1
|
Bhatt A, Jain S, Navani NK. Rapid, Sensitive, and Specific Microbial Whole-Cell Biosensor for the Detection of Histamine: A Potential Food Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39441673 DOI: 10.1021/acs.jafc.4c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Histamine is a biogenic amine; its level indicates food quality, as elevated levels cause food poisoning. Therefore, monitoring food at each step during processing until it reaches the consumer is crucial, but current techniques are complicated and time-consuming. Here, we designed a Pseudomonas putida whole-cell biosensor using a histamine-responsive genetic element expressing a fluorescent protein in the presence of the cognate target. We improved the performance of the proposed biosensor by optimizing the chassis, genetic regulatory element, and reporter gene. A sensitive and rapid biosensor variant was obtained with a limit of detection (LOD) of 0.39 ppm, manifesting a linear response (R2 = 0.98) from 0.28 to 18 ppm in 90 min. The biosensor showed minimal cross-reactivity with other biogenic amines and amino acids prevalent in food, making it highly specific. The biosensor effectively quantified histamine in spiked fish, prawn, and wine samples with a satisfactory recovery. Additionally, a colorimetric sensor variant PAlacZ was developed enabling histamine quantification in seafood via a smartphone application, with an LODgray of 0.23 ppm, exhibiting a linear response from 0 to 2.24 ppm. Overall, this study reports an efficient, specific, and highly sensitive biosensor with strong potential for the on-site detection of histamine, ensuring food safety.
Collapse
Affiliation(s)
- Ankita Bhatt
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shubham Jain
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Naveen K Navani
- Chemical Biology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
2
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
3
|
Pal P, Pramanik K, Ghosh SK, Mondal S, Mondal T, Soren T, Maiti TK. Molecular and eco-physiological responses of soil-borne lead (Pb 2+)-resistant bacteria for bioremediation and plant growth promotion under lead stress. Microbiol Res 2024; 287:127831. [PMID: 39079267 DOI: 10.1016/j.micres.2024.127831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
Lead (Pb) is the 2nd known portentous hazardous substance after arsenic (As). Being highly noxious, widespread, non-biodegradable, prolonged environmental presence, and increasing accumulation, particularly in arable land, Pb pollution has become a serious global health concern requiring urgent remediation. Soil-borne, indigenous microbes from Pb-polluted sites have evolved diverse resistance strategies, involving biosorption, bioprecipitation, biomineralization, biotransformation, and efflux mechanisms, under continuous exposure to Pb in human-impacted surroundings. These strategies employ a wide range of functional bioligands to capture Pb and render it inaccessible for leaching. Recent breakthroughs in molecular technology and understanding of lead resistance mechanisms offer the potential for utilizing microbes as biological tools in environmental risk assessment. Leveraging the specific affinity and sensitivity of bacterial regulators to Pb2+ ions, numerous lead biosensors have been designed and deployed worldwide to monitor Pb bioavailability in contaminated sites, even at trace levels. Besides, the ongoing degradation of croplands due to Pb pollution poses a significant challenge to meet the escalating global food demands. The accumulation of Pb in plant tissues jeopardizes both food safety and security while severely impacting plant growth. Exploring Pb-resistant plant growth-promoting rhizobacteria (PGPR) presents a promising sustainable approach to agricultural practices. The active associations of PGPR with host plants have shown enhancements in plant biomass and stress alleviation under Pb influence. They thus serve a dual purpose for plants grown in Pb-contaminated areas. This review aims to offer a comprehensive understanding of the role played by Pb-resistant soil-borne indigenous bacteria in expediting bioremediation and improving the growth of Pb-challenged plants essential for potential field application, thus broadening prospects for future research and development.
Collapse
Affiliation(s)
- Priyanka Pal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Krishnendu Pramanik
- Department of Botany, Cooch Behar Panchanan Barma University, Panchanan Nagar, Vivekananda Street, Cooch Behar, West Bengal 736101, India
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Sayanta Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tanushree Mondal
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tithi Soren
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, CAS, Department of Botany, Burdwan University, Burdwan, West Bengal 713104, India.
| |
Collapse
|
4
|
Seo Y, Zhou A, Nguyen TH, Wei N. Yeast Surface-Displayed Quenchbody as a Novel Whole-Cell Biosensor for One-Step Detection of Influenza A (H1N1) Virus. ACS Synth Biol 2024; 13:2926-2937. [PMID: 39256183 DOI: 10.1021/acssynbio.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Timely surveillance of airborne pathogens is essential to preventing the spread of infectious diseases and safeguard human health. Methods for sensitive, efficient, and cost-effective detection of airborne viruses are needed. With advances in synthetic biology, whole-cell biosensors have emerged as promising platforms for environmental monitoring and medical diagnostics. However, the current design paradigm of whole-cell biosensors is mostly based on intracellular detection of analytes that can transport across the cell membrane, which presents a critical challenge for viral pathogens and large biomolecules. To address this challenge, we developed a new type of whole-cell biosensor by expressing and displaying VHH-based quenchbody (Q-body) on the surface of the yeast Saccharomyces cerevisiae for simple one-step detection of influenza A (H1N1) virus. Seventeen VHH antibody fragments targeting the hemagglutinin protein H1N1-HA were displayed on the yeast cells and screened for the H1N1-HA binding affinity. The functionally displayed VHHs were selected to create surface-displayed Q-body biosensors. The surface-displayed Q-body exhibiting the highest quenching and dequenching efficiency was identified. The biosensor quantitatively detected H1N1-HA in a range from 0.5 to 16 μg/mL, with a half-maximal concentration of 2.60 μg/mL. The biosensor exhibited high specificity for H1N1-HA over other hemagglutinin proteins from various influenza A virus subtypes. Moreover, the biosensor succeeded in detecting the H1N1 virus at concentrations from 2.4 × 104 to 1.5 × 107 PFU/mL. The results from this study demonstrated a new whole-cell biosensor design that circumvents the need for transport of analytes into biosensor cells, enabling efficient detection of the target virus particles.
Collapse
Affiliation(s)
- Yoonjoo Seo
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Srinivasan S, Raajasubramanian D, Ashokkumar N, Vinothkumar V, Paramaguru N, Selvaraj P, Kanagalakshimi A, Narendra K, Shanmuga Sundaram CK, Murali R. Nanobiosensors based on on-site detection approaches for rapid pesticide sensing in the agricultural arena: A systematic review of the current status and perspectives. Biotechnol Bioeng 2024; 121:2585-2603. [PMID: 38853643 DOI: 10.1002/bit.28764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
The extensive use of chemical pesticides has significantly boosted agricultural food crop yields. Nevertheless, their excessive and unregulated application has resulted in food contamination and pollution in environmental, aquatic, and agricultural ecosystems. Consequently, the on-site monitoring of pesticide residues in agricultural practices is paramount to safeguard global food and conservational safety. Traditional pesticide detection methods are cumbersome and ill-suited for on-site pesticide finding. The systematic review provides an in-depth analysis of the current status and perspectives of nanobiosensors (NBS) for pesticide detection in the agricultural arena. Furthermore, the study encompasses the fundamental principles of NBS, the various transduction mechanisms employed, and their incorporation into on-site detection platforms. Conversely, the assortment of transduction mechanisms, including optical, electrochemical, and piezoelectric tactics, is deliberated in detail, emphasizing its advantages and limitations in pesticide perception. Incorporating NBS into on-site detection platforms confirms a vital feature of their pertinence. The evaluation reflects the integration of NBS into lab-on-a-chip systems, handheld devices, and wireless sensor networks, permitting real-time monitoring and data-driven decision-making in agronomic settings. The potential for robotics and automation in pesticide detection is also scrutinized, highlighting their role in improving competence and accuracy. Finally, this systematic review provides a complete understanding of the current landscape of NBS for on-site pesticide sensing. Consequently, we anticipate that this review offers valuable insights that could form the foundation for creating innovative NBS applicable in various fields such as materials science, nanoscience, food technology and environmental science.
Collapse
Affiliation(s)
- Subramani Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Devarajan Raajasubramanian
- Department of Botany, Faculty of Science, Annamalai University, Annamalainagar, India
- Department of Botany, Thiru. A. Govindasamy Government Arts College, Tindivanam, India
| | - Natarajan Ashokkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Veerasamy Vinothkumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | | | - Palanisamy Selvaraj
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Ambothi Kanagalakshimi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| | - Kuppan Narendra
- Department of Botany, Faculty of Science, Annamalai University, Annamalainagar, India
| | | | - Raju Murali
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
- Research Department of Biochemistry, Government Arts College for Women, Krishnagiri, India
| |
Collapse
|
6
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
Affiliation(s)
- Sreelakshmi C S
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vrinda Kini
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maargavi Singh
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pooja Nag
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapil Sadani
- Department of Instrumentation and Control, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
7
|
Trinh TND, Tran NKS, Nguyen HA, Chon NM, Trinh KTL, Lee NY. Recent advances in portable devices for environmental monitoring applications. BIOMICROFLUIDICS 2024; 18:051501. [PMID: 39247798 PMCID: PMC11377084 DOI: 10.1063/5.0224217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Environmental pollution remains a major societal problem, leading to serious impacts on living organisms including humans. Human activities such as civilization, urbanization, and industrialization are major causes of pollution. Imposing stricter rules helps control environmental pollutant levels, creating a need for reliable pollutant monitoring in air, water, and soil. The application of traditional analytical techniques is limited in low-resource areas because they are sophisticated, expensive, and bulky. With the development of biosensors and microfluidics technology, environmental monitoring has significantly improved the analysis time, low cost, portability, and ease of use. This review discusses the fundamentals of portable devices, including microfluidics and biosensors, for environmental control. Recently, publications reviewing microfluidics and biosensor device applications have increased more than tenfold, showing the potential of emerging novel approaches for environmental monitoring. Strategies for enzyme-, immunoassay-, and molecular-based analyte sensing are discussed based on their mechanisms and applications. Microfluidic and biosensor platforms for detecting major pollutants, including metal ions, pathogens, pesticides, and antibiotic residues, are reviewed based on their working principles, advantages, and disadvantages. Challenges and future trends for the device design and fabrication process to improve performance are discussed. Miniaturization, low cost, selectivity, sensitivity, high automation, and savings in samples and reagents make the devices ideal alternatives for in-field detection, especially in low-resource areas. However, their operation with complicated environmental samples requires further research to improve the specificity and sensitivity. Although there is a wide range of devices available for environmental applications, their implementation in real-world situations is limited. This study provides insights into existing issues that can be used as references and a comparative analysis for future studies and applications.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Nguyen Khoi Song Tran
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Hanh An Nguyen
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Nguyen Minh Chon
- Department of Molecular Biology, Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
8
|
Selivanovitch E, Ostwalt A, Chao Z, Daniel S. Emerging Designs and Applications for Biomembrane Biosensors. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:339-366. [PMID: 39018354 DOI: 10.1146/annurev-anchem-061622-042618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Nature has inspired the development of biomimetic membrane sensors in which the functionalities of biological molecules, such as proteins and lipids, are harnessed for sensing applications. This review provides an overview of the recent developments for biomembrane sensors compatible with either bulk or planar sensing applications, namely using lipid vesicles or supported lipid bilayers, respectively. We first describe the individual components required for these sensing platforms and the design principles that are considered when constructing them, and we segue into recent applications being implemented across multiple fields. Our goal for this review is to illustrate the versatility of nature's biomembrane toolbox and simultaneously highlight how biosensor platforms can be enhanced by harnessing it.
Collapse
Affiliation(s)
- Ekaterina Selivanovitch
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Alexis Ostwalt
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Zhongmou Chao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
9
|
Moschopoulou G, Tsekouras V, Mercader JV, Abad-Fuentes A, Kintzios S. Development of a Portable Cell-Based Biosensor for the Ultra-Rapid Screening for Boscalid Residues in Lettuce. BIOSENSORS 2024; 14:311. [PMID: 38920615 PMCID: PMC11201857 DOI: 10.3390/bios14060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Fungal plant pathogens have posed a significant threat to crop production. However, the large-scale application of pesticides is associated with possible risks for human health and the environment. Boscalid is a widely used fungicide, consistently implemented for the management of significant plant pathogens. Conventionally, the detection and determination of boscalid residues is based on chromatographic separations. In the present study, a Bioelectric Recognition Assay (BERA)-based experimental approach combined with MIME technology was used, where changes in the electric properties of the membrane-engineering cells with anti-boscalid antibodies were recorded in response to the presence of boscalid at different concentrations based on the maximum residue level (MRL) for lettuce. The membrane-engineering Vero cells with 0.5 μg/mL of antibody in their surface were selected as the best cell line in combination with the lowest antibody concentration. Furthermore, the biosensor was tested against another fungicide in order to prove its selectivity. Finally, the BERA cell-based biosensor was able to detect the boscalid residue, below and above the MRL, in spiked lettuce leaf extracts in an entirely distinct and reproducible manner. This study indicates that the BERA-based biosensor, after further development and optimization, could be used for the routine, high-throughput detection of boscalid residue in lettuce, and not only that.
Collapse
Affiliation(s)
- Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Vasileios Tsekouras
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| | - Josep V. Mercader
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Antonio Abad-Fuentes
- Department Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustí Escardino 7, 46980 Paterna, Spain; (J.V.M.); (A.A.-F.)
| | - Spyridon Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, Agricultural University of Athens, European University for Smart Urban Coastal Sustainability, Iera Odos 75, 11855 Athens, Greece; (V.T.); (S.K.)
| |
Collapse
|
10
|
Kulkarni MB, Rajagopal S, Prieto-Simón B, Pogue BW. Recent advances in smart wearable sensors for continuous human health monitoring. Talanta 2024; 272:125817. [PMID: 38402739 DOI: 10.1016/j.talanta.2024.125817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.
Collapse
Affiliation(s)
- Madhusudan B Kulkarni
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States.
| | - Sivakumar Rajagopal
- School of Electronics Engineering, Vellore Institute of Technology, Vellore Campus, 632014, TN, India
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, 53705, WI, United States
| |
Collapse
|
11
|
Zevallos-Aliaga D, De Graeve S, Obando-Chávez P, Vaccari NA, Gao Y, Peeters T, Guerra DG. Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring. BIOSENSORS 2024; 14:246. [PMID: 38785720 PMCID: PMC11117708 DOI: 10.3390/bios14050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture's response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury-gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+-a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury.
Collapse
Affiliation(s)
- Dahlin Zevallos-Aliaga
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Stijn De Graeve
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Pamela Obando-Chávez
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Nicolás A. Vaccari
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| | - Yue Gao
- Archaeology, Environmental Changes and Geo-Chemistry (AMGC), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium;
| | - Tom Peeters
- Open BioLab Brussels, Erasmushogeschool Brussel, Laarbeeklaan 121, B-1090 Jette, Belgium
| | - Daniel G. Guerra
- Laboratorio de Moléculas Individuales, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia, Lima 15102, Peru; (D.Z.-A.); (P.O.-C.); (N.A.V.)
| |
Collapse
|
12
|
Bounegru AV, Bounegru I. Acrylamide in food products and the role of electrochemical biosensors in its detection: a comprehensive review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2824-2839. [PMID: 38669134 DOI: 10.1039/d4ay00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In this review, the mechanisms of acrylamide formation in food, along with aspects related to its toxicity and associated consumption risks, are investigated, highlighting the potential impact on human health. European regulations regarding acrylamide content in food products are also addressed, emphasizing the importance of monitoring and detecting this substance in nutrition, by public health protection measures. The primary objective of the research is to explore and analyze innovative methods for detecting acrylamide in food, with a particular focus on electrochemical biosensors. This research direction is motivated by the need to develop rapid, sensitive, and efficient monitoring techniques for this toxic compound in food products, considering the associated consumption risks. The research has revealed several significant results. Studies have shown that electrochemical biosensors based on hemoglobin exhibited increased sensitivity and low detection limits, capable of detecting very low concentrations of acrylamide in processed foods. Additionally, it has been found that the use of functionalized nanomaterials, such as carbon nanotubes and gold nanoparticles, has led to the improvement of electrochemical biosensor performance in acrylamide detection. The integration of these technological innovations and functionalization strategies has enhanced the sensitivity, specificity, and stability of biosensors in measuring acrylamides. Thus, the results of this research offer promising perspectives for the development of precise and efficient methods for monitoring acrylamides in food, contributing to the improvement of food quality control and the protection of consumer health.
Collapse
Affiliation(s)
- Alexandra Virginia Bounegru
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, "Dunărea de Jos" University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania.
| | - Iulian Bounegru
- Competences Centre: Interfaces-Tribocorrosion-Electrochemical Systems, "Dunărea de Jos" University of Galati, 47 Domnească Street, 800008 Galati, Romania
| |
Collapse
|
13
|
González-Cely AX, Diaz CAR, Callejas-Cuervo M, Bastos-Filho T. Optical fiber sensors for posture monitoring, ulcer detection and control in a wheelchair: a state-of-the-art. Disabil Rehabil Assist Technol 2024; 19:1773-1790. [PMID: 37439135 DOI: 10.1080/17483107.2023.2234411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND In the last ten years, the design and implementation of Optical Fiber Sensors (OFS) in biomedical applications have been discussed, with a focus on different subareas, such as body parameter monitoring and control of assistive devices. MATERIALS AND METHODS A scoping review was performed including scientific literature (PubMed/Scopus, IEEE and Web of Science), patents (WIPO/Google Scholar), and commercial information. RESULTS The main applications of OFS in the rehabilitation field for preventing future postural diseases and applying them in device controllers were discussed in this review. Physical characteristics of OFS, different uses, and applications of Polymer Optical Fiber pressure sensors are mentioned. The main postures used for posture monitoring analysis when the user is sitting are normal position, crooked back, high lumbar pressure, sitting on the edge of the chair, and crooked back, left position, and right position. Additionally, it is possible to use Machine Learning (ML) algorithms for posture classification, and device control such as Support Vector Machine, k-Nearest Neighbors, etc., obtaining accuracies above 97%. Moreover, the literature mentions wheelchair controllers and Graphical User Interfaces using pressure maps to provide feedback to the user. CONCLUSIONS OFS have been used in several healthcare applications as well as postural and preventive applications. The literature showed an effort to implement and design accessible devices for people with disabilities and people with specific diseases. Alternatively, ML algorithms are widely used in this direction, leaving the door open for further studies that allow the application of real-time systems for posture monitoring and wheelchairs control.
Collapse
Affiliation(s)
- Aura Ximena González-Cely
- Graduate Program in Electrical Engineering, Robotics and Assistive Technology Laboratory, Federal University of Espirito Santo, Vitória, Brazil
- Graduate Program in Electrical Engineering, Telecommunications Laboratory, Federal University of Espirito Santo, Vitória, Brazil
| | - Camilo A R Diaz
- Graduate Program in Electrical Engineering, Telecommunications Laboratory, Federal University of Espirito Santo, Vitória, Brazil
| | - Mauro Callejas-Cuervo
- Software Research Group, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Teodiano Bastos-Filho
- Graduate Program in Electrical Engineering, Robotics and Assistive Technology Laboratory, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
14
|
Pan M, Zhao Y, Qiao J, Meng X. Electrochemical biosensors for pathogenic microorganisms detection based on recognition elements. Folia Microbiol (Praha) 2024; 69:283-304. [PMID: 38367165 DOI: 10.1007/s12223-024-01144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
The worldwide spread of pathogenic microorganisms poses a significant risk to human health. Electrochemical biosensors have emerged as dependable analytical tools for the point-of-care detection of pathogens and can effectively compensate for the limitations of conventional techniques. Real-time analysis, high throughput, portability, and rapidity make them pioneering tools for on-site detection of pathogens. Herein, this work comprehensively reviews the recent advances in electrochemical biosensors for pathogen detection, focusing on those based on the classification of recognition elements, and summarizes their principles, current challenges, and prospects. This review was conducted by a systematic search of PubMed and Web of Science databases to obtain relevant literature and construct a basic framework. A total of 171 publications were included after online screening and data extraction to obtain information of the research advances in electrochemical biosensors for pathogen detection. According to the findings, the research of electrochemical biosensors in pathogen detection has been increasing yearly in the past 3 years, which has a broad development prospect, but most of the biosensors have performance or economic limitations and are still in the primary stage. Therefore, significant research and funding are required to fuel the rapid development of electrochemical biosensors. The overview comprehensively evaluates the recent advances in different types of electrochemical biosensors utilized in pathogen detection, with a view to providing insights into future research directions in biosensors.
Collapse
Affiliation(s)
- Mengting Pan
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Yurui Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jinjuan Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
15
|
Choi Y, Jeong JY, Hong S. Highly Sensitive Real-Time Monitoring of Adenosine Receptor Activities in Nonsmall Cell Lung Cancer Cells Using Carbon Nanotube Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2101-2109. [PMID: 38166368 DOI: 10.1021/acsami.3c14492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Adenosine metabolism through adenosine receptors plays a critical role in lung cancer biology. Although recent studies showed the potential of targeting adenosine receptors as drug targets for lung cancer treatment, conventional methods for investigating receptor activities often suffer from various drawbacks, including low sensitivity and slow analysis speed. In this study, adenosine receptor activities in nonsmall cell lung cancer (NSCLC) cells were monitored in real time with high sensitivity through a carbon nanotube field-effect transistor (CNT-FET). In this method, we hybridized a CNT-FET with NSCLC cells expressing A2A and A2B adenosine receptors to construct a hybrid platform. This platform could detect adenosine, an endogenous ligand of adenosine receptors, down to 1 fM in real time and sensitively discriminate adenosine among other nucleosides. Furthermore, we could also utilize the platform to detect adenosine in complicated environments, such as human serum. Notably, our hybrid platform allowed us to monitor pharmacological effects between adenosine and other drugs, including dipyridamole and theophylline, even in human serum samples. These results indicate that the NSCLC cell-hybridized CNT-FET can be a practical tool for biomedical applications, such as the evaluation and screening of drug-candidate substances.
Collapse
Affiliation(s)
- Yoonji Choi
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Young Jeong
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
17
|
Srinivasan A, Sajeevan A, Rajaramon S, David H, Solomon AP. Solving polymicrobial puzzles: evolutionary dynamics and future directions. Front Cell Infect Microbiol 2023; 13:1295063. [PMID: 38145044 PMCID: PMC10748482 DOI: 10.3389/fcimb.2023.1295063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Polymicrobial infections include various microorganisms, often necessitating different treatment methods than a monomicrobial infection. Scientists have been puzzled by the complex interactions within these communities for generations. The presence of specific microorganisms warrants a chronic infection and impacts crucial factors such as virulence and antibiotic susceptibility. Game theory is valuable for scenarios involving multiple decision-makers, but its relevance to polymicrobial infections is limited. Eco-evolutionary dynamics introduce causation for multiple proteomic interactions like metabolic syntropy and niche segregation. The review culminates both these giants to form evolutionary dynamics (ED). There is a significant amount of literature on inter-bacterial interactions that remain unsynchronised. Such raw data can only be moulded by analysing the ED involved. The review culminates the inter-bacterial interactions in multiple clinically relevant polymicrobial infections like chronic wounds, CAUTI, otitis media and dental carries. The data is further moulded with ED to analyse the niche colonisation of two notoriously competitive bacteria: S.aureus and P.aeruginosa. The review attempts to develop a future trajectory for polymicrobial research by following recent innovative strategies incorporating ED to curb polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
18
|
Funk MA, Leitner J, Gerner MC, Hammerler JM, Salzer B, Lehner M, Battin C, Gumpelmair S, Stiasny K, Grabmeier-Pfistershammer K, Steinberger P. Interrogating ligand-receptor interactions using highly sensitive cellular biosensors. Nat Commun 2023; 14:7804. [PMID: 38016944 PMCID: PMC10684770 DOI: 10.1038/s41467-023-43589-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Interactions of membrane-resident proteins are important targets for therapeutic interventions but most methods to study them are either costly, laborious or fail to reflect the physiologic interaction of membrane resident proteins in trans. Here we describe highly sensitive cellular biosensors as a tool to study receptor-ligand pairs. They consist of fluorescent reporter cells that express chimeric receptors harboring ectodomains of cell surface molecules and intracellular signaling domains. We show that a broad range of molecules can be integrated into this platform and we demonstrate its applicability to highly relevant research areas, including the characterization of immune checkpoints and the probing of cells for the presence of receptors or ligands. The platform is suitable to evaluate the interactions of viral proteins with host receptors and to test for neutralization capability of drugs or biological samples. Our results indicate that cellular biosensors have broad utility as a tool to study protein-interactions.
Collapse
Affiliation(s)
- Maximilian A Funk
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria.
| | - Marlene C Gerner
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Jasmin M Hammerler
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Benjamin Salzer
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Manfred Lehner
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Christian Doppler Laboratory for Next Generation CAR T Cells, Vienna, Austria
| | - Claire Battin
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Simon Gumpelmair
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | | | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division for Immune Receptors and T cell activation, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
19
|
Kang X, Zhao C, Chen S, Zhang X, Xue B, Li C, Wang S, Yang X, Xia Z, Xu Y, Huang Y, Qiu Z, Li C, Wang J, Pang J, Shen Z. Development of a cell-free toehold switch for hepatitis A virus type I on-site detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5813-5822. [PMID: 37870419 DOI: 10.1039/d3ay01408h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Picornavirus hepatitis A virus (HAV) is a common cause of hepatitis worldwide. It is spread primarily through contaminated food and water or person-to-person contact. HAV I has been identified as the most common type of human HAV infection. Here, we have developed a cell-free toehold switch sensor for HAV I detection. We screened 10 suitable toehold switch sequences using NUPACK software, and the VP1 gene was used as the target gene. The optimal toehold switch sequence was selected by in vivo expression. The best toehold switch concentration was further found to be 20 nM in a cell-free system. 5 nM trigger RNA activated the toehold switch to generate visible green fluorescence. The minimum detection concentration decreased to 1 pM once combined with NASBA. HAV I trigger RNA could be detected accurately with excellent specificity. In addition, the cell-free toehold switch sensor was verified in HAV I entities. The successful construction of the cell-free toehold switch sensor provided a convenient, rapid, and accurate method for HAV I on-site detection, especially in developing countries, without the involvement of expensive facilities and additional professional operators.
Collapse
Affiliation(s)
- Xiaodan Kang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chen Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuting Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chenyu Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shang Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhiqiang Xia
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongchun Xu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Yongliang Huang
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, 330000, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Chao Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Jian Pang
- The Air Force Hospital of Northern Theater People's Liberation Army, Shenyang 110042, China.
| | - Zhiqiang Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| |
Collapse
|
20
|
Liu H, Zhang L, Wang W, Hu H, Ouyang X, Xu P, Tang H. An Intelligent Synthetic Bacterium for Chronological Toxicant Detection, Biodegradation, and Its Subsequent Suicide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304318. [PMID: 37705081 PMCID: PMC10625131 DOI: 10.1002/advs.202304318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/24/2023] [Indexed: 09/15/2023]
Abstract
Modules, toolboxes, and synthetic biology systems may be designed to address environmental bioremediation. However, weak and decentralized functional modules require complex control. To address this issue, an integrated system for toxicant detection and biodegradation, and subsequent suicide in chronological order without exogenous inducers is constructed. Salicylic acid, a typical pollutant in industrial wastewater, is selected as an example to demonstrate this design. Biosensors are optimized by regulating the expression of receptors and reporters to get 2-fold sensitivity and 6-fold maximum output. Several stationary phase promoters are compared, and promoter Pfic is chosen to express the degradation enzyme. Two concepts for suicide circuits are developed, with the toxin/antitoxin circuit showing potent lethality. The three modules are coupled in a stepwise manner. Detection and biodegradation, and suicide are sequentially completed with partial attenuation compared to pre-integration, except for biodegradation, being improved by the replacements of ribosome binding site. Finally, a long-term stability test reveals that the engineered strain maintained its function for ten generations. The study provides a novel concept for integrating and controlling functional modules that can accelerate the transition of synthetic biology from conceptual to practical applications.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Lige Zhang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Weiwei Wang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Haiyang Hu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Ping Xu
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Hongzhi Tang
- State Key Laboratory of Microbial MetabolismJoint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
21
|
Quispe Haro JJ, Wegner SV. An Adenosylcobalamin Specific Whole-Cell Biosensor. Adv Healthc Mater 2023; 12:e2300835. [PMID: 37070155 PMCID: PMC11468855 DOI: 10.1002/adhm.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Vitamin B12 (cobalamin) is essential for human health and its deficiency results in anemia and neurological damage. Vitamin B12 exists in different forms with various bioactivity but most sensors are unable to discriminate between them. Here, a whole-cell agglutination assay that is specific for adenosylcobalamin (AboB12), which is one of two bioactive forms, is reported. This biosensor consists of Escherichia coli that express the AdoB12 specific binding domain of CarH at their surface. In the presence of AdoB12, CarH forms tetramers, which leads to specific bacterial cell-cell adhesions and agglutination. These CarH tetramers disassemble upon green light illumination such that reversion of the bacterial aggregation can serve as internal quality control. The agglutination assay has a detection limit of 500 nм AdoB12, works in protein-poor biofluids such as urine, and has high specificity to AdoB12 over other forms of vitamin B12 as also demonstrated with commercially available supplements. This work is a proof of concept for a cheap and easy-to-readout AdoB12 sensor that can be implemented at the point-of-care to monitor high-dose vitamin B12 supplementation.
Collapse
Affiliation(s)
- Juan José Quispe Haro
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterWaldeyerstrasse 1548149MünsterGermany
| | - Seraphine V. Wegner
- Institute of Physiological Chemistry and PathobiochemistryUniversity of MünsterWaldeyerstrasse 1548149MünsterGermany
| |
Collapse
|
22
|
Zhu J, Wang B, Zhang Y, Wei T, Gao T. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends. Biosens Bioelectron 2023; 237:115480. [PMID: 37379794 DOI: 10.1016/j.bios.2023.115480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Bioelectrical interfaces made of living electroactive bacteria (EAB) provide a unique opportunity to bridge biotic and abiotic systems, enabling the reprogramming of electrochemical biosensing. To develop these biosensors, principles from synthetic biology and electrode materials are being combined to engineer EAB as dynamic and responsive transducers with emerging, programmable functionalities. This review discusses the bioengineering of EAB to design active sensing parts and electrically connective interfaces on electrodes, which can be applied to construct smart electrochemical biosensors. In detail, by revisiting the electron transfer mechanism of electroactive microorganisms, engineering strategies of EAB cells for biotargets recognition, sensing circuit construction, and electrical signal routing, engineered EAB have demonstrated impressive capabilities in designing active sensing elements and developing electrically conductive interfaces on electrodes. Thus, integration of engineered EAB into electrochemical biosensors presents a promising avenue for advancing bioelectronics research. These hybridized systems equipped with engineered EAB can promote the field of electrochemical biosensing, with applications in environmental monitoring, health monitoring, green manufacturing, and other analytical fields. Finally, this review considers the prospects and challenges of the development of EAB-based electrochemical biosensors, identifying potential future applications.
Collapse
Affiliation(s)
- Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Baoguo Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
23
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
24
|
Zhao C, Wang Z, Tang X, Qin J, Jiang Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf B Biointerfaces 2023; 229:113431. [PMID: 37473652 DOI: 10.1016/j.colsurfb.2023.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Brain science has remained in the global spotlight as an important field of scientific and technological discovery. Numerous in vitro and in vivo animal studies have been performed to understand the pathological processes involved in brain diseases and develop strategies for their diagnosis and treatment. However, owing to species differences between animals and humans, several drugs have shown high rates of treatment failure in clinical settings, hindering the development of diagnostic and treatment modalities for brain diseases. In this scenario, microfluidic brain-on-a-chip (BOC) devices, which allow the direct use of human tissues for experiments, have emerged as novel tools for effectively avoiding species differences and performing screening for new drugs. Although microfluidic BOC technology has achieved significant progress in recent years, monitoring slight changes in neurochemicals, neurotransmitters, and environmental states in the brain has remained challenging owing to the brain's complex environment. Hence, the integration of BOC with new sensors that have high sensitivity and high selectivity is urgently required for the real-time dynamic monitoring of BOC parameters. As sensor-based technologies for BOC have not been summarized, here, we review the principle, fabrication process, and application-based classification of sensor-integrated BOC, and then summarize the opportunities and challenges for their development. Generally, sensor-integrated BOC enables real-time monitoring and dynamic analysis, accurately measuring minute changes in the brain and thus enabling the realization of in vivo brain analysis and drug development.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhenqi Jiang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
25
|
Mobed A, Gholami S, Tahavvori A, Ghazi F, Masoumi Z, Alipourfard I, Naderian R, Mohammadzadeh M. Nanosensors in the detection of antihypertension drugs, a golden step for medication adherence monitoring. Heliyon 2023; 9:e19467. [PMID: 37810167 PMCID: PMC10558620 DOI: 10.1016/j.heliyon.2023.e19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Hypertension is associated with structural and functional changes in blood vessels with increased arteriosclerosis, vascular inflammation, and endothelial dysfunction. Decreased adherence (compliance) to antihypertensive medications contributes significantly to morbidity and mortality in hypertensive patients. Antihypertensive drugs (AHTDs) and lifestyle changes are the main cornerstones for treating hypertension. Several approaches have been described in the literature for determining AHTDs based on different analytical techniques. Amongst biosensors are one of the most attractive tools due to their inherent advantages. Biosensors are used for the detection of wide range of biomarkers as well as different drugs in past two decades. The main focus of the present study is to review the latest biosensors developed for the detection of AHTDs. Readers of the present study will be able to familiarize themselves with biosensors as advanced and modern diagnostic tools while reviewing the most widely used AHTDs. In the present study, the routine methods are first reviewed and while examining their advantages and disadvantages, biosensors have been introduced as ideal alternative tools.
Collapse
Affiliation(s)
- Ahmad Mobed
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Gholami
- Young Researchers and Ellie Club, Babol Branch. Islamic Azad University, Babol, Iran
| | - Amir Tahavvori
- Internal Department, Medical Faculty, Urmia University of Medical Sciences, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5154853431, Iran
| | - Zahra Masoumi
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Ramtin Naderian
- Student Committee of Medical Education Development, Education Development Center, Semnan University of Medical Science, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehran Mohammadzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 5154853431, Iran
| |
Collapse
|
26
|
Singh B, Bhat A, Dutta L, Pati KR, Korpan Y, Dahiya I. Electrochemical Biosensors for the Detection of Antibiotics in Milk: Recent Trends and Future Perspectives. BIOSENSORS 2023; 13:867. [PMID: 37754101 PMCID: PMC10527191 DOI: 10.3390/bios13090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023]
Abstract
Antibiotics have emerged as ground-breaking medications for the treatment of infectious diseases, but due to the excessive use of antibiotics, some drugs have developed resistance to microorganisms. Because of their structural complexity, most antibiotics are excreted unchanged, polluting the water, soil, and natural resources. Additionally, food items are being polluted through the widespread use of antibiotics in animal feed. The normal concentrations of antibiotics in environmental samples typically vary from ng to g/L. Antibiotic residues in excess of these values can pose major risks the development of illnesses and infections/diseases. According to estimates, 300 million people will die prematurely in the next three decades (by 2050), and the WHO has proclaimed "antibiotic resistance" to be a severe economic and sociological hazard to public health. Several antibiotics have been recognised as possible environmental pollutants (EMA) and their detection in various matrices such as food, milk, and environmental samples is being investigated. Currently, chromatographic techniques coupled with different detectors (e.g., HPLC, LC-MS) are typically used for antibiotic analysis. Other screening methods include optical methods, ELISA, electrophoresis, biosensors, etc. To minimise the problems associated with antibiotics (i.e., the development of AMR) and the currently available analytical methods, electrochemical platforms have been investigated, and can provide a cost-effective, rapid and portable alternative. Despite the significant progress in this field, further developments are necessary to advance electrochemical sensors, e.g., through the use of multi-functional nanomaterials and advanced (bio)materials to ensure efficient detection, sensitivity, portability, and reliability. This review summarises the use of electrochemical biosensors for the detection of antibiotics in milk/milk products and presents a brief introduction to antibiotics and AMR followed by developments in the field of electrochemical biosensors based on (i) immunosensor, (ii) aptamer (iii) MIP, (iv) enzyme, (v) whole-cell and (vi) direct electrochemical approaches. The role of nanomaterials and sensor fabrication is discussed wherever necessary. Finally, the review discusses the challenges encountered and future perspectives. This review can serve as an insightful source of information, enhancing the awareness of the role of electrochemical biosensors in providing information for the preservation of the health of the public, of animals, and of our environment, globally.
Collapse
Affiliation(s)
- Baljit Singh
- MiCRA Biodiagnostics Technology Gateway, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Abhijnan Bhat
- Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Lesa Dutta
- Department of Chemistry, Central University of Punjab, VPO Ghudda, Bathinda 151401, Punjab, India
| | - Kumari Riya Pati
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Yaroslav Korpan
- Institute of Molecular Biology and Genetics NAS of Ukraine, Department of Biomolecular Electronics, 03143 Kyiv, Ukraine
| | - Isha Dahiya
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak 124001, Haryana, India
| |
Collapse
|
27
|
Bayer T, Hänel L, Husarcikova J, Kunzendorf A, Bornscheuer UT. In Vivo Detection of Low Molecular Weight Platform Chemicals and Environmental Contaminants by Genetically Encoded Biosensors. ACS OMEGA 2023; 8:23227-23239. [PMID: 37426270 PMCID: PMC10324065 DOI: 10.1021/acsomega.3c01741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Genetically encoded biosensor systems operating in living cells are versatile, cheap, and transferable tools for the detection and quantification of a broad range of small molecules. This review presents state-of-the-art biosensor designs and assemblies, featuring transcription factor-, riboswitch-, and enzyme-coupled devices, highly engineered fluorescent probes, and emerging two-component systems. Importantly, (bioinformatic-assisted) strategies to resolve contextual issues, which cause biosensors to miss performance criteria in vivo, are highlighted. The optimized biosensing circuits can be used to monitor chemicals of low molecular mass (<200 g mol-1) and physicochemical properties that challenge conventional chromatographical methods with high sensitivity. Examples herein include but are not limited to formaldehyde, formate, and pyruvate as immediate products from (synthetic) pathways for the fixation of carbon dioxide (CO2), industrially important derivatives like small- and medium-chain fatty acids and biofuels, as well as environmental toxins such as heavy metals or reactive oxygen and nitrogen species. Lastly, this review showcases biosensors capable of assessing the biosynthesis of platform chemicals from renewable resources, the enzymatic degradation of plastic waste, or the bioadsorption of highly toxic chemicals from the environment. These applications offer new biosensor-based manufacturing, recycling, and remediation strategies to tackle current and future environmental and socioeconomic challenges including the wastage of fossil fuels, the emission of greenhouse gases like CO2, and the pollution imposed on ecosystems and human health.
Collapse
|
28
|
Tsong JL, Khor SM. Modern analytical and bioanalytical technologies and concepts for smart and precision farming. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37376849 DOI: 10.1039/d3ay00647f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Unpredictable natural disasters, disease outbreaks, climate change, pollution, and war constantly threaten food crop production. Smart and precision farming encourages using information or data obtained by using advanced technology (sensors, AI, and IoT) to improve decision-making in agriculture and achieve high productivity. For instance, weather prediction, nutrient information, pollutant assessment, and pathogen determination can be made with the help of new analytical and bioanalytical methods, demonstrating the potential for societal impact such as environmental, agricultural, and food science. As a rising technology, biosensors can be a potential tool to promote smart and precision farming in developing and underdeveloped countries. This review emphasizes the role of on-field, in vivo, and wearable biosensors in smart and precision farming, especially those biosensing systems that have proven with suitably complex and analytically challenging samples. The development of various agricultural biosensors in the past five years that fulfill market requirements such as portability, low cost, long-term stability, user-friendliness, rapidity, and on-site monitoring will be reviewed. The challenges and prospects for developing IoT and AI-integrated biosensors to increase crop yield and advance sustainable agriculture will be discussed. Using biosensors in smart and precision farming would ensure food security and revenue for farming communities.
Collapse
Affiliation(s)
- Jia Ling Tsong
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Ma Z, Li Y, Lu C, Li M. On-site screening method for bioavailability assessment of the organophosphorus pesticide, methyl parathion, and its primary metabolite in soils by paper strip biosensor. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131725. [PMID: 37295330 DOI: 10.1016/j.jhazmat.2023.131725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
An important public concern worldwide is soil pollution caused by organophosphorus pesticides and their primary metabolites. To protect the public's health, screening these pollutants on-site and determining their soil bioavailability is important, but doing so is still challenging. This work improved the already-existing organophosphorus pesticide hydrolase (mpd) and transcriptional activator (pobR), and it first designed and constructed a novel biosensor (Escherichia coli BL21/pNP-LacZ) that can precisely detect methyl parathion (MP) and its primary metabolite p-nitrophenol with low background value. To create a paper strip biosensor, E. coli BL21/pNP-LacZ was fixed to filter paper using bio-gel alginate and sensitizer polymyxin B. According to the calibrations of the paper strip biosensor for soil extracts and standard curve, the color intensity of the paper strip biosensor collected by the mobile app may be used to compute the concentration of MP and p-nitrophenol. This method's detection limits were 5.41 µg/kg for p-nitrophenol and 9.57 µg/kg for MP. The detection of p-nitrophenol and MP in laboratory and field soil samples confirmed this procedure. Paper strip biosensor on-site allows for the semi-quantitative measurement of p-nitrophenol and MP levels in soils in a simple, inexpensive, and portable method.
Collapse
Affiliation(s)
- Zhao Ma
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Chao Lu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
30
|
Zhou X, Zhang X, Peng Y, Douka AI, You F, Yao J, Jiang X, Hu R, Yang H. Electroactive Microorganisms in Advanced Energy Technologies. Molecules 2023; 28:molecules28114372. [PMID: 37298848 DOI: 10.3390/molecules28114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Collapse
Affiliation(s)
- Xingchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yujie Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
31
|
Sauge-Merle S, Recuerda M, Beccia MR, Lemaire D, Cherif R, Bremond N, Merola F, Bousmah Y, Berthomieu C. Development of an Efficient FRET-Based Ratiometric Uranium Biosensor. BIOSENSORS 2023; 13:bios13050561. [PMID: 37232922 DOI: 10.3390/bios13050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The dispersion of uranium in the environment can pose a problem for the health of humans and other living organisms. It is therefore important to monitor the bioavailable and hence toxic fraction of uranium in the environment, but no efficient measurement methods exist for this. Our study aims to fill this gap by developing a genetically encoded FRET-based ratiometric uranium biosensor. This biosensor was constructed by grafting two fluorescent proteins to both ends of calmodulin, a protein that binds four calcium ions. By modifying the metal-binding sites and the fluorescent proteins, several versions of the biosensor were generated and characterized in vitro. The best combination results in a biosensor that is affine and selective for uranium compared to metals such as calcium or other environmental compounds (sodium, magnesium, chlorine). It has a good dynamic range and should be robust to environmental conditions. In addition, its detection limit is below the uranium limit concentration in drinking water defined by the World Health Organization. This genetically encoded biosensor is a promising tool to develop a uranium whole-cell biosensor. This would make it possible to monitor the bioavailable fraction of uranium in the environment, even in calcium-rich waters.
Collapse
Affiliation(s)
- Sandrine Sauge-Merle
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Morgane Recuerda
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Maria Rosa Beccia
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, UMR 7272, 06108 Nice, France
| | - David Lemaire
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Rym Cherif
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Nicolas Bremond
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| | - Fabienne Merola
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Yasmina Bousmah
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France
| | - Catherine Berthomieu
- Aix Marseille Université, CEA, CNRS, BIAM, UMR7265, IPM, 13108 Saint Paul-Lez-Durance, France
| |
Collapse
|
32
|
Ma J, Guan Y, Xing F, Eltzov E, Wang Y, Li X, Tai B. Accurate and non-destructive monitoring of mold contamination in foodstuffs based on whole-cell biosensor array coupling with machine-learning prediction models. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131030. [PMID: 36827728 DOI: 10.1016/j.jhazmat.2023.131030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Mold contamination in foodstuffs causes huge economic losses, quality deterioration and mycotoxin production. Thus, non-destructive and accurate monitoring of mold occurrence in foodstuffs is highly required. We proposed a novel whole-cell biosensor array to monitor pre-mold events in foodstuffs. Firstly, 3 volatile markers ethyl propionate, 1-methyl-1 H-pyrrole and 2,3-butanediol were identified from pre-mold peanuts using gas chromatography-mass spectrometry. Together with other 3 frequently-reported volatiles from Aspergillus flavus infection, the volatiles at subinhibitory concentrations induced significant but differential response patterns from 14 stress-responsive Escherichia coli promoters. Subsequently, a whole-cell biosensor array based on the 14 promoters was constructed after whole-cell immobilization in calcium alginate. To discriminate the response patterns of the whole-cell biosensor array to mold-contaminated foodstuffs, optimal classifiers were determined by comparing 6 machine-learning algorithms. 100 % accuracy was achieved to discriminate healthy from moldy peanuts and maize, and 95 % and 98 % accuracy in discriminating pre-mold stages for infected peanuts and maize, based on random forest classifiers. 83 % accuracy was obtained to separate moldy peanuts from moldy maize by sparse partial least square determination analysis. The results demonstrated high accuracy and practicality of our method based on a whole-cell biosensor array coupling with machine-learning classifiers for mold monitoring in foodstuffs.
Collapse
Affiliation(s)
- Junning Ma
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xu Li
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bowen Tai
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs / Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
33
|
Samal S, Mohanty RP, Mohanty PS, Giri MK, Pati S, Das B. Implications of biosensors and nanobiosensors for the eco-friendly detection of public health and agro-based insecticides: A comprehensive review. Heliyon 2023; 9:e15848. [PMID: 37206035 PMCID: PMC10189192 DOI: 10.1016/j.heliyon.2023.e15848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Biosensors, in particular nanobiosensors, have brought a paradigm shift in the detection approaches involved in healthcare, agricultural, and industrial sectors. In accordance with the global expansion in the world population, there has been an increase in the application of specific insecticides for maintaining public health and enhancing agriculture, such as organophosphates, organochlorines, pyrethroids, and carbamates. This has led to the contamination of ground water, besides increasing the chances of biomagnification as most of these insecticides are non-biodegradable. Hence, conventional and more advanced approaches are being devised for the routine monitoring of such insecticides in the environment. This review walks through the implications of biosensors and nanobiosensors, which could offer a wide range of benefits for the detection of the insecticides, quantifying their toxicity status, and versatility in application. Unique eco-friendly nanobiosensors such as microcantilevers, carbon nanotubes, 3D printing organic materials and nylon nano-compounds are some advanced tools that are being employed for the detection of specific insecticides under different conditions. Furthermore, in order to implement a smart agriculture system, nanobiosensors could be integrated into mobile apps and GPS systems for controlling farming in remote areas, which would greatly assist the farmer remotely for crop improvement and maintenance. This review discusses about such tools along with more advanced and eco-friendly approaches that are on the verge of development and could offer a promising alternative for analyte detection in different domains.
Collapse
Affiliation(s)
- Sagnika Samal
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Rashmi Priya Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Priti Sundar Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- School of Chemical Technology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, 751024, India
- Corresponding author.
| | - Biswadeep Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, KIIT Deemed to Be University, Bhubaneswar, Odisha, 751017, India
- Corresponding author.
| |
Collapse
|
34
|
Morkus P, Rassenberg S, Montpetit D, Filipe CDM, Latulippe DR. Tuning the sensitivity of cell-based biosensors for the detection of biocides. CHEMOSPHERE 2023; 331:138740. [PMID: 37088207 DOI: 10.1016/j.chemosphere.2023.138740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/04/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
The presence of biocides in wastewater can negatively impact the efficiency of wastewater treatment processes, particular the process of nitrification. In this paper, we describe the development of cell-based biosensors (CBBs) with tunable levels of sensitivity for rapidly detecting the presence and predicting the type and concentration of biocides. The CBB assay developed is performed by first exposing a panel of bacterial strains (E. coli, B. subtilis, B. cereus) to the sample being tested and to the control sample without biocide, and then adding a fluorescent dye (LIVE/DEAD BacLight). We then compare the fluorescence signals generated by the two samples, and the differences in the signals indicate the presence of a biocide, as previously reported in the literature. We found that the sensitivity of the CBB assay can be improved by tuning the type/salinity of the buffer used to suspend the cells, and by changing the number of cells used in the assay. These changes improved the level of detection (LOD) of the biocide Cetyltrimethylammonium bromide (CTAB) from 10 ppm to 0.625 ppm and the biocide Grotan® BK from 500 ppm to 7.8 ppm. With the optimized conditions for each strain, we also establish that the combined response from the panel of bacterial strains can be used to predict the type and concentration of biocide sample tested. Additionally, we provide evidence that the response of the tunable CBB assay can be quantitatively measured using a compact, commercially available fluorometer. Overall, the significance of this work will improve point-of-use testing and enable the discrimination between biocide-containing samples of similar toxicity and detection of lower toxicity samples, thereby improving the accuracy of the CBB assay.
Collapse
Affiliation(s)
- Patrick Morkus
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Sarah Rassenberg
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Danika Montpetit
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada
| | - David R Latulippe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L7, Canada.
| |
Collapse
|
35
|
Fakhri MA, Salim ET, Tariq SM, Ibrahim RK, Alsultany FH, Alwahib AA, Alhasan SFH, Gopinath SCB, Salim ZT, Hashim U. A gold nanoparticles coated unclad single mode fiber-optic sensor based on localized surface plasmon resonance. Sci Rep 2023; 13:5680. [PMID: 37029253 PMCID: PMC10082208 DOI: 10.1038/s41598-023-32852-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
In the last few decays, the fiber-optic was employed in the field of sensing because of its benefits in contrast to other types of sensors such as small size, easy to fabricate, high response, and flexibility. In this study, unclad single mode fiber-optic sensor is proposed to operate at 650 nm wavelength. COMSOL Multiphysics 5.1 finite element method (FEM) is used to design the sensor and tested it theoretically. The middle portion of the fiber cladding is removed and replaced by gold nanoparticles (Au NPs) of 50 nm thickness. Analytic layer of 3 μm thickness was immersed in different liquids in range of refractive index (RI) from 1.000281 to 1.39. These liquids are NaCl Deionized (DI) water solution, sucrose-Deionized (DI) water solution, and glycerol solution Deionized (DI) water. It was found that the highest obtained sensitivity and resolution are for glycerol-DI water solution with value of 3157.98 (nm/RIU) and 3.16 × 10-5 (RIU), respectively. Furthermore, it is easy to fabricate and of low cost. In experiments, pulsed laser ablation (PLA) was used to prepare Au NPs. X-ray diffraction (XRD) shown that the peak of the intensity grew as the ablated energy increased as well as the structure crystallization. Transmission electron microscopy (TEM) revealed an average diameter of 30 nm at the three ablated energies, while X-ray spectroscopy (EDX) spectrum has indicated the presence of Au NPs in the prepared solution. The photoluminescence (PL) and ultraviolet-visible UV-Vis transmission were used to study the optical properties of the prepared Au NPs. An optical spectrum analyzer was used to obtain the sensor's output results. It has shown that best intensity was obtained for sucrose which confined with theoretical results.
Collapse
Affiliation(s)
- Makram A Fakhri
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq.
| | - Evan T Salim
- Applied science department, University of Technology-Iraq, Baghdad, Iraq.
| | - Sara M Tariq
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | | | - Forat H Alsultany
- Department of Medical Physics, Al-Mustaqbal University College, Hillah, Iraq
| | - Ali A Alwahib
- Laser and Optoelectronic Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | | | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, 08100, Semeling, Kedah, Malaysia
| | - Zaid T Salim
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering, University Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| |
Collapse
|
36
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Köse S, Ahan RE, Köksaldı İÇ, Olgaç A, Kasapkara ÇS, Şeker UÖŞ. Multiplexed cell-based diagnostic devices for detection of renal biomarkers. Biosens Bioelectron 2023; 223:115035. [PMID: 36571991 DOI: 10.1016/j.bios.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
The number of synthetic biology-based solutions employed in the medical industry is growing every year. The whole cell biosensors being one of them, have been proven valuable tools for developing low-cost, portable, personalized medicine alternatives to conventional techniques. Based on this concept, we targeted one of the major health problems in the world, Chronic Kidney Disease (CKD). To do so, we developed two novel biosensors for the detection of two important renal biomarkers: urea and uric acid. Using advanced gene expression control strategies, we improved the operational range and the response profiles of each biosensor to meet clinical specifications. We further engineered these systems to enable multiplexed detection as well as an AND-logic gate operating system. Finally, we tested the applicability of these systems and optimized their working dynamics inside complex medium human blood serum. This study could help the efforts to transition from labor-intensive and expensive laboratory techniques to widely available, portable, low-cost diagnostic options.
Collapse
Affiliation(s)
- Sıla Köse
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Recep Erdem Ahan
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - İlkay Çisil Köksaldı
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Asburçe Olgaç
- Dr Sami Ulus Children's Training and Research Hospital, Ankara, Turkey
| | - Çiğdem Seher Kasapkara
- Ankara Yildirim Beyazit University, Department of Internal Medicine, Children's Health and Disease Section, Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materias Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey.
| |
Collapse
|
38
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advances in Microfluidics-Based Electrochemical Sensors for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:246. [PMID: 36832012 PMCID: PMC9954504 DOI: 10.3390/bios13020246] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 05/22/2023]
Abstract
Using pathogen-infected food that can be unhygienic can result in severe diseases and an increase in mortality rate among humans. This may arise as a serious emergency problem if not appropriately restricted at this point of time. Thus, food science researchers are concerned with precaution, prevention, perception, and immunity to pathogenic bacteria. Expensive, elongated assessment time and the need for skilled personnel are some of the shortcomings of the existing conventional methods. Developing and investigating a rapid, low-cost, handy, miniature, and effective detection technology for pathogens is indispensable. In recent times, there has been a significant scope of interest for microfluidics-based three-electrode potentiostat sensing platforms, which have been extensively used for sustainable food safety exploration because of their progressively high selectivity and sensitivity. Meticulously, scholars have made noteworthy revolutions in signal enrichment tactics, measurable devices, and portable tools, which can be used as an allusion to food safety investigation. Additionally, a device for this purpose must incorporate simplistic working conditions, automation, and miniaturization. In order to meet the critical needs of food safety for on-site detection of pathogens, point-of-care testing (POCT) has to be introduced and integrated with microfluidic technology and electrochemical biosensors. This review critically discusses the recent literature, classification, difficulties, applications, and future directions of microfluidics-based electrochemical sensors for screening and detecting foodborne pathogens.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Renalyx Healthcare Systems (P) Limited, Bengaluru 560004, Karnataka, India
- School of Electronics and Communication Engineering, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Narasimha H. Ayachit
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
39
|
Dissanayake DMDC, Kumari WMNH, Chandrasekharan NV, Wijayarathna CD. Isolation of heavy metal-resistant Staphylococcus epidermidis strain TWSL_22 and evaluation of heavy metal bioremediation potential of recombinant E. coli cloned with isolated cadD. FEMS Microbiol Lett 2023; 370:fnad092. [PMID: 37708035 DOI: 10.1093/femsle/fnad092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
A heavy metal-resistant bacterial strain, TWSL_22 was isolated from an industrial effluent sample and tested for heavy metal tolerance and resistance. The strain was molecularly characterized as Staphylococcus epidermidis based on 16S rDNA gene analysis and the sequence was deposited in the NCBI repository (accession number KT184893.1). Metal removal activity (P < .001) of TWSL_22 was 99.99 ± 0.001%, 74.43 ± 2.51%, and 51.16 ± 4.17% for Cd, Pb, and Cu, respectively. Highest MIC was observed for Cd. Antibiotic susceptibility assays revealed the strain TWSL_22 to be resistant to several antibiotics. The strain was screened for possible heavy metal-resistant genes and presence of cadA, copA, and cadD was confirmed by PCR. A DNA fragment containing complete sequence of cadD (618 bp) was isolated and cloned into pET 21a(+), transformed into E. coli BL21 and designated as E. coli/cadDET. E. coli/cadDET showed high metal tolerance capacity and could remove over 82% of heavy metals (Zn2+, Cd2+, Cu2+, and Cr3+) in the industrial effluent.
Collapse
Affiliation(s)
- D M D C Dissanayake
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| | - W M N H Kumari
- Department of Molecular Biology, Durdans Hospitals, No 3 Alfred Road, Colombo 03, Sri Lanka
| | - N V Chandrasekharan
- Sri Lanka Institute of Biotechnology, Thalagala road, Pitipana, Homagama, Sri Lanka
| | - C D Wijayarathna
- Biotechnology Laboratory, Department of Chemistry, Faculty of Science, University of Colombo, PO Box 1490, Cumarathunga Munidasa Mawatha, Colombo 00300, Sri Lanka
| |
Collapse
|
40
|
Givanoudi S, Heyndrickx M, Depuydt T, Khorshid M, Robbens J, Wagner P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. SENSORS (BASEL, SWITZERLAND) 2023; 23:613. [PMID: 36679407 PMCID: PMC9860941 DOI: 10.3390/s23020613] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This article provides an overview on the broad topic of biogenic amines (BAs) that are a persistent concern in the context of food quality and safety. They emerge mainly from the decomposition of amino acids in protein-rich food due to enzymes excreted by pathogenic bacteria that infect food under inappropriate storage conditions. While there are food authority regulations on the maximum allowed amounts of, e.g., histamine in fish, sensitive individuals can still suffer from medical conditions triggered by biogenic amines, and mass outbreaks of scombroid poisoning are reported regularly. We review first the classical techniques used for selective BA detection and quantification in analytical laboratories and focus then on sensor-based solutions aiming at on-site BA detection throughout the food chain. There are receptor-free chemosensors for BA detection and a vastly growing range of bio- and biomimetic sensors that employ receptors to enable selective molecular recognition. Regarding the receptors, we address enzymes, antibodies, molecularly imprinted polymers (MIPs), and aptamers as the most recent class of BA receptors. Furthermore, we address the underlying transducer technologies, including optical, electrochemical, mass-sensitive, and thermal-based sensing principles. The review concludes with an assessment on the persistent limitations of BA sensors, a technological forecast, and thoughts on short-term solutions.
Collapse
Affiliation(s)
- Stella Givanoudi
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, B-9090 Melle, Belgium
| | - Tom Depuydt
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Johan Robbens
- Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Marine Division—Cell Blue Biotech/Food Integrity, Jacobsenstraat 1, B-8400 Oostende, Belgium
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics, ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
41
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
42
|
Azhogina T, Sazykina M, Konstantinova E, Khmelevtsova L, Minkina T, Antonenko E, Sushkova S, Khammami M, Mandzhieva S, Sazykin I. Bioaccessible PAH influence on distribution of antibiotic resistance genes and soil toxicity of different types of land use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12695-12713. [PMID: 36114974 DOI: 10.1007/s11356-022-23028-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
For a better understanding of the dissemination of antibiotic resistance genes (ARGs) in natural microbial communities, it is necessary to study the factors influencing it. There are not enough studies showing the connection of some pollutants with the dissemination of ARGs and especially few works on the effect of polycyclic aromatic compounds (PAHs) on the spread of resistance in microbiocenosis. In this respect, the aim of the study was to determine the effect of bioaccessible PAHs on soil resistome. The toxicity and the content of bioaccessible PAHs and ARGs were studied in 64 samples of soils of different types of land use in the Rostov Region of Russia. In most soils, a close positive correlation was demonstrated between different ARGs and bioaccessible PAHs with different content of rings in the structure. Six of the seven studied ARGs correlated with the content of 2-, 3-, 4-, 5- or 6-ring PAHs. The greatest number of close correlations was found between the content of PAHs and ARGs in the soils of protected areas, for agricultural purposes, and in soils of hospitals. The diverse composition of microbial communities in these soils might greatly facilitate this process. A close correlation between various toxic effects identified with a battery of whole-cell bacterial biosensors and bioaccessible PAHs of various compositions was established. This correlation showed possible mechanisms of PAHs' influence on microorganisms (DNA damage, oxidative stress, etc.), which led to a significant increase in horizontal gene transfer and spread of some ARGs in soil microbial communities. All this information, taken together, suggests that bioaccessible PAHs can enhance the spread of antibiotic resistance genes.
Collapse
Affiliation(s)
- Tatiana Azhogina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Marina Sazykina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation.
| | - Elizaveta Konstantinova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Ludmila Khmelevtsova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Tatiana Minkina
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Elena Antonenko
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Svetlana Sushkova
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Margarita Khammami
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Saglara Mandzhieva
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| | - Ivan Sazykin
- Southern Federal University, 194/2 Stachki Avenue, Rostov-on-Don, 344090, Russian Federation
| |
Collapse
|
43
|
Piorino F, Styczynski MP. Harnessing Escherichia coli's Native Machinery for Detection of Vitamin C (Ascorbate) Deficiency. ACS Synth Biol 2022; 11:3592-3600. [PMID: 36300901 PMCID: PMC9807260 DOI: 10.1021/acssynbio.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vitamin C (l-ascorbate) deficiency is a global public health issue most prevalent in resource-limited regions, creating a need for an inexpensive detection platform. Here, we describe efforts to engineer whole-cell and cell-free ascorbate biosensors. Both sensors used the protein UlaR, which binds to a metabolite of ascorbate and regulates transcription. The whole-cell sensor could detect lower, physiologically relevant concentrations of ascorbate, which we attributed to intact functionality of a phosphotransferase system (PTS) that transports ascorbate across the cell membrane and phosphorylates it to form UlaR's ligand. We used multiple strategies to enhance cell-free PTS functionality (which has received little previous attention), improving the cell-free sensor's performance, but the whole-cell sensor remained more sensitive. These efforts demonstrated an advantage of whole-cell sensors for detection of molecules─like ascorbate─transformed by a PTS, but also proof of principle for cell-free sensors requiring membrane-bound components like the PTS. In addition, the cell-free sensor was functional in plasma, setting the stage for future implementation of ascorbate sensors for clinically relevant biofluids in field-deployable formats.
Collapse
Affiliation(s)
- Fernanda Piorino
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Mark P. Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
44
|
Blueprint for Impedance-based Electrochemical Biosensors as Bioengineered Tools in the Field of Nano-Diagnostics. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
45
|
Ma Z, Meliana C, Munawaroh HSH, Karaman C, Karimi-Maleh H, Low SS, Show PL. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. CHEMOSPHERE 2022; 306:135515. [PMID: 35772520 DOI: 10.1016/j.chemosphere.2022.135515] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial biosensor which integrates different types of microorganisms, such as bacteria, microalgae, fungi, and virus have become suitable technologies to address limitations of conventional analytical methods. The main applications of biosensors include the detection of environmental pollutants, pathogenic bacteria and compounds related to illness, and food quality. Each type of microorganisms possesses advantages and disadvantages with different mechanisms to detect the analytes of interest. Furthermore, there is an increasing trend in genetic modifications for the development of microbial biosensors due to potential for high-throughput analysis and portability. Many review articles have discussed the applications of microbial biosensor, but many of them focusing only about bacterial-based biosensor although other microbes also possess many advantages. Additionally, reviews on the applications of all microbes as biosensor especially viral and microbial fuel cell biosensors are also still limited. Therefore, this review summarizes all the current applications of bacterial-, microalgal-, fungal-, viral-based biosensor in regard to environmental, food, and medical-related applications. The underlying mechanism of each microbes to detect the analytes are also discussed. Additionally, microbial fuel cell biosensors which have great potential in the future are also discussed. Although many advantageous microbial-based biosensors have been discovered, other areas such as forensic detection, early detection of bacteria or virus species that can lead to pandemics, and others still need further investigation. With that said, microbial-based biosensors have promising potential for vast applications where the biosensing performance of various microorganisms are presented in this review along with future perspectives to resolve problems related on microbial biosensors.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Catarina Meliana
- Department of Food Science and Nutrition, Faculty of Life Science, Indonesia International Institute of Life Sciences, Jakarta, 13210, Indonesia
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung, 40154, Indonesia
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Sze Shin Low
- Research Centre of Life Science and Healthcare, China Beacons Institute, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, Zhejiang, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
46
|
VanArsdale E, Pitzer J, Wang S, Stephens K, Chen CY, Payne GF, Bentley WE. Enhanced electrochemical measurement of β-galactosidase activity in whole cells by coexpression of lactose permease, LacY. Biotechniques 2022; 73:233-237. [DOI: 10.2144/btn-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Whole-cell biosensing links the sensing and computing capabilities of microbes to the generation of a detectable reporter. Whole cells enable dynamic biological computation (filtered noise, amplified signals, logic gating etc.). Enzymatic reporters enable in situ signal amplification. Electrochemical measurements are easily quantified and work in turbid environments. In this work we show how the coexpression of the lactose permease, LacY, dramatically improves electrochemical sensing of β-galactosidase (LacZ) expressed as a reporter in whole cells. The permease facilitates transport of the LacZ substrate, 4-aminophenyl β-d-galactopyranoside, which is converted to redox active p-aminophenol, which, in turn, is detected via cyclic voltammetry or chronocoulometry. We show a greater than fourfold improvement enabled by lacY coexpression in cells engineered to respond to bacterial signal molecules, pyocyanin and quorum-sensing autoinducer-2.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Chen-yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - Gregory F Payne
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience & Biotechnology Research, University of Maryland, College Park, MD 20742, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
47
|
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advancements in Nanobiosensors: Current Trends, Challenges, Applications, and Future Scope. BIOSENSORS 2022; 12:892. [PMID: 36291028 PMCID: PMC9599941 DOI: 10.3390/bios12100892] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/30/2023]
Abstract
In recent years, there has been immense advancement in the development of nanobiosensors as these are a fundamental need of the hour that act as a potential candidate integrated with point-of-care-testing for several applications, such as healthcare, the environment, energy harvesting, electronics, and the food industry. Nanomaterials have an important part in efficiently sensing bioreceptors such as cells, enzymes, and antibodies to develop biosensors with high selectivity, peculiarity, and sensibility. It is virtually impossible in science and technology to perform any application without nanomaterials. Nanomaterials are distinguished from fine particles used for numerous applications as a result of being unique in properties such as electrical, thermal, chemical, optical, mechanical, and physical. The combination of nanostructured materials and biosensors is generally known as nanobiosensor technology. These miniaturized nanobiosensors are revolutionizing the healthcare domain for sensing, monitoring, and diagnosing pathogens, viruses, and bacteria. However, the conventional approach is time-consuming, expensive, laborious, and requires sophisticated instruments with skilled operators. Further, automating and integrating is quite a challenging process. Thus, there is a considerable demand for the development of nanobiosensors that can be used along with the POCT module for testing real samples. Additionally, with the advent of nano/biotechnology and the impact on designing portable ultrasensitive devices, it can be stated that it is probably one of the most capable ways of overcoming the aforementioned problems concerning the cumulative requirement for the development of a rapid, economical, and highly sensible device for analyzing applications within biomedical diagnostics, energy harvesting, the environment, food and water, agriculture, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Madhusudan B. Kulkarni
- Department of Research & Development, Renalyx Health Systems (P) Limited, Bengaluru 560004, Karnataka, India
| | - Narasimha H. Ayachit
- Department of Physics, Visvesvaraya Technological University (VTU), Belagavi 590018, Karnataka, India
| | - Tejraj M. Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India
| |
Collapse
|
48
|
Melnikov PV, Alexandrovskaya AY, Naumova AO, Arlyapov VA, Kamanina OA, Popova NM, Zaitsev NK, Yashtulov NA. Optical Oxygen Sensing and Clark Electrode: Face-to-Face in a Biosensor Case Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197626. [PMID: 36236726 PMCID: PMC9572888 DOI: 10.3390/s22197626] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 05/13/2023]
Abstract
In the last decade, there has been continuous competition between two methods for detecting the concentration of dissolved oxygen: amerometric (Clark electrode) and optical (quenching of the phosphorescence of the porphyrin metal complex). Each of them has obvious advantages and disadvantages. This competition is especially acute in the development of biosensors, however, an unbiased comparison is extremely difficult to achieve, since only a single detection method is used in each particular study. In this work, a microfluidic system with synchronous detection of the oxygen concentration by two methods was created for the purpose of direct comparison. The receptor element is represented by Saccharomyces cerevisiae yeast cells adsorbed on a composite material, previously developed by our scientific group. To our knowledge, this is the first work of this kind in which the comparison of the oxygen detection methods is carried out directly.
Collapse
Affiliation(s)
- Pavel V. Melnikov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prosp. Vernadskogo 86, 119571 Moscow, Russia
- Correspondence:
| | - Anastasia Yu. Alexandrovskaya
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prosp. Vernadskogo 86, 119571 Moscow, Russia
- Federal State Unitary Enterprise Research and Technical Center of Radiation-Chemical Safety and Hygiene, Federal Medical-Biological Agency, 117105 Moscow, Russia
| | - Alina O. Naumova
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prosp. Vernadskogo 86, 119571 Moscow, Russia
| | - Vyacheslav A. Arlyapov
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prosp. 92, 300012 Tula, Russia
| | - Olga A. Kamanina
- Laboratory of Biologically Active Compounds and Biocomposites, Tula State University, Lenin Prosp. 92, 300012 Tula, Russia
| | - Nadezhda M. Popova
- Federal State Budgetary Institution of Science Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky Prosp., 31 k. 4, 119071 Moscow, Russia
| | | | - Nikolay A. Yashtulov
- M. V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Prosp. Vernadskogo 86, 119571 Moscow, Russia
| |
Collapse
|
49
|
Eghbal M, Rozman M, Kononenko V, Hočevar M, Drobne D. A549 Cell-Covered Electrodes as a Sensing Element for Detection of Effects of Zn 2+ Ions in a Solution. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3493. [PMID: 36234621 PMCID: PMC9565818 DOI: 10.3390/nano12193493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.
Collapse
Affiliation(s)
- Mina Eghbal
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Martin Rozman
- FunGlass—Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, Študentská 2, 911 50 Trenčín, Slovakia
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
50
|
Sanz CG, Aldea A, Oprea D, Onea M, Enache AT, Barsan MM. Novel cells integrated biosensor based on superoxide dismutase on electrospun fiber scaffolds for the electrochemical screening of cellular stress. Biosens Bioelectron 2022; 220:114858. [DOI: 10.1016/j.bios.2022.114858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|