1
|
Liu M, Wen Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024; 10:e38444. [PMID: 39397977 PMCID: PMC11470528 DOI: 10.1016/j.heliyon.2024.e38444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Liver cancer is a highly prevalent and lethal form of cancer worldwide. In the absence of early diagnosis, treatment options for this disease are severely restricted. Recent advancements in genomics and bioinformatics have facilitated the discovery of a multitude of novel biomarkers that accurately depict an individual's disease diagnosis, progression, and treatment response. Leveraging these breakthroughs, personalized medicine employs an individual's biomarker profile to enable early detection of liver cancer and inform decisions regarding treatment selection, dosage determination, and prognosis assessment. The current lack of readily applicable, timely, and economically viable tools for biomarker analysis has hindered the incorporation of personalized medicine into regular clinical procedures. Over the past decade, significant advancements have been achieved in the field of molecular point-of-care testing (POCT) and amplification techniques, leading to substantial improvements in the diagnosis of liver cancer and the implementation of precision medicine. Instrument-free PCR technology or plasma PCR technology can shorten the complex procedure of in vitro detection of nucleic acid-based biomarkers. Also, compared to traditional ELISA, various nanomaterials modified with monoclonal antibodies to target proteins for recognition, capture, and detection have improved the efficiency of protein-based biomarker detection. These advances have reduced the time and cost of clinical detection of early-stage hepatocellular carcinoma and improved the efficiency of timely diagnosis and survival of suspected patients while reducing unnecessary testing costs and procedures. This review aims to provide a comprehensive overview of the current and emerging biomarkers employed in the early detection of liver cancer, as well as the advancements in point-of-care molecular testing technology and platforms. The primary objective is to assess their potential in facilitating the implementation of personalized medicine. This review ultimately revealed that the diagnosis of early-stage hepatocellular carcinoma not only requires sensitive biomarkers, but its various modifications and changes during the progression of cirrhosis to early-stage hepatocellular carcinoma will be a greater focus of our attention in the future. The rapid development of POCT has facilitated the opportunity to readily detect liver cancer in the general population in the future, and the integration of multi-pathway multiplexing and intelligent algorithms has improved the sensitivity and accuracy of early liver cancer biomarker detection. It is expected that the integration of point-of-care technology will be instrumental in the widespread adoption of personalized medicine in the foreseeable future.
Collapse
Affiliation(s)
- Mengxiang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanrong Wen
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
2
|
Hasan MR, Mughees M, Shaikh S, Choudhary F, Nizam A, Rizwan A, Ansari O, Iqbal Y, Pilloton R, Wajid S, Narang J. From Biosensors to Robotics: Pioneering Advances in Breast Cancer Management. SENSORS (BASEL, SWITZERLAND) 2024; 24:6149. [PMID: 39338894 PMCID: PMC11435941 DOI: 10.3390/s24186149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Breast cancer stands as the most prevalent form of cancer amongst females, constituting more than one-third of all cancer cases affecting women. It causes aberrant cell development, which can assault or spread to other sections of the body, perhaps leading to the patient's death. Based on research findings, timely detection can diminish the likelihood of mortality and enhance the quality of healthcare provided for the illness. However, current technologies can only identify cancer at an advanced stage. Consequently, there is a substantial demand for rapid and productive approaches to detecting breast cancer. Researchers are actively pursuing precise and timely methods for the diagnosis of breast cancer, aiming to achieve enhanced accuracy and early detection. Biosensor technology can allow for the speedy and accurate diagnosis of cancer-related cells, as well as a more sensitive and specialized technique for generating them. Additionally, numerous treatments for breast cancer are depicted such as herbal therapy, nanomaterial-based drug delivery, miRNA targeting, CRISPR technology, immunotherapy, and precision medicine. Early detection and efficient therapy are necessary to manage such a severe illness properly.
Collapse
Affiliation(s)
- Mohd. Rahil Hasan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Mohd Mughees
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Shifa Shaikh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Furqan Choudhary
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Anam Nizam
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Amber Rizwan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Onaiza Ansari
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Yusra Iqbal
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, I-00015 Rome, Italy
| | - Saima Wajid
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India; (M.R.H.); (M.M.); (S.S.); (F.C.); (A.N.); (A.R.); (O.A.); (Y.I.)
| |
Collapse
|
3
|
Yang W, Cao L, Lu H, Huang Y, Yang W, Cai Y, Li S, Li S, Zhao J, Xu W. Custom-printed microfluidic chips using simultaneous ratiometric fluorescence with "Green" carbon dots for detection of multiple antibiotic residues in pork and water samples. J Food Sci 2024; 89:5980-5992. [PMID: 39042465 DOI: 10.1111/1750-3841.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
In the evolving field of food safety, rapid and precise detection of antibiotic residues is crucial. This study aimed to tackle this challenge by integrating advanced inkjet printing technology with sophisticated microfluidic paper-based analytical devices (µPADs). The µPAD design utilized "green" quantum dots synthesized via an eco-friendly hydrothermal method using green white mulberry leaves as the carbon source, serving as the key fluorescent detection material. The action mechanism involved a photoinduced electron transfer system using red carbon dots (CDs) as electron donors and blue CDs combined with two-dimensional layered molybdenum disulfide (MoS2) nanosheets as electron acceptors. This system could quickly detect antibiotics within 10 min in pork and water samples, demonstrating high sensitivity and recovery rates: 6.5 pmol/L at 99.75%-110% for sulfadimethoxine, 3.3 pmol/L at 99%-105% for sulfamethoxazole, and 8.5 pmol/L at 98.5%-105% for tetracycline. It achieved a relative standard deviation under 5%, ensuring reliability and reproducibility. The fabricated sensor offered a promising application for the rapid and efficient on-site detection of antibiotic residues in food.
Collapse
Affiliation(s)
- Wenming Yang
- School of materials Science and Engineering, Jiangsu University, Zhenjiang, China
- Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou, China
| | - Lingling Cao
- School of materials Science and Engineering, Jiangsu University, Zhenjiang, China
- Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou, China
| | - Hongjie Lu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Huang
- Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou, China
| | - Wenqi Yang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yuanzheng Cai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Sumin Li
- Changzhou Engineering and Technology Institute of Jiangsu University, Changzhou, China
| | - Shuqi Li
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianwen Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, China
- Division of Nanodevices and Related Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Wanzhen Xu
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Mutunga T, Sinanovic S, Harrison C. A Wireless Network for Monitoring Pesticides in Groundwater: An Inclusive Approach for a Vulnerable Kenyan Population. SENSORS (BASEL, SWITZERLAND) 2024; 24:4665. [PMID: 39066061 PMCID: PMC11280913 DOI: 10.3390/s24144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Safe drinking water is essential to a healthy lifestyle and has been recognised as a human right by numerous countries. However, the realisation of this right remains largely aspirational, particularly in impoverished nations that lack adequate resources for water quality testing. Kenya, a Sub-Saharan country, bears the brunt of this challenge. Pesticide imports in Kenya increased by 144% from 2015 to 2018, with sales data indicating that 76% of these pesticides are classified as highly hazardous. This trend continues to rise. Over 70% of Kenya's population resides in rural areas, with 75% of the rural population engaged in agriculture and using pesticides. Agriculture is the country's main economic activity, contributing over 30% of its gross domestic product (GDP). The situation is further exacerbated by the lack of monitoring for pesticide residues in surface water and groundwater, coupled with the absence of piped water infrastructure in rural areas. Consequently, contamination levels are high, as agricultural runoff is a major contaminant of surface water and groundwater. The increased use of pesticides to enhance agricultural productivity exacerbates environmental degradation and harms water ecosystems, adversely affecting public health. This study proposes the development of a wireless sensor system that utilizes radio-frequency identification (RFID), Long-range (LoRa) protocol and a global system for mobile communications (GSM) for monitoring pesticide prevalence in groundwater sources. From the system design, individuals with limited literacy skills, advanced age, or non-expert users can utilize it with ease. The reliability of the LoRa protocol in transmitting data packets is thoroughly investigated to ensure effective communication. The system features a user-friendly interface for straightforward data input and facilitates broader access to information by employing various remote wireless sensing methods.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.H.)
| | | | | |
Collapse
|
5
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
6
|
Aboobakri E, Heidari T, Jahani M. Determination of lead(II) in food samples using a functionalized paper-based fluorescent sensor modified by carbon dots. LUMINESCENCE 2024; 39:e4690. [PMID: 38373785 DOI: 10.1002/bio.4690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This work discusses surface modification of cellulose paper specimens for compatibility with nitrogen and sulfur co-doped carbon dots (NSCDs) for lead ion sensing. The interaction of carbon dots (CDs) and cellulose fibers was investigated using silane or chitosan-modified cellulose papers. It was found that modified papers could reduce undesirable redistribution of CDs, during paper drying. Also, only chitosan-modified filter paper was suitable for the successful immobilization of NSCDs. The effect of paper type, chitosan amount, pH, and NSCDs concentration was also studied, and a Whatman No. 42 filter paper modified with chitosan (1% w/v), pH 8.0, and an NSCD concentration of 2.5 g L-1 being selected for further studies. The sensor exhibited high selectivity for lead(II) compared with other metal ions because lead(II) resulted in the most significant changes in the emitted light intensity. Variations in NSCDs fluorescence were measured using a fluorescence imaging system. The NSCDs-paper sensor showed a linear relationship between mean fluorescence intensity and lead(II) in the concentration range of 5.00-1.25 × 102 μmol L-1 with a correlation coefficient (R2 ) of 0.9988 and a detection limit of 4.50 μmol L-1 . The suggested method showed satisfying results for lead(II) determination in different samples as a fast and low-cost approach with on-site application.
Collapse
Affiliation(s)
- Elias Aboobakri
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Tahereh Heidari
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moslem Jahani
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
7
|
Khan S, Monteiro JK, Prasad A, Filipe CDM, Li Y, Didar TF. Material Breakthroughs in Smart Food Monitoring: Intelligent Packaging and On-Site Testing Technologies for Spoilage and Contamination Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300875. [PMID: 37085965 DOI: 10.1002/adma.202300875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | - Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
8
|
Gandotra R, Kuo FC, Lee MS, Lee GB. A paper-based aptamer-sandwich assay for detection of HNP 1 as a biomarker for periprosthetic joint infections on an integrated microfluidic platform. Anal Chim Acta 2023; 1281:341879. [PMID: 38783735 DOI: 10.1016/j.aca.2023.341879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Total joint arthroplasty (TJA) has significantly improved the quality of life for millions suffering from end-stage arthritis. However, periprosthetic joint infections (PJI) remain a serious complication, necessitating extensive interventions and prolonged antimicrobial treatments. The aging population is expected to lead to a rise in TJA cases, subsequently increasing the incidence of PJI, particularly in the elderly who face higher mortality rates. Current diagnostic methods for suspected PJI, such as radiographs and biochemical markers like CRP and ESR, exhibit limited sensitivity. Therefore, there is a critical need for a specific synovial fluid biomarker assay to enhance PJI diagnosis using specific SF-based assay. RESULTS This study introduces a novel microfluidic chip with a paper-based aptamer-sandwich assay for the quantitative detection of HNP 1, a crucial PJI biomarker, in synovial fluid. The assay leverages the advantages of aptamers over antibodies, demonstrating high selectivity and affinity for target molecules. The integration of a nitrocellulose (NC) membrane onto the microfluidic platform represents a significant advancement, reducing background signals and simplifying the assay procedure without intricate procedure and pre-treatment. The NC membrane-based microfluidic device offers rapid, cost-effective, and highly sensitive detection of HNP 1, with a limit of detection of 0.5 mg L-1. The microfluidic device demonstrates exceptional performance, detecting up to four clinical samples in approximately 42 min on a single chip with 100 % accuracy, as confirmed by analysis of 12 clinical samples and comparison with "gold-standard". Moreover, the assay exhibits a wide dynamic range of 0.5-100 mg L-1, underscoring its potential as a powerful tool for PJI diagnosis in clinical settings. SIGNIFICANCE This work introduces a paper-based microfluidic system tailored for rapid HNP 1 detection using synovial fluid near joint region (and not serum via blood) for better diagnosis. The innovative paper-based aptamer-sandwich assay yields results within 42-min. Significantly, it boasts a wide dynamic range, detecting levels from an impressive 0.5 mg L-1, crucial in the 2.6 mg L-1 threshold region. This heightened sensitivity and expansive detection capability establish our assay as a leader in PJI diagnostics, promising unmatched precision and efficiency in clinical applications.
Collapse
Affiliation(s)
- Rishabh Gandotra
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Feng-Chih Kuo
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Mel S Lee
- Department of Orthopedic Surgery, Paochien Hospital, Pintung, Taiwan.
| | - Gwo-Bin Lee
- Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
9
|
Luongo A, von Stockert AR, Scherag FD, Brandstetter T, Biesalski M, Rühe J. Controlling Fluorescent Readout in Paper-based Analytical Devices. ACS Biomater Sci Eng 2023; 9:6379-6389. [PMID: 37875260 PMCID: PMC10649804 DOI: 10.1021/acsbiomaterials.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
Paper is an ideal candidate for the development of new disposable diagnostic devices because it is a low-cost material, allows transport of the liquid on the device by capillary action, and is environmentally friendly. Today, colorimetric analysis is most often used as a detection method for rapid tests (test strips or lateral flow devices) but usually gives only qualitative results and is limited by a relatively high detection threshold. Here, we describe studies using fluorescence as a readout tool for paper-based diagnostics. We study how the optical readout is affected by light transmission, scattering, and fluorescence as a function of paper characteristics such as thickness (grammage), water content, autofluorescence, and paper type/composition. We show that paper-based fluorescence analysis allows better optical readout compared to that of nitrocellulose, which is currently the material of choice in colorimetric assays. To reduce the loss of analyte molecules (e.g., proteins) due to adsorption to the paper surface, we coat the paper fibers with a protein-repellent hydrogel. For this purpose, we use hydrophilic copolymers consisting of N,N-dimethyl acrylamide and a benzophenone-based cross-linker, which are photochemically transformed into a fiber-attached polymer hydrogel on the paper fiber surfaces in situ. We show that the combination of fluorescence detection and the use of a protein-repellent coating enables sensitive paper-based analysis. Finally, the success of the strategy is demonstrated by using a simple LFD application as an example.
Collapse
Affiliation(s)
- Anna Luongo
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | | | - Frank D. Scherag
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Thomas Brandstetter
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| | - Markus Biesalski
- Macromolecular
Chemistry & Paper Chemistry, Technical
University of Darmstadt, Darmstadt 64287, Germany
| | - Jürgen Rühe
- Laboratory
for Chemistry & Physics of Interfaces, Department of Microsystems
Engineering (IMTEK), Albert-Ludwigs-Universität
Freiburg, Freiburg 79110, Germany
- Freiburg
Institute for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, Freiburg 79110, Germany
| |
Collapse
|
10
|
du Plooy J, Jahed N, Iwuoha E, Pokpas K. Advances in paper-based electrochemical immunosensors: review of fabrication strategies and biomedical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230940. [PMID: 38034121 PMCID: PMC10685120 DOI: 10.1098/rsos.230940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Cellulose paper-based sensing devices have shown promise in addressing the accuracy, sensitivity, selectivity, analysis time and cost of current disease diagnostic tools owing to their excellent physical and physiochemical properties, high surface-area-to-volume ratio, strong adsorption capabilities, ease of chemical functionalization for immobilization, biodegradability, biocompatibility and liquid transport by simple capillary action. This review provides a comprehensive overview of recent advancements in the field of electrochemical immunosensing for various diseases, particularly in underdeveloped regions and globally. It highlights the significant progress in fabrication techniques, fluid control, signal transduction and paper substrates, shedding light on their respective advantages and disadvantages. The primary objective of this review article is to compile recent advances in the field of electrochemical immunosensing for the early detection of diseases prevalent in underdeveloped regions and globally, including cancer biomarkers, bacteria, proteins and viruses. Herein, the critical need for new, simplistic early detection strategies to combat future disease outbreaks and prevent global pandemics is addressed. Moreover, recent advancements in fabrication techniques, including lithography, printing and electrodeposition as well as device orientation, substrate type and electrode modification, have highlighted their potential for enhancing sensitivity and accuracy.
Collapse
Affiliation(s)
- Jarid du Plooy
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nazeem Jahed
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
11
|
He D, Cui Y, Ming F, Wu W. Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:8200. [PMID: 37837030 PMCID: PMC10575307 DOI: 10.3390/s23198200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
In recent years, passive wireless sensors have been studied for various infrastructure sectors, making them a research and development focus. While substantial evidence already supports their viability, further effort is needed to understand their dependability and applicability. As a result, issues related to the theory and implementation of wireless sensors still need to be resolved. This paper aims to review and summarize the progress of the different materials used in different passive sensors, the current status of the passive wireless sensor readout devices, and the latest peripheral devices. It will also cover other related aspects such as the system equipment of passive wireless sensors and the nanogenerators for the energy harvesting for self-powered sensors for applications in contemporary life scenarios. At the same time, the challenges for future developments and applications of passive wireless are discussed.
Collapse
Affiliation(s)
- Denghui He
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Yuanhui Cui
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Fangchao Ming
- School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China; (D.H.); (F.M.)
| | - Weiping Wu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
- Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
12
|
Saputri FA, Zubaidah EU, Kenanga AWP, Jatmika C, Pratiwi R, Dhumale VA. Development of a Colorimetric Paper Sensor for Hg 2+ Detection in Water Using Cyanuric Acid-Conjugated Gold Nanoparticles. Molecules 2023; 28:6527. [PMID: 37764303 PMCID: PMC10535871 DOI: 10.3390/molecules28186527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Hg2+ is one of the most dangerous pollutants that can cause damage to organs and the immune system. The common detection methods of Hg2+ require sophisticated instrumentation and a long time for analysis. The purpose of this study was to develop a sensor for the detection of Hg2+ using filter paper immobilized by gold nanoparticles (AuNPs) conjugated with cyanuric acid (CA). The clear color change from pink to bluish purple is the response of the CA-AuNPs filter paper sensor to exposure to Hg2+. Detection can be observed visually with the naked eye and/or with imageJ software; the detection limit is 0.05 µM. The colorimetric response of the sensor was also selective towards Hg2+ after testing with different metal ions. In addition, the response from the sensor was also consistent for lake water samples spiked with Hg2+. The results of this research provide a promising basic technology for the development of sensors that are affordable, fast, portable, and easy to use for the detection and monitoring of Hg2+ levels in water.
Collapse
Affiliation(s)
- Febrina Amelia Saputri
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | - Eka Ulya Zubaidah
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | | | - Catur Jatmika
- Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; (E.U.Z.); (A.W.P.K.); (C.J.)
| | - Rimadani Pratiwi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Vinayak A. Dhumale
- Department of Applied Science and Humanities, School of Engineering and Sciences, MIT Art, Design and Technology University, Pune 412201, India;
| |
Collapse
|
13
|
Faustino LC, Cunha JPC, Cantanhêde W, Kubota LT, Gerôncio ETS. 3D-printed holder for drawing highly reproducible pencil-on-paper electrochemical devices. Mikrochim Acta 2023; 190:338. [PMID: 37522993 DOI: 10.1007/s00604-023-05920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/15/2023] [Indexed: 08/01/2023]
Abstract
Pencil drawing is one of the simplest and most cost-effective ways of fabricating miniaturized electrodes on a paper substrate. However, it is limited by the lack of reproducibility regarding the electrode drawing process. A 3D-printed pencil holder (3DPH) is proposed here for simple, reproducible, and low-cost hand-drawn fabrication of paper-based electrochemical devices. 3DPH was designed to keep pressure and angulation of the graphite mine constant on the paper substrate using a micromechanical pencil regardless of the user/operator. This approach significantly improved the reproducibility and cost of making reliable pencil-drawn electrodes. The results showed high reproducibility and accuracy of the 3DPH-assisted electrodes prepared by 4 different operators in terms of sheet resistance and electrochemical behavior. Cyclic voltammetric (CV) curves in the presence of [Fe(CN)6]3-/4- redox probe showed only 3.9% variation for the anodic peak currents of different electrodes prepared by different operators when compared with electrodes prepared without the 3D-printed support. SEM analyses revealed a more uniform graphite deposition/design of the electrodes prepared with 3DPH, which corroborates the results obtained by CV. As a proof of concept, 3DPH-assisted pencil-drawn graphite electrodes were employed for dopamine detection in synthetic saliva, showing a proportional increase in anodic peak current at 0.12 V vs. carbon pRE with increasing dopamine (DA) concentration, with a detection limit of 0.39μmol L-1. Moreover recovery was in the range 93-104% of DA (4-7% RSD) in synthetic saliva for three different concentrations, demonstrating the reliability of the approach. Finally, we believe this approach can make pencil-drawn technology more robust, accessible, reliable, and inexpensive for real on-site applications, especially in hard-to-reach locations or research centers with little investment.
Collapse
Affiliation(s)
- Lucas C Faustino
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - João P C Cunha
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil
| | - Welter Cantanhêde
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil
| | - Lauro T Kubota
- Department of Analytical Chemistry, Institute of Chemistry, State University of Campinas - UNICAMP, Campinas, SP, 13084-971, Brazil
| | - Everson T S Gerôncio
- Department of Chemistry, Federal University of Piauí - UFPI, Teresina, PI, 64049-550, Brazil.
- Department of Chemistry, State University of Piauí - UESPI, Teresina, PI, 64002-150, Brazil.
| |
Collapse
|
14
|
Burrow DT, Heggestad JT, Kinnamon DS, Chilkoti A. Engineering Innovative Interfaces for Point-of-Care Diagnostics. Curr Opin Colloid Interface Sci 2023; 66:101718. [PMID: 37359425 PMCID: PMC10247612 DOI: 10.1016/j.cocis.2023.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
The ongoing Coronavirus disease 2019 (COVID-19) pandemic illustrates the need for sensitive and reliable tools to diagnose and monitor diseases. Traditional diagnostic approaches rely on centralized laboratory tests that result in long wait times to results and reduce the number of tests that can be given. Point-of-care tests (POCTs) are a group of technologies that miniaturize clinical assays into portable form factors that can be run both in clinical areas --in place of traditional tests-- and outside of traditional clinical settings --to enable new testing paradigms. Hallmark examples of POCTs are the pregnancy test lateral flow assay and the blood glucose meter. Other uses for POCTs include diagnostic assays for diseases like COVID-19, HIV, and malaria but despite some successes, there are still unsolved challenges for fully translating these lower cost and more versatile solutions. To overcome these challenges, researchers have exploited innovations in colloid and interface science to develop various designs of POCTs for clinical applications. Herein, we provide a review of recent advancements in lateral flow assays, other paper based POCTs, protein microarray assays, microbead flow assays, and nucleic acid amplification assays. Features that are desirable to integrate into future POCTs, including simplified sample collection, end-to-end connectivity, and machine learning, are also discussed in this review.
Collapse
Affiliation(s)
- Damon T Burrow
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - David S Kinnamon
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27708 USA
| |
Collapse
|
15
|
Jiang C, Ye S, Xiao J, Tan C, Yu H, Xiong X, Huang K, Deng Y, Zou Z. Hydride generation-smartphone RGB readout and visual colorimetric dual-mode system for the detection of inorganic arsenic in water samples and honeys. Food Chem X 2023; 18:100634. [PMID: 36968312 PMCID: PMC10036497 DOI: 10.1016/j.fochx.2023.100634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
A miniaturized/portable dual-mode colorimetric analytical system was established for inorganic arsenic determination in honey and drinking water samples. Hydride generation (HG) was utilized as a sampling technique for this colorimetric system, because of its high generation efficiency and efficient matrix separation. AsH3 was generated via HG and then reacted with HAuCl4, gold nanoparticles (Au NPs) were formed on the paper sheet, leading the paper color changed from light yellow to dark blue, it could be readout by naked-eye (visual colorimetric mode) and a smartphone (RGB readout mode) simultaneously. The accuracy and potential application for field analysis were further confirmed by the analysis of two water samples, four honey samples and two certified reference water samples (BWB2440-2016 and GBW08650), good recoveries (90-116%) were obtained for those samples and their spiked samples.
Collapse
|
16
|
Korotcenkov G, Simonenko NP, Simonenko EP, Sysoev VV, Brinzari V. Paper-Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13081381. [PMID: 37110966 PMCID: PMC10144639 DOI: 10.3390/nano13081381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/27/2023]
Abstract
This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| | - Nikolay P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Elizaveta P. Simonenko
- Kurnakov Institute of General and Inorganic Chemistry, The Russian Academy of Sciences, 31 Leninsky pr., 119991 Moscow, Russia; (N.P.S.); (E.P.S.)
| | - Victor V. Sysoev
- Department of Physics, Yuri Gagarin State Technical University of Saratov, 77 Polytechnicheskaya str., 410054 Saratov, Russia;
| | - Vladimir Brinzari
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova;
| |
Collapse
|
17
|
Qian J, Zhang Q, Lu M. Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs. Biosens Bioelectron 2023; 226:115114. [PMID: 36753990 DOI: 10.1016/j.bios.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
In recent years, paper-based nucleic acid sensors have been demonstrated for the ability to detect DNA and RNA molecules extracted from viruses and bacteria. In clinical samples, these nucleic acids are mostly encapsulated in lipid membranes and need to be released before being analyzed using paper-based sensors. For the nucleic acid amplification tests (NAATs), it is also desirable to remove the interfering molecules that can inhibit the nucleic acid amplification. To achieve a field deployable NAAT, we report a portable sensor system that combines the thermolysis and paper-based NAATs to detect target RNA molecules carried by viral and exosomal nanoparticles. The sensor cartridge includes a lysis chamber with a pressure-controlled diaphragm valve, paper flow channels, and three paper-based NAAT reaction chambers to extract, transport, and detect nucleic acids respectively. A compact instrument was prototyped to automate the assay, collect fluorescence images of the nucleic acid amplification, and generate amplification curves for NAATs. The pump-free and paper-based sensor achieved quantitative analysis of influenza A virus (IAV) RNA and exosome microRNA within 1 h, with the lowest detect concentration of 104 TCID50/mL and 106 EV/mL for IAV and exosome, respectively. Owing to the advantages of easy storage, simple operation, and low cost, such as system has great potential to be used as a point-of-care test for in-field diagnosis of viral and bacterial infections.
Collapse
Affiliation(s)
- Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
18
|
Oliveri IP, Attinà A, Di Bella S. A Zinc(II) Schiff Base Complex as Fluorescent Chemosensor for the Selective and Sensitive Detection of Copper(II) in Aqueous Solution. SENSORS (BASEL, SWITZERLAND) 2023; 23:3925. [PMID: 37112266 PMCID: PMC10141078 DOI: 10.3390/s23083925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The development of chemosensors able to detect analytes in a variety of sample matrices through a low-cost, fast, and direct approach is of current interest in food, health, industrial, and environmental fields. This contribution presents a simple approach for the selective and sensitive detection of Cu2+ ions in aqueous solution based on a transmetalation process of a fluorescent substituted Zn(salmal) complex. Transmetalation is accompanied by relevant optical absorption changes and quenching of the fluorescence emission, leading to high selectivity and sensitivity of the chemosensor, with the advantage of not requiring any sample pretreatment or pH adjustment. Competitive experiments demonstrate a high selectivity of the chemosensor towards Cu2+ with respect to the most common metal cations as potential interferents. A limit of detection down to 0.20 μM and a dynamic linear range up to 40 μM are achieved from fluorometric data. By exploiting the fluorescence quenching upon formation of the copper(II) complex, simple paper-based sensor strips, visible to naked eyes under UV light, are used for the rapid, qualitative, and quantitative in situ detection of Cu2+ ions in aqueous solution over a wide concentration range, up to 10.0 mM, in specific environments, such as in industrial wastewater, where higher concentrations of Cu2+ ions can occur.
Collapse
|
19
|
Mittal A, Shaw R, Binjola A, Natanasabapathi G, Sharma DN. Paper based radiochromic film for the detection and measurement of therapeutic radiation doses in radiotherapy: A preliminary study. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 220] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
21
|
Korotcenkov G. Paper-Based Humidity Sensors as Promising Flexible Devices: State of the Art: Part 1. General Consideration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061110. [PMID: 36986004 PMCID: PMC10059663 DOI: 10.3390/nano13061110] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Physics and Engineering, Moldova State University, MD-2009 Chisinau, Moldova
| |
Collapse
|
22
|
Karasu T, Özgür E, Uzun L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J Pharm Biomed Anal 2023; 226:115257. [PMID: 36669397 DOI: 10.1016/j.jpba.2023.115257] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Lab-on-a-chip (LOC) as an alternative biosensing approach concerning cost efficiency, parallelization, ergonomics, diagnostic speed, and sensitivity integrates the techniques of various laboratory operations such as biochemical analysis, chemical synthesis, or DNA sequencing, etc. on miniaturized microfluidic single chips. Meanwhile, LOC tools based on molecularly imprinted biosensing approach permit their applications in various fields such as medical diagnostics, pharmaceuticals, etc., which are user-, and eco-friendly sensing platforms for not only alternative to the commercial competitor but also on-site detection like point-of-care measurements. In this review, we focused our attention on compiling recent pioneer studies that utilized those intriguing methodologies, the microfluidic Lab-on-a-chip and molecularly imprinting approach, and their biomedical applications.
Collapse
Affiliation(s)
- Tunca Karasu
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Erdoğan Özgür
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye
| | - Lokman Uzun
- Department of Chemistry, Faculty of Science, Hacettepe University, Ankara, Turkiye.
| |
Collapse
|
23
|
Hasan MR, Sharma P, Suleman S, Mukherjee S, Celik EG, Timur S, Pilloton R, Narang J. Papertronics: Marriage between Paper and Electronics Becoming a Real Scenario in Resource-Limited Settings. ACS APPLIED BIO MATERIALS 2023; 6:1368-1379. [PMID: 36926800 DOI: 10.1021/acsabm.2c01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Integrating electronic applications with paper, placed next to or below printed images or graphics, can further expand the possible uses of paper substrates. Consuming paper as a substrate in the field of electronics can lead to significant innovations toward papertronics applications as paper comprises various advantages like being disposable, inexpensive, biodegradable, easy to handle, simple to use, and easily available. All of these advantages will definitely spur the advancement of the electronics field, but unfortunately, putting electronics on paper is not an easy task because, compared to plastics, the paper surface is not just rough but also porous. For example, in the case of lateral flow assay testing the sensor response is delayed if the pore size of the paper is enormous. This might be a disadvantage for most electrical devices printed directly on paper. Still, some methods make it compatible when fit with a rough, absorbent surface of the paper. Building electronic devices on a standard paper substrate have sparked much interest because of its lightweight, environmental friendliness, minimal cost, and simple fabrication. A slew of improvements have been achieved in recent years to make paper electronics perform better in various applications, including transistors, batteries, and displays. In addition, flexible electronics have gained much interest in human-machine interaction and wireless sensing. This review briefly examines the origins and fabrication of paper electronics and then moves on to applications and exciting possible paths for paper-based electronics.
Collapse
Affiliation(s)
- Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shouvik Mukherjee
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.,Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, Rome I-00015, Italy
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
24
|
Low-cost, portable, on-site fluorescent detection of As(III) by a paper-based microfluidic device based on aptamer and smartphone imaging. Mikrochim Acta 2023; 190:109. [PMID: 36867213 DOI: 10.1007/s00604-023-05693-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/08/2023] [Indexed: 03/04/2023]
Abstract
A turn-on fluorescent aptasensor based on a paper-based microfluidic chip was developed to detect arsenite via aptamer competition strategy and smartphone imaging. The chip was prepared by wax-printing hydrophilic channels on filter paper. It is portable, low-cost, and environmentally friendly. Double-stranded DNA consisting of aptamer and fluorescence-labeled complementary strands was immobilized on the reaction zone of the paper chip. Due to the specific strong binding between aptamer and arsenite, the fluorescent complementary strand was squeezed out and driven by capillary force to the detection area of the paper chip, so that the fluorescent signal arose in the detection area under the excitation wavelength of 488 nm. Arsenite can be quantified by using smartphone imaging and RGB image analysis. Under the optimal conditions, the paper-based microfluidic aptasensor exhibited excellent linear response over a wide range of 1 to 1000 nM, with a detection limit as low as 0.96 nM (3σ).
Collapse
|
25
|
Karim K, Lamaoui A, Amine A. Paper-based optical sensors paired with smartphones for biomedical analysis. J Pharm Biomed Anal 2023; 225:115207. [PMID: 36584551 DOI: 10.1016/j.jpba.2022.115207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The traditional analytical methods used for biomedical analysis are expensive and not easy to handle and require sophisticated instruments, thus their application is limited in resource-limited settings. Due to their portability, low cost, and ability to be applied to different analytical techniques, paper-based analytical devices are becoming valuable tools for biomedical analysis. The integration of smartphones into analytical devices has provided the ability to build portable, cost-effective, straightforward analytical devices for biomedical analysis and mobile health. The key aim of this review is to emphasize the recent applications of PADs combined with a smartphone for the optical analysis of biomedical species. We started this review by highlighting the type of papers and their modifications with different materials to prepare the PADs. After that, this review presents various detection methods including colorimetry, fluorescence, and luminescence where the smartphone is used for read-out. In the end, we provided the recent applications of the analysis of different biomedical compounds such as cancer and cardiovascular biomarkers, metal ions, glucose, viruses, etc. We believe that the present review will attract a wide scientific community in the areas of analytical chemistry, sensors, and clinical testing.
Collapse
Affiliation(s)
- Khadija Karim
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
26
|
Mazur F, Tjandra AD, Zhou Y, Gao Y, Chandrawati R. Paper-based sensors for bacteria detection. NATURE REVIEWS BIOENGINEERING 2023; 1:180-192. [PMID: 36937095 PMCID: PMC9926459 DOI: 10.1038/s44222-023-00024-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 02/16/2023]
Abstract
The detection of pathogenic bacteria is essential to prevent and treat infections and to provide food security. Current gold-standard detection techniques, such as culture-based assays and polymerase chain reaction, are time-consuming and require centralized laboratories. Therefore, efforts have focused on developing point-of-care devices that are fast, cheap, portable and do not require specialized training. Paper-based analytical devices meet these criteria and are particularly suitable to deployment in low-resource settings. In this Review, we highlight paper-based analytical devices with substantial point-of-care applicability for bacteria detection and discuss challenges and opportunities for future development.
Collapse
Affiliation(s)
- Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Angie Davina Tjandra
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales Australia
| |
Collapse
|
27
|
Suo Z, Liang R, Liu R, Wei M, He B, Jiang L, Sun X, Jin H. A convenient paper-based fluorescent aptasensor for high-throughput detection of Pb 2+ in multiple real samples (water-soil-food). Anal Chim Acta 2023; 1239:340714. [PMID: 36628769 DOI: 10.1016/j.aca.2022.340714] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Lead ion (Pb2+) is one of the most toxic and widely polluted heavy metal ions. Given the potential health risks and economic losses associated with Pb2+, the rapid detection of Pb2+ using fluorescent aptasensors is of significant importance in evaluating food safety. A rapid, facile and economic fluorescent aptasensor using convenient paper as the sensing substrate was designed to high-throughput detect Pb2+ in complex samples within about 45 min. The Pb2+ changed the conformation of FAM-modified Apt from a random coil to a stable G-quadruplex structure. And then Dabcyl-labeled cDNA was added to form double-stranded DNA with the Apt that did not form a G-quadruplex structure, resulting in a weak fluorescence due to the fluorescence resonance energy transfer (FRET). The fluorescent aptasensor showed a positive correlation with Pb2+ concentration, and a linear relationship was obtained in the range of 0.01-10 μM with LOD of 6.1 nM. In addition, this method has been successfully used for the determination of Pb2+ in water, soil and various foods containing complex substrates. Meanwhile, the high-throughput detection of Pb2+ has also reached an acceptable level. Therefore, this convenient strategy has potential application value for on-site rapid detection of Pb2+.
Collapse
Affiliation(s)
- Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.
| | - Ruirui Liang
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Ruike Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Baoshan He
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| | - Liying Jiang
- College of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Xiaoxia Sun
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, 450002, China
| | - Huali Jin
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
28
|
Schäfer JL, Meckel T, Poppinga S, Biesalski M. Chemical Gradients in Polymer-Modified Paper Sheets-Towards Single-Layer Biomimetic Soft Robots. Biomimetics (Basel) 2023; 8:biomimetics8010043. [PMID: 36810374 PMCID: PMC9944451 DOI: 10.3390/biomimetics8010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Biomimetic actuators are typically constructed as functional bi- or multilayers, where actuating and resistance layers together dictate bending responses upon triggering by environmental stimuli. Inspired by motile plant structures, like the stems of the false rose of Jericho (Selaginella lepidophylla), we introduce polymer-modified paper sheets that can act as soft robotic single-layer actuators capable of hygro-responsive bending reactions. A tailored gradient modification of the paper sheet along its thickness entails increased dry and wet tensile strength and allows at the same time for hygro-responsiveness. For the fabrication of such single-layer paper devices, the adsorption behavior of a cross-linkable polymer to cellulose fiber networks was first evaluated. By using different concentrations and drying procedures fine-tuned polymer gradients throughout the thickness can be achieved. Due to the covalent cross-linking of polymer with fibers, these paper samples possess significantly increased dry and wet tensile strength properties. We furthermore investigated these gradient papers with respect to a mechanical deflection during humidity cycling. The highest humidity sensitivity is achieved using eucalyptus paper with a grammage of 150 g m-2 modified with the polymer dissolved in IPA (~13 wt%) possessing a polymer gradient. Our study presents a straightforward approach for the design of novel hygroscopic, paper-based single-layer actuators, which have a high potential for diverse soft robotic and sensor applications.
Collapse
Affiliation(s)
- Jan-Lukas Schäfer
- Department of Chemistry, Macromolecular Chemistry & Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Department of Chemistry, Macromolecular Chemistry & Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Simon Poppinga
- Department of Biology, Botanical Garden, Technical University of Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Markus Biesalski
- Department of Chemistry, Macromolecular Chemistry & Paper Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
- Correspondence: ; Tel.: +49-6151-1623721
| |
Collapse
|
29
|
Tong L, Wu L, Zai Y, Zhang Y, Su E, Gu N. Paper-based colorimetric glucose sensor using Prussian blue nanoparticles as mimic peroxidase. Biosens Bioelectron 2023; 219:114787. [PMID: 36257117 DOI: 10.1016/j.bios.2022.114787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022]
Abstract
A novel paper-based colorimetric glucose sensor was proposed employing Prussian blue nanoparticles (PB NPs) as mimic peroxidase. The sensor was manufactured by spraying solution containing PB NPs, glucose oxidase and chromogenic agents into a paper, then coating the filter layer and spreading layer on the top. The layer-by-layer structure enabled the sensor detect glucose in whole blood, as well as elimination of the coffee-ring effect which ensure the performance. As a powerful alternative to natural peroxidase, PB NPs showed the mimic enzymatic activity well preserved in dry environment. The manufacture process of the sensor is easy to be industrialized. Under optimal conditions, the sensor exhibited a linear range from 2.5 mM to 25 mM for glucose in blood with satisfactory reproducibility (the coefficient of variant <4%), great storage stability (1 month at 45 °C) and excellent linearity compared with those commercial kits (R > 0.99). Coupled with a handhold device, the PB NPs-based test strip realized the goal of personal operation, user-friendly control, automatic readouts, and data storage, and able to link the Cloud, showing unique potential in clinical application, especially in community-level medical scenarios.
Collapse
Affiliation(s)
- Liu Tong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, PR China; Getein Biotechnology Co., Ltd, Nanjing, 210000, China
| | - Lina Wu
- Getein Biotechnology Co., Ltd, Nanjing, 210000, China
| | - Yunfeng Zai
- Getein Biotechnology Co., Ltd, Nanjing, 210000, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, PR China
| | - Enben Su
- Getein Biotechnology Co., Ltd, Nanjing, 210000, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, PR China.
| |
Collapse
|
30
|
Spore-based innovative paper-strip biosensor for the rapid detection of ß-lactam group in milk. Sci Rep 2022; 12:21965. [PMID: 36536009 PMCID: PMC9763390 DOI: 10.1038/s41598-022-26466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The study's goal was to develop a spore-based paper strip biosensor for detecting ß-lactam antibiotics in milk using the enzyme induction principle. A new spore-based paper strip biosensor has been developed after important operating parameters such as spore volume, substrate volume, exposure time and temperature, and incubation time and temperature were optimised. The limit of detection for various ß-lactam antibiotics, including amoxicillin, penicillin, ampicillin, carbenicillin, cloxacillin, nafcillin, oxacillin, cephalothin, cefalexin, cefoxitin, cefazolin, and cefuroxime, was determined in milk with detection sensitivity of 1 ppb, 2 ppb, 2 ppb, 10 ppb, 10 ppb, 10 ppb, 20 ppb, 10 ppb 1000 ppb, 10 ppb 300 ppb and 100 ppb, respectively. It was also tested with other contaminants such non-ß-lactam antibiotics, pesticides, aflatoxin, heavy metals, and other chemical contaminants, and no interference was found, indicating that the created biosensor had a low rate of false positive and negative results. In comparison to the AOAC-approved CHARM-ROSA ß-lactam strip test, which identified 7 raw milk and zero pasteurised milk samples positive for ß-lactam antibiotics, the sensor was further analysed and verified using 200 raw milk and 105 pasteurised milk samples. This indicates a perfect match between our biosensor and the AOAC-approved CHARM-ROSA ß-lactam strip test. The developed spore-based paper strip biosensors are expected to be useful in the rapid and cost-effective detection of ß-lactam antibiotic residues in milk samples at the dairy farm, reception dock, and production units, respectively.
Collapse
|
31
|
Kuswandi B, Hidayat MA, Noviana E. Paper-Based Electrochemical Biosensors for Food Safety Analysis. BIOSENSORS 2022; 12:1088. [PMID: 36551055 PMCID: PMC9775995 DOI: 10.3390/bios12121088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nowadays, foodborne pathogens and other food contaminants are among the major contributors to human illnesses and even deaths worldwide. There is a growing need for improvements in food safety globally. However, it is a challenge to detect and identify these harmful analytes in a rapid, sensitive, portable, and user-friendly manner. Recently, researchers have paid attention to the development of paper-based electrochemical biosensors due to their features and promising potential for food safety analysis. The use of paper in electrochemical biosensors offers several advantages such as device miniaturization, low sample consumption, inexpensive mass production, capillary force-driven fluid flow, and capability to store reagents within the pores of the paper substrate. Various paper-based electrochemical biosensors have been developed to enable the detection of foodborne pathogens and other contaminants that pose health hazards to humans. In this review, we discussed several aspects of the biosensors including different device designs (e.g., 2D and 3D devices), fabrication techniques, and electrode modification approaches that are often optimized to generate measurable signals for sensitive detection of analytes. The utilization of different nanomaterials for the modification of electrode surface to improve the detection of analytes via enzyme-, antigen/antibody-, DNA-, aptamer-, and cell-based bioassays is also described. Next, we discussed the current applications of the sensors to detect food contaminants such as foodborne pathogens, pesticides, veterinary drug residues, allergens, and heavy metals. Most of the electrochemical paper analytical devices (e-PADs) reviewed are small and portable, and therefore are suitable for field applications. Lastly, e-PADs are an excellent platform for food safety analysis owing to their user-friendliness, low cost, sensitivity, and a high potential for customization to meet certain analytical needs.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Mochammad Amrun Hidayat
- Chemo and Biosensors Group, Faculty of Farmasi, University of Jember, Jember 68121, Indonesia
| | - Eka Noviana
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
32
|
Hada AM, Zetes M, Focsan M, Astilean S, Craciun AM. Photoluminescent Histidine-Stabilized Gold Nanoclusters as Efficient Sensors for Fast and Easy Visual Detection of Fe Ions in Water Using Paper-Based Portable Platform. Int J Mol Sci 2022; 23:ijms232012410. [PMID: 36293265 PMCID: PMC9604042 DOI: 10.3390/ijms232012410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Herein is presented a novel and efficient portable paper-based sensing platform using paper-incorporated histidine stabilized gold nanoclusters (His-AuNCs), for the sensitive and selective detection of Fe ions from low-volume real water samples based on photoluminescence (PL) quenching. Highly photoluminescent colloidal His-AuNCs are obtained via a novel microwave-assisted method. The His-AuNCs-based sensor reveals a limit of detection (LOD) as low as 0.2 μM and a good selectivity towards Fe ions, in solution. Further, the fabricated portable sensing device based on paper impregnated with His-AuNCs proves to be suitable for the easy detection of hazardous Fe levels from real water samples, under UV light exposure, through evaluating the level of PL quenching on paper. Photographic images are thereafter captured with a smartphone camera and the average blue intensity ratio (I/I0) of the His-AuNCs-paper spots is plotted against [Fe2+] revealing a LOD of 3.2 μM. Moreover, selectivity and competitivity assays performed on paper-based sensor prove that the proposed platform presents high selectivity and accuracy for the detection of Fe ions from water samples. To validate the platform, sensing assays are performed on real water samples from local sources, spiked with 35 μM Fe ions (i.e., Fe2+). The obtained recoveries prove the high sensitivity and accuracy of the proposed His-AuNCs-paper-based sensor pointing towards its applicability as an easy-to-use, fast, quantitative and qualitative sensor suitable for on-site detection of toxic levels of Fe ions in low-volume real water samples.
Collapse
Affiliation(s)
- Alexandru-Milentie Hada
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Markus Zetes
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania
| | - Ana-Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 T. Laurian Str., 400271 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
33
|
C.C.G. Carneiro M, Rodrigues LR, Moreira FT, Goreti F. Sales M. Paper-based ELISA for fast CA 15–3 detection in point-of-care. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips. BIOSENSORS 2022; 12:bios12100804. [PMID: 36290942 PMCID: PMC9599072 DOI: 10.3390/bios12100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
The spread and resurgence of the SARS-CoV-2 virus (COVID-19 disease) threatens human health and social relations. Prevention of COVID-19 disease partly relies on fabricating low-cost, point-of-care (POC) sensing technology that can rapidly and selectively detect the SARS-CoV-2 virus. We report a colorimetric, paper-based polydiacetylene (PDA) biosensor, designed to detect SARS-CoV-2 spike protein in artificial saliva. Analytical characterizations of the PDA sensor using NMR and FT-IR spectroscopy showed the correct structural elucidation of PCDA-NHS conjugation. The PDA sensor platform containing the N-Hydroxysuccinimide ester of 10, 12-pentacosadiynoic acid (PCDA-NHS) was divided into three experimental PCDA-NHS concentration groups of 10%, 20%, and 30% to optimize the performance of the sensor. The optimal PCDA-NHS molar concentration was determined to be 10%. The PDA sensor works by a color change from blue to red as its colorimetric output when the immobilized antibody binds to the SARS-CoV-2 spike protein in saliva samples. Our results showed that the PDA sensing platform was able to rapidly and qualitatively detect the SARS-CoV-2 spike protein within the concentration range of 1 to 100 ng/mL after four hours of incubation. Further investigation of pH and temperature showed minimal influence on the PDA sensor for the detection of COVID-19 disease. After exposure to the SARS-CoV-2 spike protein, smartphone images of the PDA sensor were used to assess the sensor output by using the red chromatic shift (RCS) of the signal response. These results indicate the potential and practical use of this PDA sensor design for the rapid, colorimetric detection of COVID-19 disease in developing countries with limited access to medical testing.
Collapse
|
35
|
Ali GK, Omer KM. Ultrasensitive aptamer-functionalized Cu-MOF fluorescent nanozyme as an optical biosensor for detection of C-reactive protein. Anal Biochem 2022; 658:114928. [PMID: 36162448 DOI: 10.1016/j.ab.2022.114928] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
In the present work, an aptasensing method based on integration of RNA on Cu-MOF was developed for detection of C-Reactive Protein (CRP). Cu-MOF showed stimulated fluorescence and mimetic peroxidase enzymatic activity at the time and can be used as dual-signal transduction. CRP binding RNA was used as a highly selective recognition element and immobilized on the Cu-MOF. The immobilized RNA can block the peroxidase activity and fluorescence of the signal traducer probe. Adding CRP to the RNA/Cu-MOF will release RNA from the surface of Cu-MOF and recover both the stimulated fluorescence and peroxidase activity. A biosensor was built for detection of CRP using the two modes of transduction, either colorimetry or fluorometry. A dynamic linear range was obtained from 0.1 to 50 ng mL -1with a limit of detection (LOD) as small as 40 pg mL -1was calculated in fluorescence mode and 240 pg mL -1 as LOD in colorimetry mode. The LODs are lower than the LOD of nephelometric techniques used in clinical practice and is comparable to the normal clinical cutoff value in high-sensitivity CRP assays (1 μg/mL). The aptasensor was successfully applied for detection of CRP in Covid-19 patients with spike recoveries between 84 and 102% and RSD from 0.94% to 2.05%.
Collapse
Affiliation(s)
- Gona K Ali
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Sulaimani City, Kurdistan Region, Iraq
| | - Khalid M Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Sulaimani City, Kurdistan Region, Iraq.
| |
Collapse
|
36
|
Tang X, Zhu Y, Guan W, Zhou W, Wei P. Advances in nanosensors for cardiovascular disease detection. Life Sci 2022; 305:120733. [DOI: 10.1016/j.lfs.2022.120733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 12/25/2022]
|
37
|
Amor-Gutiérrez O, Costa-Rama E, Fernández-Abedul MT. Paper-Based Enzymatic Electrochemical Sensors for Glucose Determination. SENSORS (BASEL, SWITZERLAND) 2022; 22:6232. [PMID: 36015999 PMCID: PMC9412717 DOI: 10.3390/s22166232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 05/31/2023]
Abstract
The general objective of Analytical Chemistry, nowadays, is to obtain best-quality information in the shortest time to contribute to the resolution of real problems. In this regard, electrochemical biosensors are interesting alternatives to conventional methods thanks to their great characteristics, both those intrinsically analytical (precision, sensitivity, selectivity, etc.) and those more related to productivity (simplicity, low costs, and fast response, among others). For many years, the scientific community has made continuous progress in improving glucose biosensors, being this analyte the most important in the biosensor market, due to the large amount of people who suffer from diabetes mellitus. The sensitivity of the electrochemical techniques combined with the selectivity of the enzymatic methodologies have positioned electrochemical enzymatic sensors as the first option. This review, focusing on the electrochemical determination of glucose using paper-based analytical devices, shows recent approaches in the use of paper as a substrate for low-cost biosensing. General considerations on the principles of enzymatic detection and the design of paper-based analytical devices are given. Finally, the use of paper in enzymatic electrochemical biosensors for glucose detection, including analytical characteristics of the methodologies reported in relevant articles over the last years, is also covered.
Collapse
Affiliation(s)
| | - Estefanía Costa-Rama
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | | |
Collapse
|
38
|
Brooke R, Lay M, Jain K, Francon H, Say MG, Belaineh D, Wang X, Håkansson KMO, Wågberg L, Engquist I, Edberg J, Berggren M. Nanocellulose and PEDOT:PSS composites and their applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Robert Brooke
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Makara Lay
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- INM- Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Karishma Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Francon
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mehmet Girayhan Say
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| | - Dagmawi Belaineh
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Xin Wang
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | | | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Isak Engquist
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Jesper Edberg
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Magnus Berggren
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| |
Collapse
|
39
|
Rasheed Q, Ajab H, Farooq M, Shahzad SA, Yaqub A. Fabrication of colorimetric sensor using Fe3O4 @ Musa paradisiaca L. nanoparticles for detecting hydrogen peroxide: an application in environmental and biological samples. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02571-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
40
|
Affiliation(s)
- Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Environmental Studies, University of Delhi, Delhi - 110007, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
- Department of Chemistry, University of Delhi, Delhi - 110007, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi - 110007, India
| |
Collapse
|
41
|
Auernhammer J, Langhans M, Schäfer JL, Keil T, Meckel T, Biesalski M, Stark RW. Nanomechanical subsurface characterisation of cellulosic fibres. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Abstract
The mechanical properties of single fibres are highly important in the paper production process to produce and adjust properties for the favoured fields of application. The description of mechanical properties is usually characterised via linearized assumptions and is not resolved locally or spatially in three dimensions. In tensile tests or nanoindentation experiments on cellulosic fibres, only mechanical parameter for the whole fibre, such as elastic modulus or hardness, is usually obtained. To obtain a more detailed mechanical picture of the fibre, it is crucial to determine mechanical properties in depth. To this end, we discuss an atomic force microscopy-based approach to examine stepwise the local stiffness as a function of indentation depth via static force-distance curves. To our knowledge, we are the first authors to apply this method cellulosic fibres. The method was applied to linter fibres (extracted from a finished paper sheet) as well as to natural raw cotton fibres to better understand the influence of the pulp treatment process in paper production on the mechanical properties. Both types of fibres were characterised in dry and wet conditions with respect to alterations in their mechanical properties. The used stepwise analysis method of the force-distance curves allowed subsurface imaging of the fibres. It could be revealed how the walls in the fibre structure protects the fibre against mechanical loading. Via a combined 3D display of the mapped topography and the fitted elastic moduli in z-direction, a spatially resolved mechanical map of the fibre interior near the surface could be established. Additionally, we labelled the fibres with different carbohydrate binding modules tagged with fluorescent proteins to compare the AFM results with fluorescence confocal laser scanning microscopy imaging. Nanomechanical subsurface imaging in combination with fluorescent protein labelling is thus a tool to better understand the mechanical behaviour of cellulosic fibres, which have a complex, hierarchical structure.
Graphical abstract
Collapse
|
42
|
Cheng X, Yang Y, Song Y, Xu LP, Wang S. Utilizing Heterostructured Porous Particles to Improve Traditional Paper Chromatography for Spontaneous Protein Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4250-4255. [PMID: 35353528 DOI: 10.1021/acs.langmuir.1c03394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatography is a classical technique for protein separation. However, the chromatography column is filled with tightly packed separation materials and requires an additional pressurizing pump to propel the flow of fluidic samples, largely restraining their applications. Here, we combine heterostructured porous particles with paper strips, realizing spontaneous separation of similarly sized proteins. The interconnected nanofibrous structure and good hydrophility of paper strips enable the spontaneous flow of the liquid sample, and the heterostructured porous particles provide versatile tools for protein separation via electrostatic interaction. The fabricated paper strips are inexpensive, user-friendly, and disposable and exhibit good separation performance. This work may offer a new avenue for fabricating on-site bioseparation tools and purifying various biomacromolecules.
Collapse
Affiliation(s)
- Xu Cheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
43
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
44
|
Baldini G, Albini A, Maiolino P, Cannata G. An Atlas for the Inkjet Printing of Large-Area Tactile Sensors. SENSORS 2022; 22:s22062332. [PMID: 35336503 PMCID: PMC8950613 DOI: 10.3390/s22062332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to discuss the inkjet printing technique as a fabrication method for the development of large-area tactile sensors. The paper focuses on the manufacturing techniques and various system-level sensor design aspects related to the inkjet manufacturing processes. The goal is to assess how printed electronics simplify the fabrication process of tactile sensors with respect to conventional fabrication methods and how these contribute to overcoming the difficulties arising in the development of tactile sensors for real robot applications. To this aim, a comparative analysis among different inkjet printing technologies and processes is performed, including a quantitative analysis of the design parameters, such as the costs, processing times, sensor layout, and general system-level constraints. The goal of the survey is to provide a complete map of the state of the art of inkjet printing, focusing on the most effective topics for the implementation of large-area tactile sensors and a view of the most relevant open problems that should be addressed to improve the effectiveness of these processes.
Collapse
Affiliation(s)
- Giulia Baldini
- Mechatronics and Automatic Control Laboratory, University of Genoa, 16145 Genova, Italy;
- Correspondence: ; Tel.: +39-34-6314-2962
| | | | - Perla Maiolino
- Oxford Robotics Institute, Oxford OX2 6NN, UK; (A.A.); (P.M.)
| | - Giorgio Cannata
- Mechatronics and Automatic Control Laboratory, University of Genoa, 16145 Genova, Italy;
| |
Collapse
|
45
|
Casanova A, Iniesta J, Gomis-Berenguer A. Recent progress in the development of porous carbon-based electrodes for sensing applications. Analyst 2022; 147:767-783. [PMID: 35107446 DOI: 10.1039/d1an01978c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrochemical (bio)sensors are considered clean and powerful analytical tools capable of converting an electrochemical reaction between analytes and electrodes into a quantitative signal. They are an important part of our daily lives integrated in various fields such as healthcare, food and environmental monitoring. Several strategies including the incorporation of porous carbon materials in its configuration have been applied to improve their sensitivity and selectivity in the last decade. The porosity, surface area, graphitic structure as well as chemical composition of materials greatly influence the electrochemical performance of the sensors. In this review, activated carbons, ordered mesoporous carbons, graphene-based materials, and MOF-derived carbons, which are used to date as crucial elements of electrochemical devices, are described, starting from their textural and chemical compositions to their role in the outcome of electrochemical sensors. Several relevant and meaningful examples about material synthesis, sensor fabrication and applications are illustrated and described. The closer perspectives of these fascinating materials forecast a promising future for the electrochemical sensing field.
Collapse
Affiliation(s)
- Ana Casanova
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, Royal Institute of Technology, KTH, SE-100 44 Stockholm, Sweden
| | - Jesus Iniesta
- Department of Physical Chemistry, University of Alicante, 03080 Alicante, Spain
- Institute of Electrochemistry, University of Alicante, 03080 Alicante, Spain.
| | | |
Collapse
|
46
|
Ye S, Li L, Ou Y, Li W, Zhang S, Huang K, Luo H, Zou Z, Xiong X. In situ formation of silver nanoparticles via hydride generation: A miniaturized/portable visual colorimetric system for arsenic detection in environmental water samples. Anal Chim Acta 2022; 1192:339366. [DOI: 10.1016/j.aca.2021.339366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 12/27/2022]
|
47
|
Laliwala A, Svechkarev D, Sadykov MR, Endres J, Bayles KW, Mohs AM. Simpler Procedure and Improved Performance for Pathogenic Bacteria Analysis with a Paper-Based Ratiometric Fluorescent Sensor Array. Anal Chem 2022; 94:2615-2624. [PMID: 35073053 PMCID: PMC10091516 DOI: 10.1021/acs.analchem.1c05021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial infections are the leading cause of morbidity and mortality in the world, particularly due to a delay in treatment and misidentification of the bacterial species causing the infection. Therefore, rapid and accurate identification of these pathogens has been of prime importance. The conventional diagnostic techniques include microbiological, biochemical, and genetic analyses, which are time-consuming, require large sample volumes, expensive equipment, reagents, and trained personnel. In response, we have now developed a paper-based ratiometric fluorescent sensor array. Environment-sensitive fluorescent dyes (3-hydroxyflavone derivatives) pre-adsorbed on paper microzone plates fabricated using photolithography, upon interaction with bacterial cell envelopes, generate unique fluorescence response patterns. The stability and reproducibility of the sensor array response were thoroughly investigated, and the analysis procedure was refined for optimal performance. Using neural networks for response pattern analysis, the sensor was able to identify 16 bacterial species and recognize their Gram status with an accuracy rate greater than 90%. The paper-based sensor was stable for up to 6 months after fabrication and required 30 times lower dye and sample volumes as compared to the analogous solution-based sensor. Therefore, this approach opens avenues to a state-of-the-art diagnostic tool that can be potentially translated into clinical applications in low-resource environments.
Collapse
Affiliation(s)
- Aayushi Laliwala
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| | - Marat R. Sadykov
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Jennifer Endres
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6858, United States
| |
Collapse
|
48
|
Zhang B, Suo Q, Li Q, Zhu Y, Gao X, Lv L, Gao Y, Jia H, Wang Y. New Sulfur‐Containing Ferrocenylimidazo[4,5‐b]pyridines: Multiresponsive Hg
2+
Ion Sensing and Structure‐Sensing Correlation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baoyuan Zhang
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Quanling Suo
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Qiannan Li
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Yanqi Zhu
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Xuechuan Gao
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Li Lv
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Yuanyuan Gao
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Huijie Jia
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| | - Yaqi Wang
- Chemical Engineering College Inner Mongolia University of Technology Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region Aimin Street 59 Hohhot 010051 P.R. China
| |
Collapse
|
49
|
Lab-on-paper based devices for COVID-19 sensors. SENSING TOOLS AND TECHNIQUES FOR COVID-19 2022. [PMCID: PMC9335016 DOI: 10.1016/b978-0-323-90280-9.00006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In December 2019, a disease linked to the coronavirus (CoV) was identified in the capital of China’s Wuhan. When seen under an electron microscope, CoVs, which are enveloped positive-sense RNA viruses, appear like crown-shaped viruses. There are four subtypes of CoVs such as (a) alpha, (b) beta, (c) delta, (d) gamma CoV. Coronavirus disease is caused by the extreme acute respiratory syndrome coronavirus 2, which is caused by a beta coronavirus (-CoVs or Beta-CoVs) (SARS-CoV-2). Infected people may have fever of 38°C, cough, and shortness of breath. WHO officially called COVID-19, an abbreviated form of coronavirus disease 2019, on February 12, 2020.
Collapse
|
50
|
Bialy RM, Mainguy A, Li Y, Brennan JD. Functional nucleic acid biosensors utilizing rolling circle amplification. Chem Soc Rev 2022; 51:9009-9067. [DOI: 10.1039/d2cs00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functional nucleic acids regulate rolling circle amplification to produce multiple detection outputs suitable for the development of point-of-care diagnostic devices.
Collapse
Affiliation(s)
- Roger M. Bialy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Alexa Mainguy
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| | - Yingfu Li
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D. Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4O3, Canada
| |
Collapse
|