1
|
Kumar P, Chugh P, Ali SS, Chawla W, Sushmita S, Kumar R, Raval AV, Shamim S, Bhatia A, Kumar R. Trends of Nanobiosensors in Modern Agriculture Systems. Appl Biochem Biotechnol 2025; 197:667-690. [PMID: 39136915 DOI: 10.1007/s12010-024-05039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 01/19/2025]
Abstract
Sustainable agriculture and the provision of food for all become dependent on the availability of efficient diagnostic techniques for the prompt identification of plant diseases. Current scientific findings suggest that nanotechnology can positively affect the agrifood industry by reducing the adverse effects of agricultural practices on human health and the environment, increasing food security and productivity, and fostering social and economic justice. Nanomaterials' unique physical and chemical characteristics have made it possible to employ them as cutting-edge, effective diagnostic instruments for various plant infections and other significant disease biomarkers. By creating diagnostic instruments and methods, nanobiosensors significantly contribute to the revolution of farming. In real time, nanobiosensors can detect infections, metabolites, pesticides, nutrient levels, soil moisture, and temperature. This helps with precision farming techniques and maximises resource use. To better address agricultural concerns, we have included the most recent research on the concept, types, applications, commercial aspects, and future scope of nanobiosensors in this review.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| | - Priya Chugh
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - Syed Salman Ali
- Lloyd Institute of Management and Technology, Greater Noida, 201306, Uttar Pradesh, India
| | - Wineet Chawla
- School of Agriculture Sciences and Engineering, Maharaja Ranjit Singh Punjab Technical University, Bathind, 151001, Punjab, India
| | - Sushmita Sushmita
- Department of Commerce, Punjabi University, Patiala, 147002, Punjab, India
| | - Ram Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | | | - Shamim Shamim
- IIMT College of Medical Sciences, IIMT University, Meerut, 250001, Uttar Pradesh, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
2
|
Lavilla-Puerta M, Giuntoli B. Designed to breathe: synthetic biology applications in plant hypoxia. PLANT PHYSIOLOGY 2024; 197:kiae623. [PMID: 39673416 DOI: 10.1093/plphys/kiae623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/16/2024]
Abstract
Over the past years, plant hypoxia research has produced a considerable number of new resources to monitor low oxygen responses in model species, mainly Arabidopsis thaliana. Climate change urges the development of effective genetic strategies aimed at improving plant resilience during flooding events. This need pushes forward the search for optimized tools that can reveal the actual oxygen available to plant cells, in different organs or under various conditions, and elucidate the mechanisms underlying plant hypoxic responses, complementing the existing transcriptomics, proteomics, and metabolic analysis methods. Oxygen-responsive reporters, dyes, and nanoprobes are under continuous development, as well as novel synthetic strategies that make precision control of plant hypoxic responses realistic. In this review, we summarize the recent progress made in the definition of tools for oxygen response monitoring in plants, either adapted from bacterial and animal research or peculiar to plants. Moreover, we highlight how adoption of a synthetic biology perspective has enabled the design of novel genetic circuits for the control of oxygen-dependent responses in plants. Finally, we discuss the current limitations and challenges toward the implementation of synbio solutions in the plant low-oxygen biology field.
Collapse
Affiliation(s)
- Mikel Lavilla-Puerta
- Plant Molecular Biology Section, Department of Biology, University of Oxford, OX1 3RB Oxford, UK
| | | |
Collapse
|
3
|
Panicucci G, Barreto P, Herzog M, Lichtenauer S, Schwarzländer M, Pedersen O, Weits DA. Tools to understand hypoxia responses in plant tissues. PLANT PHYSIOLOGY 2024; 197:kiae624. [PMID: 39576019 DOI: 10.1093/plphys/kiae624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
Our understanding of how low oxygen (O2) conditions arise in plant tissues and how they shape specific responses has seen major advancement in recent years. Important drivers have been (1) the discovery of the molecular machinery that underpins plant O2 sensing; and (2) a growing set of dedicated tools to define experimental conditions and assess plant responses with increasing accuracy and resolution. While some of those tools, such as the Clark-type O2 electrode, were established decades ago, recent customization has set entirely new standards and enabled novel research avenues in plant hypoxia research. Other tools, such as optical hypoxia reporters and O2 biosensor systems, have been introduced more recently. Yet, their adoption into plant hypoxia research has started to generate novel insight into hypoxia physiology at the tissue and cellular levels. The aim of this update is to provide an overview of the currently available and emerging tools for O2 hypoxia measurements in plants, with an emphasis on high-resolution analyses in living plant tissues and cells. Furthermore, it offers directions for future development and deployment of tools to aid progress with the most pressing questions in plant hypoxia research.
Collapse
Affiliation(s)
- Gabriele Panicucci
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| | - Pedro Barreto
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Max Herzog
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
| | - Sophie Lichtenauer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Markus Schwarzländer
- Plant Energy Biology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, Münster 48143, Germany
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen 2100, Denmark
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Daan A Weits
- Experimental and Computational Plant Development, Institute of Environment Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, Netherlands
| |
Collapse
|
4
|
Boonyarattanakalin K, Rattan P, Songpanit M, Chutipaijit S, Okumura H, Ishihara KN, Mekprasart W, Pecharapa W. The Effect of Polyvinyl Alcohol Addition on the Optical Properties and Oxygen Detection Performance of Titanium Dioxide and Methylene Blue Nanocomposite Colorimetric Indicators. Polymers (Basel) 2024; 16:1400. [PMID: 38794593 PMCID: PMC11124798 DOI: 10.3390/polym16101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we investigated the impact of polyvinyl alcohol (PVA) incorporation on the optical properties and oxygen detection performance of a titanium dioxide/methylene blue (TiO2/MB) nanocomposite colorimetric indicator for packaging applications. The nanocomposite was synthesized via mechanical milling of TiO2 nanoparticles with MB and citric acid. PVA, at varying concentrations (0, 3, 9, and 14 wt%), was introduced during the wet milling process to produce a homogeneous composite film. Spin coating was employed to fabricate TiO2/MB nanocomposite films for oxygen detection evaluation. The influence of PVA loading on the films' chemical functionalities and surface morphologies was assessed using Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FE-SEM). The indicator's activation process, involving a color change between bleached and colored states, and its recovery time were monitored via optical imaging and UV-VIS-NIR spectrophotometry. The results revealed that a PVA content of 9 wt% yielded well-defined films with enhanced stability of the TiO2/MB nanocomposite's oxygen detection performance.
Collapse
Affiliation(s)
- Kanokthip Boonyarattanakalin
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| | - Praphaporn Rattan
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| | - Maneerat Songpanit
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| | - Sutee Chutipaijit
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| | - Hideyuki Okumura
- Graduate School of Energy Science, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan;
| | - Keiichi N. Ishihara
- Open Innovation Institute, Kyoto University, Yoshida Honmachi, Sakyo, Kyoto 606-8501, Japan;
| | - Wanichaya Mekprasart
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| | - Wisanu Pecharapa
- College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (K.B.); (P.R.); (M.S.); (S.C.); (W.P.)
| |
Collapse
|
5
|
Herzog M, Pellegrini E, Pedersen O. A meta-analysis of plant tissue O 2 dynamics. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:519-531. [PMID: 37160400 DOI: 10.1071/fp22294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/13/2023] [Indexed: 05/11/2023]
Abstract
Adequate tissue O2 supply is crucial for plant function. We aimed to identify the environmental conditions and plant characteristics that affect plant tissue O2 status. We extracted data and performed meta-analysis on >1500 published tissue O2 measurements from 112 species. Tissue O2 status ranged from anoxic conditions in roots to >53kPa in submerged, photosynthesising shoots. Using information-theoretic model selection, we identified 'submergence', 'light', 'tissue type' as well as 'light×submergence' interaction as significant drivers of tissue O2 status. Median O2 status were especially low (Solanum tuberosum ) tubers and root nodules. Mean shoot and root O2 were ~25% higher in light than in dark when shoots had atmospheric contact. However, light showed a significant interaction with submergence on plant O2 , with a submergence-induced 44% increase in light, compared with a 42% decline in dark, relative to plants with atmospheric contact. During submergence, ambient water column O2 and shoot tissue O2 correlated stronger in darkness than in light conditions. Although use of miniaturised Clark-type O2 electrodes has enhanced understanding of plant O2 dynamics, application of non-invasive methods in plants is still lacking behind its widespread use in mammalian tissues.
Collapse
Affiliation(s)
- Max Herzog
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark
| | - Elisa Pellegrini
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark; and Department of Food, Agricultural, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, Udine, Italy
| | - Ole Pedersen
- The Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd Floor, Copenhagen 2100, Denmark; and School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
6
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Bulut M, Alseekh S, Fernie AR. Natural variation of respiration-related traits in plants. PLANT PHYSIOLOGY 2023; 191:2120-2132. [PMID: 36546766 PMCID: PMC10069898 DOI: 10.1093/plphys/kiac593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plant respiration is one of the greatest global metabolic fluxes, but rates of respiration vary massively both within different cell types as well as between different individuals and different species. Whilst this is well known, few studies have detailed population-level variation of respiration until recently. The last 20 years have seen a renaissance in studies of natural variance. In this review, we describe how experimental breeding populations and collections of large populations of accessions can be used to determine the genetic architecture of plant traits. We further detail how these approaches have been used to study the rate of respiration per se as well as traits that are intimately associated with respiration. The review highlights specific breakthroughs in these areas but also concludes that the approach should be more widely adopted in the study of respiration per se as opposed to the more frequently studied respiration-related traits.
Collapse
Affiliation(s)
- Mustafa Bulut
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Department of Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | |
Collapse
|
8
|
Tien T, Saccomano SC, Martin PA, Armstrong MS, Prud’homme RK, Cash KJ. Sensors in a Flash! Oxygen Nanosensors for Microbial Metabolic Monitoring Synthesized by Flash Nanoprecipitation. ACS Sens 2022; 7:2606-2614. [PMID: 36053212 PMCID: PMC9513798 DOI: 10.1021/acssensors.2c00859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023]
Abstract
Flash nanoprecipitation (FNP) is an efficient and scalable nanoparticle synthesis method that has not previously been applied to nanosensor fabrication. Current nanosensor fabrication methods have traditionally exhibited poor replicability and consistency resulting in high batch-to-batch variability, highlighting the need for a more tunable and efficient method such as FNP. We used FNP to fabricate nanosensors to sense oxygen based on an oxygen-sensitive dye and a reference dye, as a tool for measuring microbial metabolism. We used fluorescence spectroscopy to optimize nanosensor formulations, calibrate the nanosensors for oxygen concentration determination, and measure oxygen concentrations through oxygen-sensitive dye luminescence. FNP provides an effective platform for making sensors capable of responding to oxygen concentration in gas-bubbled solutions as well as in microbial environments. The environments we tested the sensors in arePseudomonas aeruginosa biofilms andSaccharomyces cerevisiae liquid cultures─both settings where oxygen concentration is highly dependent on microbial activity. With FNP now applied to nanosensor fabrication, future nanosensor applications can take advantage of improved product quality through better replicability and consistency while maintaining the original function of the nanosensor.
Collapse
Affiliation(s)
- Tony Tien
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Samuel C. Saccomano
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Pilar A. Martin
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
| | - Madeleine S. Armstrong
- Chemical
and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Chemical
and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kevin J. Cash
- Chemical
and Biological Engineering, Colorado School
of Mines, Golden, Colorado 80401, United States
- Quantitative
Biosciences and Engineering, Colorado School
of Mines, Golden, Colorado 80401, United
States
| |
Collapse
|
9
|
Shaw DS, Honeychurch KC. Nanosensor Applications in Plant Science. BIOSENSORS 2022; 12:675. [PMID: 36140060 PMCID: PMC9496508 DOI: 10.3390/bios12090675] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/28/2022]
Abstract
Plant science is a major research topic addressing some of the most important global challenges we face today, including energy and food security. Plant science has a role in the production of staple foods and materials, as well as roles in genetics research, environmental management, and the synthesis of high-value compounds such as pharmaceuticals or raw materials for energy production. Nanosensors-selective transducers with a characteristic dimension that is nanometre in scale-have emerged as important tools for monitoring biological processes such as plant signalling pathways and metabolism in ways that are non-destructive, minimally invasive, and capable of real-time analysis. A variety of nanosensors have been used to study different biological processes; for example, optical nanosensors based on Förster resonance energy transfer (FRET) have been used to study protein interactions, cell contents, and biophysical parameters, and electrochemical nanosensors have been used to detect redox reactions in plants. Nanosensor applications in plants include nutrient determination, disease assessment, and the detection of proteins, hormones, and other biological substances. The combination of nanosensor technology and plant sciences has the potential to be a powerful alliance and could support the successful delivery of the 2030 Sustainable Development Goals. However, a lack of knowledge regarding the health effects of nanomaterials and the high costs of some of the raw materials required has lessened their commercial impact.
Collapse
Affiliation(s)
- Daniel S. Shaw
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Kevin C. Honeychurch
- Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
10
|
Tuning the Sensitivity and Dynamic Range of Optical Oxygen Sensing Films by Blending Various Polymer Matrices. BIOSENSORS 2021; 12:bios12010005. [PMID: 35049633 PMCID: PMC8773664 DOI: 10.3390/bios12010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
In this work, eight different types of optical oxygen sensing films were prepared by impregnating indicator and matrix solution on the surface of a polypropylene microporous filter membrane. The polymer matrix of the sensing films was ethyl cellulose (EC), polymethyl methacrylate (PMMA), and their blends with different mixing ratios. Scanning electron microscopy (SEM), laser confocal microscopy, and fluorescence spectrometer were used to investigate the morphologies and optical properties of the sensing films. Phase delay measurements under different oxygen partial pressures (PO2) and temperatures were applied to investigate the analytical performances of the sensing film for gaseous O2 monitoring. Results show that the response time of all the sensing films was extremely fast. The sensitivities and dynamic ranges of the sensing films with the blended polymer matrix were separately decreased and increased as the EC/PMMA ratio decreased, and the S-V curve of the sensing films blended with equal content of EC and PMMA exhibited good linearity under different temperatures, showing a promising prospect in practical application.
Collapse
|
11
|
Liu C, Zhou H, Zhou J. The Applications of Nanotechnology in Crop Production. Molecules 2021; 26:7070. [PMID: 34885650 PMCID: PMC8658860 DOI: 10.3390/molecules26237070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/26/2023] Open
Abstract
With the frequent occurrence of extreme climate, global agriculture is confronted with unprecedented challenges, including increased food demand and a decline in crop production. Nanotechnology is a promising way to boost crop production, enhance crop tolerance and decrease the environmental pollution. In this review, we summarize the recent findings regarding innovative nanotechnology in crop production, which could help us respond to agricultural challenges. Nanotechnology, which involves the use of nanomaterials as carriers, has a number of diverse applications in plant growth and crop production, including in nanofertilizers, nanopesticides, nanosensors and nanobiotechnology. The unique structures of nanomaterials such as high specific surface area, centralized distribution size and excellent biocompatibility facilitate the efficacy and stability of agro-chemicals. Besides, using appropriate nanomaterials in plant growth stages or stress conditions effectively promote plant growth and increase tolerance to stresses. Moreover, emerging nanotools and nanobiotechnology provide a new platform to monitor and modify crops at the molecular level.
Collapse
Affiliation(s)
- Chenxu Liu
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Hui Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
| | - Jie Zhou
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; (C.L.); (H.Z.)
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
12
|
Shokoohi-Rad S, Heidarzadeh HR. In Vivo Imaging of Plant Oxygen Levels. PLANT & CELL PHYSIOLOGY 2021; 62:1251-1258. [PMID: 33725087 PMCID: PMC8410434 DOI: 10.1093/pcp/pcab039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Oxygen is essential for multicellular aerobic life due to its central role in energy metabolism. The availability of oxygen can drop below the level to sustain oxidative phosphorylation when plants are flooded, posing a severe threat to survival. However, under non-stressful conditions, the internal oxygen concentration of most plant tissue is not in equilibrium with the environment, which is attributed to cellular respiration and diffusion constrains imposed by O2 barriers and bulky tissue. This is exemplified by the observations of steep oxygen gradients in roots, fruits, tubers, anthers and meristems. To adapt to a varying availability of oxygen, plants sense O2 via the conditional proteolysis of transcriptional regulators. This mechanism acts to switch oxidative metabolism to anaerobic fermentation, but it was also shown to play a role in plant development and pathogen defense. To investigate how dynamic and spatial distribution of O2 impacts on these processes, accurate mapping of its concentration in plants is essential. Physical oxygen sensors have been employed for decades to profile internal oxygen concentrations in plants, while genetically encoded oxygen biosensors have only recently started to see use. Driven by the critical role of hypoxia in human pathology and development, several novel oxygen-sensing devices have also been characterized in cell lines and animal model organisms. This review aims to provide an overview of available oxygen biosensors and to discuss their potential application to image oxygen levels in plants.
Collapse
Affiliation(s)
- Saeed Shokoohi-Rad
- Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
13
|
Akter S, Khan MS, Smith EN, Flashman E. Measuring ROS and redox markers in plant cells. RSC Chem Biol 2021; 2:1384-1401. [PMID: 34704044 PMCID: PMC8495998 DOI: 10.1039/d1cb00071c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/28/2021] [Indexed: 01/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced throughout plant cells as a by-product of electron transfer processes. While highly oxidative and potentially damaging to a range of biomolecules, there exists a suite of ROS-scavenging antioxidant strategies that maintain a redox equilibrium. This balance can be disrupted in the event of cellular stress leading to increased ROS levels, which can act as a useful stress signal but, in excess, can result in cell damage and death. As crop plants become exposed to greater degrees of multiple stresses due to climate change, efforts are ongoing to engineer plants with greater stress tolerance. It is therefore important to understand the pathways underpinning ROS-mediated signalling and damage, both through measuring ROS themselves and other indicators of redox imbalance. The highly reactive and transient nature of ROS makes this challenging to achieve, particularly in a way that is specific to individual ROS species. In this review, we describe the range of chemical and biological tools and techniques currently available for ROS and redox marker measurement in plant cells and tissues. We discuss the limitations inherent in current methodology and opportunities for advancement.
Collapse
Affiliation(s)
- Salma Akter
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | - Mohammad Shahneawz Khan
- Department of Chemistry, University of Oxford Oxford UK
- Faculty of Biological Sciences, University of Dhaka Dhaka 1000 Bangladesh
| | | | | |
Collapse
|
14
|
Won S, Won K. Self-powered flexible oxygen sensors for intelligent food packaging. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Takajo D, Sudoh K. Impact of the Air Atmosphere on Photoinduced Chain Polymerization in Self-Assembled Monolayers of Diacetylene on Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6002-6006. [PMID: 33969985 DOI: 10.1021/acs.langmuir.1c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have studied the effect of the reaction environment on the photoinduced chain polymerization in self-assembled monolayers of a diacetylene compound 10,12-pentacosadiyn-1-ol on graphite, using scanning tunneling microscopy. Comparing the polymerization behaviors in air and in vacuum, we show that the polymer generation efficiency is considerably enhanced under vacuum because of suppressed collisional quenching of the photoexcited radicals by oxygen molecules. We also find that the polymer chain length tends to increase in vacuum as a result of the inhibition of deactivation of reactive species for the polymer chain growth due to oxidation.
Collapse
Affiliation(s)
- Daisuke Takajo
- Research Center for Thermal and Entropic Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Koichi Sudoh
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
16
|
|
17
|
Weits DA, van Dongen JT, Licausi F. Molecular oxygen as a signaling component in plant development. THE NEW PHYTOLOGIST 2021; 229:24-35. [PMID: 31943217 DOI: 10.1111/nph.16424] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 05/24/2023]
Abstract
While traditionally hypoxia has been studied as a detrimental component of flooding stress, the last decade has flourished with studies reporting the involvement of molecular oxygen availability in plant developmental processes. Moreover, proliferating and undifferentiated cells from different plant tissues were found to reside in endogenously generated hypoxic niches. Thus, stress-associated acute hypoxia may be distinguished from constitutively generated chronic hypoxia. The Cys/Arg branch of the N-degron pathway assumes a central role in integrating oxygen levels resulting in proteolysis of transcriptional regulators that control different aspects of plant growth and development. As a target of this pathway, group VII of the Ethylene Response Factor (ERF-VII) family has emerged as a hub for the integration of oxygen dynamics in root development and during seedling establishment. Additionally, vegetative shoot meristem activity and reproductive transition were recently associated with oxygen availability via two novel substrates of the N-degron pathways: VERNALISATION 2 (VRN2) and LITTLE ZIPPER 2 (ZPR2). Together, these observations support roles for molecular oxygen as a signalling molecule in plant development, as well as in essential metabolic reactions. Here, we review recent findings regarding oxygen-regulated development, and discuss outstanding questions that spring from these discoveries.
Collapse
Affiliation(s)
- Daan A Weits
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56010, Italy
| | | | - Francesco Licausi
- Plantlab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, 56010, Italy
- Biology Department, University of Pisa, Pisa, 56126, Italy
| |
Collapse
|
18
|
Alova A, Erofeev A, Gorelkin P, Bibikova T, Korchev Y, Majouga A, Bulychev A. Prolonged oxygen depletion in microwounded cells of Chara corallina detected with novel oxygen nanosensors. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:386-398. [PMID: 31563950 DOI: 10.1093/jxb/erz433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Primary physicochemical steps in microwounding of plants were investigated using electrochemical nano- and microprobes, with a focus on the role of oxygen in the wounding responses of individual plant cells. Electrochemical measurements of cell oxygen content were made with carbon-filled quartz micropipettes with platinum-coated tips (oxygen nanosensors). These novel platinum nanoelectrodes are useful for understanding cell oxygen metabolism and can be employed to study the redox biochemistry and biology of cells, tissues and organisms. We show here that microinjury of Chara corallina internodal cells with the tip of a glass micropipette is associated with a drastic decrease in oxygen concentration at the vicinity of the stimulation site. This decrease is reversible and lasts for up to 40 minutes. Membrane stretching, calcium influx, and cytoskeleton rearrangements were found to be essential for the localized oxygen depletion induced by cell wall microwounding. Inhibition of electron transport in chloroplasts or mitochondria did not affect the magnitude or timing of the observed response. In contrast, the inhibition of NADPH oxidase activity caused a significant reduction in the amplitude of the decrease in oxygen concentration. We suggest that the observed creation of localized anoxic conditions in response to cell wall puncture might be mediated by NADPH oxidase.
Collapse
Affiliation(s)
- Anna Alova
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| | - Alexander Erofeev
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
- National University of Science and Technology 'MISIS', Moscow, Russian Federation
| | - Petr Gorelkin
- Medical Nanotechnology LLC, Skolkovo Innovation Center, Moscow, Russian Federation
| | - Tatyana Bibikova
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| | - Yury Korchev
- Department of Medicine, Imperial College, London, UK
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Alexander Majouga
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya, Moscow, Russian Federation
| | - Alexander Bulychev
- Lomonosov Moscow State University, Leninskiye gory, Moscow, Russian Federation
| |
Collapse
|
19
|
Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M, Georgiev MI, Omidvar V, Ebrahimi M, Tavakoli Dinanai E, Abiri R. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 2018; 39:20-34. [PMID: 30431379 DOI: 10.1080/07388551.2018.1489778] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.
Collapse
Affiliation(s)
- Alireza Valdiani
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ole Kim Hansen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Ulrik Braüner Nielsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Vivian Kvist Johannsen
- a Department of Geosciences and Natural Resource Management, Section for Forest, Nature and Biomass, Faculty of Science , University of Copenhagen , Frederiksberg C 1958 , Denmark
| | - Maryam Shariat
- b Department of Food Science, Faculty of Food Science and Technology , Universiti Putra Malaysia , Serdang , Selangor 43400 UPM , Malaysia
| | - Milen I Georgiev
- c Institute of Microbiology , Bulgarian Academy of Sciences , Plovdiv 4000 , Bulgaria
| | - Vahid Omidvar
- d Department of Plant Pathology , University of Minnesota , St Paul , MN 55108 , USA
| | - Mortaza Ebrahimi
- e Department of Plant Tissue Culture , Agriculture Biotechnology Research Institute of Iran - Central Region Branch , Isfahan , Iran
| | | | - Rambod Abiri
- g Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences , Universiti Putra Malaysia , Serdang , Selangor DE 43400 UPM , Malaysia
| |
Collapse
|
20
|
Ehrlich A, Tsytkin-Kirschenzweig S, Ioannidis K, Ayyash M, Riu A, Note R, Ouedraogo G, Vanfleteren J, Cohen M, Nahmias Y. Microphysiological flux balance platform unravels the dynamics of drug induced steatosis. LAB ON A CHIP 2018; 18:2510-2522. [PMID: 29992215 PMCID: PMC7004819 DOI: 10.1039/c8lc00357b] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Drug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors. Our microphysiological platform permits the calculation of dynamic changes in metabolic fluxes around central carbon metabolism, producing a unique metabolic fingerprint of the liver's response to stimuli. Using our platform, we studied the dynamics of human liver response to the epilepsy drug Valproate (Depakine™) and the antiretroviral medication Stavudine (Zerit™). Using E6/E7LOW hepatocytes, we show TC50 of 2.5 and 0.8 mM, respectively, coupled with a significant induction of steatosis in 2D and 3D cultures. Time to onset analysis showed slow progressive damage starting only 15-20 hours post-exposure. However, flux analysis showed a rapid disruption of metabolic homeostasis occurring below the threshold of cellular damage. While Valproate exposure led to a sustained 15% increase in lipogenesis followed by mitochondrial stress, Stavudine exposure showed only a transient increase in lipogenesis suggesting disruption of β-oxidation. Our data demonstrates the importance of tracking metabolic stress as a predictor of clinical outcome.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Jerusalem 91904, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Filho AFDM, Gewehr PM, Maia JM, Jakubiak DR. Polystyrene Oxygen Optodes Doped with Ir(III) and Pd(II) meso-Tetrakis(pentafluorophenyl)porphyrin Using an LED-Based High-Sensitivity Phosphorimeter. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1953. [PMID: 29914139 PMCID: PMC6021951 DOI: 10.3390/s18061953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
This paper presents a gaseous oxygen detection system based on time-resolved phosphorimetry (time-domain), which is used to investigate O2 optical transducers. The primary sensing elements were formed by incorporating iridium(III) and palladium(II) meso-tetrakis(pentafluorophenyl)porphyrin complexes (IrTFPP-CO-Cl and PdTFPP) in polystyrene (PS) solid matrices. Probe excitation was obtained using a violet light-emitting diode (LED) (low power), and the resulting phosphorescence was detected by a high-sensitivity compact photomultiplier tube. The detection system performance and the preparation of the transducers are presented along with their optical properties, phosphorescence lifetimes, calibration curves and photostability. The developed lifetime measuring system showed a good signal-to-noise ratio, and reliable results were obtained from the optodes, even when exposed to moderate levels of O2. The new IrTFPP-CO-Cl membranes exhibited room temperature phosphorescence and moderate sensitivity: <τ0>/<τ21%> ratio of ≈6. A typically high degree of dynamic phosphorescence quenching was observed for the traditional indicator PdTFPP: <τ0>/<τ21%> ratio of ≈36. Pulsed-source time-resolved phosphorimetry combined with a high-sensitivity photodetector can offer potential advantages such as: (i) major dynamic range, (ii) extended temporal resolution (Δτ/Δ[O2]) and (iii) high operational stability. IrTFPP-CO-Cl immobilized in polystyrene is a promising alternative for O2 detection, offering adequate photostability and potentially mid-range sensitivity over Pt(II) and Pd(II) metalloporphyrins.
Collapse
Affiliation(s)
| | - Pedro M Gewehr
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Joaquim M Maia
- Graduate Program in Electrical and Computer Engineering (CPGEI), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| | - Douglas R Jakubiak
- Department of Electronics (DAELN), Federal University of Technology-Paraná (UTFPR), Curitiba 80230-901, Brazil.
| |
Collapse
|
22
|
Sun Z, Cai C, Guo F, Ye C, Luo Y, Ye S, Luo J, Zhu F, Jiang C. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors. NANOTECHNOLOGY 2018; 29:145704. [PMID: 29219851 DOI: 10.1088/1361-6528/aaa058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Immobilization of the oxygen-sensitive probes (OSPs) in the host matrix greatly impacts the performance and long-term usage of the optical dissolved oxygen (DO) sensors. In this work, fluorescent dyes, as the OSPs, were encapsulated with a crosslinked fluorinated polymer shell by interfacial confined reversible addition fragmentation chain transfer miniemulsion polymerization to fabricate oxygen sensitive polymeric nanocapsules (NCs). The location of fluorescent dyes and the fluorescent properties of the NCs were fully characterized by fourier transform infrared spectrometer, x-ray photoelectron spectrometer and fluorescent spectrum. Dye-encapsulated capacity can be precisely tuned from 0 to 1.3 wt% without self-quenching of the fluorescent dye. The crosslinked fluorinated polymer shell is not only extremely high gas permeability, but also prevents the fluorescent dyes from leakage in aqueous as well as in various organic solvents, such as ethanol, acetone and tetrahydrofuran (THF). An optical DO sensor based on the oxygen sensitive NCs was fabricated, showing high sensitivity, short response time, full reversibility, and long-term operational stability of online monitoring DO. The sensitivity of the optical DO sensor is 7.02 (the ratio of the response value in fully deoxygenated and saturated oxygenated water) in the range 0.96-14.16 mg l-1 and the response time is about 14.3 s. The sensor's work curve was fit well using the modified Stern-Volmer equation by two-site model, and its response values are hardly affected by pH ranging from 2 to 12 and keep constant during continuous measurement for 3 months. It is believed that the oxygen sensitive polymeric NCs-based optical DO sensor could be particularly useful in long-term online DO monitoring in both aqueous and organic solvent systems.
Collapse
Affiliation(s)
- Zhijuan Sun
- Ocean College, Zhejiang University of Technology, Hangzhou, Zhejiang Province 310014, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Schmidt RR, Weits DA, Feulner CFJ, van Dongen JT. Oxygen Sensing and Integrative Stress Signaling in Plants. PLANT PHYSIOLOGY 2018; 176:1131-1142. [PMID: 29162635 PMCID: PMC5813526 DOI: 10.1104/pp.17.01394] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/18/2017] [Indexed: 05/05/2023]
Abstract
Integration of multiple cellular signals provides new opportunities in understanding oxygen sensing and response mechanisms in plants.
Collapse
Affiliation(s)
- Romy R Schmidt
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Daan A Weits
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Claudio F J Feulner
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| | - Joost T van Dongen
- RWTH Aachen University, Institute of Biology I, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
24
|
González A, Nova E, Del Campo M, Manubens A, De Ioannes A, Ferreira J, Becker MI. The oxygen-binding properties of hemocyanin from the mollusk Concholepas concholepas. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1746-1757. [DOI: 10.1016/j.bbapap.2017.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/29/2017] [Accepted: 08/07/2017] [Indexed: 01/18/2023]
|
25
|
Kwak SY, Wong MH, Lew TTS, Bisker G, Lee MA, Kaplan A, Dong J, Liu AT, Koman VB, Sinclair R, Hamann C, Strano MS. Nanosensor Technology Applied to Living Plant Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:113-140. [PMID: 28605605 DOI: 10.1146/annurev-anchem-061516-045310] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An understanding of plant biology is essential to solving many long-standing global challenges, including sustainable and secure food production and the generation of renewable fuel sources. Nanosensor platforms, sensors with a characteristic dimension that is nanometer in scale, have emerged as important tools for monitoring plant signaling pathways and metabolism that are nondestructive, minimally invasive, and capable of real-time analysis. This review outlines the recent advances in nanotechnology that enable these platforms, including the measurement of chemical fluxes even at the single-molecule level. Applications of nanosensors to plant biology are discussed in the context of nutrient management, disease assessment, food production, detection of DNA proteins, and the regulation of plant hormones. Current trends and future needs are discussed with respect to the emerging trends of precision agriculture, urban farming, and plant nanobionics.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Gili Bisker
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael A Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Amir Kaplan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Juyao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Albert Tianxiang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Catherine Hamann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139;
| |
Collapse
|
26
|
Sasidharan R, Bailey-Serres J, Ashikari M, Atwell BJ, Colmer TD, Fagerstedt K, Fukao T, Geigenberger P, Hebelstrup KH, Hill RD, Holdsworth MJ, Ismail AM, Licausi F, Mustroph A, Nakazono M, Pedersen O, Perata P, Sauter M, Shih MC, Sorrell BK, Striker GG, van Dongen JT, Whelan J, Xiao S, Visser EJW, Voesenek LACJ. Community recommendations on terminology and procedures used in flooding and low oxygen stress research. THE NEW PHYTOLOGIST 2017; 214:1403-1407. [PMID: 28277605 DOI: 10.1111/nph.14519] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Rashmi Sasidharan
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
| | - Julia Bailey-Serres
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
- Center for Plant Cell Biology, Department of Botany and Plant Science, University of California, Riverside, CA, 92521-0124, USA
| | - Motoyuki Ashikari
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Brian J Atwell
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kurt Fagerstedt
- Department of Biosciences, Viikki Plant Science Center, Helsinki University, PO Box 65, Helsinki, FI-00014, Finland
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Translational Plant Science Program, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Geigenberger
- Department of Biol 1, Ludwig Maximilian University of Munich, Grosshaderner Str 2-4, Martinsried, Planegg, Munich, D-82152, Germany
| | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, 4200, Denmark
| | - Robert D Hill
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael J Holdsworth
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Abdelbagi M Ismail
- International Rice Research Institute, Los Banõs, Laguna, 4031, Philippines
| | - Francesco Licausi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa, 56124, Italy
| | - Angelika Mustroph
- Plant Physiology, University Bayreuth, Universitaetsstr. 30, Bayreuth, 95440, Germany
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ole Pedersen
- Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Via Mariscoglio 34, Pisa, 56124, Italy
| | - Margret Sauter
- Plant Developmental Biology and Plant Physiology, Kiel University, Kiel, 24118, Germany
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, 115, Taipei, Taiwan
| | - Brian K Sorrell
- Department of Bioscience, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo G Striker
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martin 4453, Buenos Aires, Argentina
| | | | - James Whelan
- Department of Animal, Plant and Soil Science, School of Life Science, Australian Research Council Center of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Eric J W Visser
- Department of Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Laurentius A C J Voesenek
- Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584CH, the Netherlands
| |
Collapse
|
27
|
Scafaro AP, Negrini ACA, O’Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, Badger MR, Millar AH, Atkin OK. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. PLANT METHODS 2017; 13:16. [PMID: 28344635 PMCID: PMC5361846 DOI: 10.1186/s13007-017-0169-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/17/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. RESULTS The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant Rdark through dissection and simultaneous measurements of above- and below-ground organs. DISCUSSION Variation in absolute Rdark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or tissue type.
Collapse
Affiliation(s)
- Andrew P. Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Bayer CropScience SA-NV, Technologiepark 38, 9052 Gent (Zwijnaarde), Belgium
| | - A. Clarissa A. Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - F. Azzahra Ahmad Rashid
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - You Zhang
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Vincent Chochois
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Murray R. Badger
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - A. Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Owen K. Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
28
|
Scafaro AP, Negrini ACA, O'Leary B, Rashid FAA, Hayes L, Fan Y, Zhang Y, Chochois V, Badger MR, Millar AH, Atkin OK. The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. PLANT METHODS 2017; 13:16. [PMID: 28344635 DOI: 10.1186/s13007-017-0169-163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Mitochondrial respiration in the dark (Rdark) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of Rdark is essential for agronomic and ecological studies. However, currently methods used to measure Rdark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O2 consumption rates. The fluorophore technique was compared with O2-electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. RESULTS The high-throughput fluorophore system provided stable measurements of Rdark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of Rdark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant Rdark through dissection and simultaneous measurements of above- and below-ground organs. DISCUSSION Variation in absolute Rdark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of Rdark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of Rdark on multiple samples simultaneously, irrespective of plant or tissue type.
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Bayer CropScience SA-NV, Technologiepark 38, 9052 Gent (Zwijnaarde), Belgium
| | - A Clarissa A Negrini
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Brendan O'Leary
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - F Azzahra Ahmad Rashid
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Lucy Hayes
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Yuzhen Fan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - You Zhang
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Vincent Chochois
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - Murray R Badger
- ARC Centre of Excellence for Translational Photosynthesis, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, Building 134, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
29
|
Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction. Proc Natl Acad Sci U S A 2016; 113:E2231-40. [PMID: 27044092 DOI: 10.1073/pnas.1522556113] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology.
Collapse
|
30
|
Wang L, Zhang H, Zhou X, Liu Y, Lei B. Preparation and characterization of a luminescent carbon dots grafted CaSiO3:Eu3+ phosphor for ratiometric fluorescent oxygen sensing. RSC Adv 2016. [DOI: 10.1039/c6ra20380a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this work, we present a rapid, selective and highly sensitive sensor for the detection of oxygen based on ratiometric fluorescentcarbon dots (CDs) grafted CaSiO3:Eu3+.
Collapse
Affiliation(s)
- Li Wang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Haoran Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Xiaohua Zhou
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| |
Collapse
|
31
|
Jahn K, Buschmann V, Hille C. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells. Sci Rep 2015; 5:14334. [PMID: 26390855 PMCID: PMC4585718 DOI: 10.1038/srep14334] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.
Collapse
Affiliation(s)
- Karolina Jahn
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | | | - Carsten Hille
- Physical Chemistry/ALS ComBi, Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
32
|
Prill S, Bavli D, Levy G, Ezra E, Schmälzlin E, Jaeger MS, Schwarz M, Duschl C, Cohen M, Nahmias Y. Real-time monitoring of oxygen uptake in hepatic bioreactor shows CYP450-independent mitochondrial toxicity of acetaminophen and amiodarone. Arch Toxicol 2015; 90:1181-91. [DOI: 10.1007/s00204-015-1537-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/12/2015] [Indexed: 01/23/2023]
|
33
|
Weyand B, Nöhre M, Schmälzlin E, Stolz M, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM. Noninvasive Oxygen Monitoring in Three-Dimensional Tissue Cultures Under Static and Dynamic Culture Conditions. Biores Open Access 2015; 4:266-77. [PMID: 26309802 PMCID: PMC4497672 DOI: 10.1089/biores.2015.0004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We present a new method for noninvasive real-time oxygen measurement inside three-dimensional tissue-engineered cell constructs in static and dynamic culture settings in a laminar flow bioreactor. The OPAL system (optical oxygen measurement system) determines the oxygen-dependent phosphorescence lifetime of spherical microprobes and uses a two-frequency phase-modulation technique, which fades out the interference of background fluorescence from the cell carrier and culture medium. Higher cell densities in the centrum of the scaffolds correlated with lower values of oxygen concentration obtained with the OPAL system. When scaffolds were placed in the bioreactor, higher oxygen values were measured compared to statically cultured scaffolds in a Petri dish, which were significantly different at day 1-3 of culture. This technique allows the use of signal-weak microprobes in biological environments and monitors the culture process inside a bioreactor.
Collapse
Affiliation(s)
- Birgit Weyand
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | - Mariel Nöhre
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | - Herb P von Schroeder
- Biomimetics Technologies, Inc. , Toronto, Canada . ; University Hand Program and Bone Lab, Department of Surgery, University of Toronto , Toronto, Canada
| | - Kerstin Reimers
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | - Peter M Vogt
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| |
Collapse
|
34
|
Ruedinger F, Lavrentieva A, Blume C, Pepelanova I, Scheper T. Hydrogels for 3D mammalian cell culture: a starting guide for laboratory practice. Appl Microbiol Biotechnol 2014; 99:623-36. [DOI: 10.1007/s00253-014-6253-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
35
|
Prokhorov AM, Hofbeck T, Czerwieniec R, Suleymanova AF, Kozhevnikov DN, Yersin H. Brightly Luminescent Pt(II) Pincer Complexes with a Sterically Demanding Carboranyl-Phenylpyridine Ligand: A New Material Class for Diverse Optoelectronic Applications. J Am Chem Soc 2014; 136:9637-42. [DOI: 10.1021/ja503220w] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anton M. Prokhorov
- Ural Federal University, Department of Organic
Chemistry, Mira-st. 28, 620002 Ekaterinburg, Russian Federation
| | - Thomas Hofbeck
- Universität Regensburg, Institut für Physikalische
und Theoretische Chemie, Universitätstr. 31, D-93040 Regensburg, Germany
| | - Rafal Czerwieniec
- Universität Regensburg, Institut für Physikalische
und Theoretische Chemie, Universitätstr. 31, D-93040 Regensburg, Germany
| | - Alfiya F. Suleymanova
- Ural Federal University, Department of Organic
Chemistry, Mira-st. 28, 620002 Ekaterinburg, Russian Federation
| | - Dmitry N. Kozhevnikov
- Ural Federal University, Department of Organic
Chemistry, Mira-st. 28, 620002 Ekaterinburg, Russian Federation
| | - Hartmut Yersin
- Universität Regensburg, Institut für Physikalische
und Theoretische Chemie, Universitätstr. 31, D-93040 Regensburg, Germany
| |
Collapse
|
36
|
Ast C, Draaijer A. Methods and Techniques to Measure Molecular Oxygen in Plants. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Sew YS, Ströher E, Holzmann C, Huang S, Taylor NL, Jordana X, Millar AH. Multiplex micro-respiratory measurements of Arabidopsis tissues. THE NEW PHYTOLOGIST 2013; 200:922-932. [PMID: 23834713 DOI: 10.1111/nph.12394] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/29/2013] [Indexed: 05/08/2023]
Abstract
Researchers often want to study the respiratory properties of individual parts of plants in response to a range of treatments. Arabidopsis is an obvious model for this work; however, because of its size, it represents a challenge for gas exchange measurements of respiration. The combination of micro-respiratory technologies with multiplex assays has the potential to bridge this gap, and make measurements possible in this model plant species. We show the adaptation of the commercial technology used for mammalian cell respiration analysis to study three critical tissues of interest: leaf sections, root tips and seeds. The measurement of respiration in single leaf discs has allowed the age dependence of the respiration rate in Arabidopsis leaves across the rosette to be observed. The oxygen consumption of single root tips from plate-grown seedlings shows the enhanced respiration of root tips and their time-dependent susceptibility to salinity. The monitoring of single Arabidopsis seeds shows the kinetics of respiration over 48 h post-imbibition, and the effect of the phytohormones gibberellic acid (GA3 ) and abscisic acid (ABA) on respiration during seed germination. These studies highlight the potential for multiplexed micro-respiratory assays to study oxygen consumption in Arabidopsis tissues, and open up new possibilities to screen and study mutants and to identify differences in ecotypes or populations of different plant species.
Collapse
Affiliation(s)
- Yun Shin Sew
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Elke Ströher
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Cristián Holzmann
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Millenium Nucleus in Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidád Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Xavier Jordana
- Millenium Nucleus in Plant Functional Genomics, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidád Católica de Chile, Casilla 114-D, Santiago, Chile
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
- Centre for Comparative Analysis of Biomolecular Networks (CABiN), The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
38
|
Liu H, Yang H, Hao X, Xu H, Lv Y, Xiao D, Wang H, Tian Z. Development of polymeric nanoprobes with improved lifetime dynamic range and stability for intracellular oxygen sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2639-48. [PMID: 23519925 DOI: 10.1002/smll.201203127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/11/2013] [Indexed: 05/24/2023]
Abstract
A class of core-shell nanoparticles possessing a layer of biocompatible shell and hydrophobic core with embedded oxygen-sensitive platinum-porphyrin (PtTFPP) dyes is developed via a radical-initiated microemulsion co-polymerization strategy. The influences of host matrices and the PtTFPP incorporation manner on the photophysical properties and the oxygen-sensing performance of the nanoparticles are investigated. Self-loading capability with cells and intracellular-oxygen-sensing ability of the as-prepared nanoparticle probes in the range 0%-20% oxygen concentration are confirmed. Polymeric nanoparticles with optimized formats are characterized by their relatively small diameter (<50 nm), core-shell structures with biocompatible shells, covalent-attachment-imparted leak-free construction, improved lifetime dynamic range (up to 44 μs), excellent storage stability and photostability, and facile cell uptake. The nanoparticles' small sensor diameter and core-shell structure with biocompatible shell make them suitable for intracellular detection applications. For intracellular detection applications, the leak-free feature of the as-prepared nanoparticle sensor effectively minimizes potential chemical interferences and cytotoxicity. As a salient feature, improved lifetime dynamic range of the sensor is expected to enable precise oxygen detection and control in specific practical applications in stem-cell biology and medical research. Such a feature-packed nanoparticle oxygen sensor may find applications in precise oxygen-level mapping of living cells and tissue.
Collapse
Affiliation(s)
- Heng Liu
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences-UCAS, Beijing 100049, PR China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wilson AD. Diverse applications of electronic-nose technologies in agriculture and forestry. SENSORS (BASEL, SWITZERLAND) 2013; 13:2295-348. [PMID: 23396191 PMCID: PMC3649433 DOI: 10.3390/s130202295] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 12/14/2022]
Abstract
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Collapse
Affiliation(s)
- Alphus D Wilson
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Southern Hardwoods Laboratory, Stoneville, MS 38776, USA.
| |
Collapse
|
40
|
|
41
|
Wang XD, Stolwijk JA, Lang T, Sperber M, Meier RJ, Wegener J, Wolfbeis OS. Ultra-Small, Highly Stable, and Sensitive Dual Nanosensors for Imaging Intracellular Oxygen and pH in Cytosol. J Am Chem Soc 2012; 134:17011-4. [DOI: 10.1021/ja308830e] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xu-dong Wang
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Judith A. Stolwijk
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Thomas Lang
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Michaela Sperber
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Robert J. Meier
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Joachim Wegener
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Otto S. Wolfbeis
- Institute
of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
42
|
Fercher A, Zhdanov AV, Papkovsky DB. O2 Imaging in Biological Specimens. PHOSPHORESCENT OXYGEN-SENSITIVE PROBES 2012. [DOI: 10.1007/978-3-0348-0525-4_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|