the population of fungi in the soil under the influence of the changes that have occurred in the soil under long-term maize cultivation. In all cultivation techniques, the season had a great influence on the fungal genetic structure in the soil. Significant differences were found on the family level (P = 0.032, F = 3.895), genus level (P = 0.026, F = 3.313) and on the species level (P = 0.033, F = 2.718). This study has shown that: (1) fungal diversity was changed under the influence different cultivation techniques; (2) techniques of maize cultivation and season were an important factors that can influence the biochemical activity of soil. Maize cultivated in direct sowing did not cause negative changes in the fungal structure, even making it more stable during seasonal changes; (3) full tillage and crop rotation may change fungal community and soil function.
Collapse
Affiliation(s)
- Anna Gałązka
- Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation - State Research Institute, Puławy, Poland
| | | |
Collapse
|
47
|
Binod Kumar S, Trivedi H, Baraiya NR, Haldar S. An improved device with an affinity membrane to collect depth specific contamination free water for environmental assessment. Analyst 2018; 143:662-669. [DOI: 10.1039/c7an01528c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prime requirement for marine water studies is a competent sampling device that can collect water samples perfectly without any contamination to avoid false analysis.
Collapse
Affiliation(s)
- Sweta Binod Kumar
- Analytical and Environmental Science Division & CIF
- CSIR-CSMCRI
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research
| | - Hardik Trivedi
- Analytical and Environmental Science Division & CIF
- CSIR-CSMCRI
- Bhavnagar-364002
- India
| | | | - Soumya Haldar
- Analytical and Environmental Science Division & CIF
- CSIR-CSMCRI
- Bhavnagar-364002
- India
- Academy of Scientific and Innovative Research
| |
Collapse
|
48
|
Feigl V, Ujaczki É, Vaszita E, Molnár M. Influence of red mud on soil microbial communities: Application and comprehensive evaluation of the Biolog EcoPlate approach as a tool in soil microbiological studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:903-911. [PMID: 28432990 DOI: 10.1016/j.scitotenv.2017.03.266] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
Red mud can be applied as soil ameliorant to acidic, sandy and micronutrient deficient soils. There are still knowledge gaps regarding the effects of red mud on the soil microbial community. The Biolog EcoPlate technique is a promising tool for community level physiological profiling. This study presents a detailed evaluation of Biolog EcoPlate data from two case studies. In experiment "A" red mud from Ajka (Hungary) was mixed into acidic sandy soil in soil microcosms at 5-50 w/w%. In experiement "B" red mud soil mixture was mixed into low quality subsoil in a field experiment at 5-50 w/w%. According to average well color development, substrate average well color development and substrate richness 5-20% red mud increased the microbial activity of the acidic sandy soil over the short term, but the effect did not last for 10months. Shannon diversity index showed that red mud at up to 20% did not change microbial diversity over the short term, but the diversity decreased by the 10th month. 30-50% red mud had deteriorating effect on the soil microflora. 5-20% red mud soil mixture in the low quality subsoil had a long lasting enhancing effect on the microbial community based on all Biolog EcoPlate parameters. However, 50% red mud soil mixture caused a decrease in diversity and substrate richness. With the Biolog EcoPlate we were able to monitor the changes of the microbial community in red mud affected soils and to assess the amount of red mud and red mud soil mixture applicable for soil treatment in these cases.
Collapse
Affiliation(s)
- Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, 1111 Budapest, Műegyetem Rkp. 3, Hungary.
| | - Éva Ujaczki
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, 1111 Budapest, Műegyetem Rkp. 3, Hungary
| | - Emese Vaszita
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, 1111 Budapest, Műegyetem Rkp. 3, Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, 1111 Budapest, Műegyetem Rkp. 3, Hungary
| |
Collapse
|
49
|
Microbial biodiversity of meadows under different modes of land use: catabolic and genetic fingerprinting. World J Microbiol Biotechnol 2017; 33:154. [PMID: 28681284 PMCID: PMC5498651 DOI: 10.1007/s11274-017-2318-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/25/2017] [Indexed: 11/06/2022]
Abstract
The main goal of the study was to find differences in the bacterial community structure resulting from different ways of meadow management in order to get the first insight into microbial biodiversity in meadow samples. The next generation sequencing technique (454-pyrosequencing) was accompanied with the community level physiological profiling (CLPP) method in order to acquire combined knowledge of both genetic and catabolic bacterial fingerprinting of two studied meadows (hayland and pasture). Soil samples (FAO: Mollic Gleysol) were taken in April 2015 from the surface layer (0–20 cm). Significant differences of the bacterial community structure between the two analyzed meadows resulted from different land mode were evidenced by pyrosequencing and CLPP techniques. It was found that Alpha- and Gammaproteobacteria dominated in the hayland, whereas Delta- and Betaproteobacteria prevailed in the pasture. Additionally, the hayland displayed lower Firmicutes diversity than the pasture. Predominant bacterial taxa: Acidobacteria, together with Chloroflexi and Bacteroidetes seemed to be insensitive to the mode of land use, because their abundance remained at a similar level in the both studied meadows. The CLPP analysis confirmed much faster degradation of the carbon sources by microorganisms from the hayland rather than from the pasture. Amino acids were the most favoured carbon source groups utilized by microorganisms in contrast to carbohydrates, which were utilized to the lowest extent. The study clearly proved that the consequences of even moderate anthropogenic management are always changes in bacterial community structure and their metabolic activity. Bacterial taxa that are sensitive and resistant on modes of land use were determined.
Collapse
|
50
|
Margesin R, Siles JA, Cajthaml T, Öhlinger B, Kistler E. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC). MICROBIAL ECOLOGY 2017; 73:925-938. [PMID: 27966037 PMCID: PMC5382179 DOI: 10.1007/s00248-016-0904-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria.
| | - José A Siles
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, 128 01, Prague 2, Czech Republic
| | - Birgit Öhlinger
- Institute of Archaeologies, University of Innsbruck, Langer Weg 11, 6020, Innsbruck, Austria
| | - Erich Kistler
- Institute of Archaeologies, University of Innsbruck, Langer Weg 11, 6020, Innsbruck, Austria
| |
Collapse
|