1
|
Byzova NA, Safenkova IV, Gorbatov AA, Biketov SF, Dzantiev BB, Zherdev AV. Lateral Flow Immunosensing of Salmonella Typhimurium Cells in Milk: Comparing Three Sequences of Interactions. Microorganisms 2024; 12:2555. [PMID: 39770758 PMCID: PMC11678374 DOI: 10.3390/microorganisms12122555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
To ensure the safety of foodstuffs, widespread non-laboratory monitoring for pathogenic contaminants is in demand. A suitable technique for this purpose is lateral flow immunoassay (LFIA) which combines simplicity, rapidity, and productivity with specific immune detection. This study considered three developed formats of LFIA for Salmonella Typhimurium, a priority pathogenic contaminant of milk. Common sandwich LFIA with all immunoreagents pre-applied to the test strip (format A) was compared with incubation of the sample and (gold nanoparticle-antibody) conjugate, preceding the lateral flow processes (format B), and sequential passages of the sample and the conjugate along the test strip (format C). Under the chosen conditions, the detection limits and the assay times were 3 × 104, 1 × 105, and 3 × 105 cells/mL, 10, 15, and 20 min for formats A, B, and C, respectively. The selected format A of LFIA was successfully applied to test milk samples. The sample's dilution to a fat content of 1.0% causes pathogen detection, with 70-110% revealing and 1.5-8.5% accuracy. The obtained results demonstrate that the developed LFIA allows the detection of lower concentrations of Salmonella cells and, in this way, accelerates decision-making in food safety control.
Collapse
Affiliation(s)
- Nadezhda A. Byzova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Alexey A. Gorbatov
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.A.G.); (S.F.B.)
| | - Sergey F. Biketov
- State Research Center for Applied Microbiology & Biotechnology, 142279 Obolensk, Russia; (A.A.G.); (S.F.B.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (N.A.B.); (I.V.S.); (B.B.D.)
| |
Collapse
|
2
|
Du B, Chen T, Huang A, Chen H, Liu W. Portable Detection of Copper Ion Using Personal Glucose Meter. SENSORS (BASEL, SWITZERLAND) 2024; 24:7002. [PMID: 39517898 PMCID: PMC11548145 DOI: 10.3390/s24217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
A simple and sensitive method for Cu2+ detection was developed using the Cu+-catalyzed alkyne-azide cycloaddition reaction, Fe3O4 magnetic nanoparticles (MNPs) as the reaction platform, and a portable blood glucose meter (PGM) as the detection method. Gold nanoparticles (AuNPs) were labeled with glucose oxidase (GOx) and alkyne-functionalized, terminally thiolated ssDNA (C2). In the presence of Cu2+ and ascorbate, the functionalized AuNPs were captured onto MNPs modified with azide-functionalized ssDNA (C1) via the Cu+-catalyzed alkyne-azide cycloaddition reaction. The GOx on the AuNPs' surface oxidized glucose (Glu) into gluconic acid and H2O2, reducing the Glu content in the reaction solution, which was quantitatively detected by the PGM. Under optimal conditions, the PGM response of the system showed a good linear relationship with the logarithm of Cu2+ concentration in the range of 0.05 to 10.00 μmol/L, with a detection limit of 0.03 μmol/L (3σ). In actual tap water samples, the spiked recovery rate of Cu2+ was between 92.30% and 113.33%, and the relative standard deviation was between 0.14% and 0.34%, meeting the detection requirements for Cu2+ in real water samples.
Collapse
Affiliation(s)
- Bin Du
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Taoying Chen
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Anqi Huang
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Haijun Chen
- School of Food Science and Engineering, Guiyang University, Guiyang 550005, China; (T.C.); (A.H.); (H.C.)
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
4
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
5
|
Farka Z, Brandmeier JC, Mickert MJ, Pastucha M, Lacina K, Skládal P, Soukka T, Gorris HH. Nanoparticle-Based Bioaffinity Assays: From the Research Laboratory to the Market. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307653. [PMID: 38039956 DOI: 10.1002/adma.202307653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Advances in the development of new biorecognition elements, nanoparticle-based labels as well as instrumentation have inspired the design of new bioaffinity assays. This review critically discusses the potential of nanoparticles to replace current enzymatic or molecular labels in immunoassays and other bioaffinity assays. Successful implementations of nanoparticles in commercial assays and the need for rapid tests incorporating nanoparticles in different roles such as capture support, signal generation elements, and signal amplification systems are highlighted. The limited number of nanoparticles applied in current commercial assays can be explained by challenges associated with the analysis of real samples (e.g., blood, urine, or nasal swabs) that are difficult to resolve, particularly if the same performance can be achieved more easily by conventional labels. Lateral flow assays that are based on the visual detection of the red-colored line formed by colloidal gold are a notable exception, exemplified by SARS-CoV-2 rapid antigen tests that have moved from initial laboratory testing to widespread market adaption in less than two years.
Collapse
Affiliation(s)
- Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | | | - Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- TestLine Clinical Diagnostics, Křižíkova 188, Brno, 612 00, Czech Republic
| | - Karel Lacina
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tero Soukka
- Department of Life Technologies/Biotechnology, University of Turku, Kiinamyllynkatu 10, Turku, 20520, Finland
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
6
|
Díaz-García V, Haensgen A, Inostroza L, Contreras-Trigo B, Oyarzun P. Novel Microsynthesis of High-Yield Gold Nanoparticles to Accelerate Research in Biosensing and Other Bioapplications. BIOSENSORS 2023; 13:992. [PMID: 38131752 PMCID: PMC10742281 DOI: 10.3390/bios13120992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Gold nanoparticles (AuNPs) exhibit unique properties that make them appealing for applications in biosensing and other emerging fields. Despite the availability of numerous synthesis methods, important questions remain to be addressed regarding the volume effect on the synthesis yield and quality of AuNPs in the light of biosensing research. The present study addresses these issues by developing a novel microvolumetric citrate-reduction method to improve the synthesis of AuNPs, which were characterized by electronic microscopy, energy dispersive spectroscopy, zeta potential and colorimetric analysis. A comparison of the novel microsynthesis method with the standard Turkevich method demonstrated its superior performance in terms of yield, monodispersity, rapidity (in one step), reproducibility, and stability. The analytical behavior of AuNPs-based aptasensors prepared by microsynthesis was investigated using kanamycin detection and showed higher reproducibility and improved detection limits (3.4 times) compared to those of Turkevich AuNPs. Finally, the effect of pH was studied to demonstrate the suitability of the method for the screening of AuNP synthesis parameters that are of direct interest in biosensing research; the results showed an optimal pH range between 5.0 and 5.5. In summary, the approach described herein has the potential to improve research capabilities in biosensing, with the added benefits of lowering costs and minimizing waste generation in line with current trends in green nanotechnology.
Collapse
Affiliation(s)
- Víctor Díaz-García
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| | | | | | | | - Patricio Oyarzun
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile; (A.H.); (L.I.); (B.C.-T.)
| |
Collapse
|
7
|
Muhammad W, Zhang Y, Zhu J, Xie J, Wang S, Wang R, Feng B, Zhou J, Chen W, Xu Y, Yao Q, Yu Y, Cao H, Gao C. Co-delivery of azithromycin and ibuprofen by ROS-responsive polymer nanoparticles synergistically attenuates the acute lung injury. BIOMATERIALS ADVANCES 2023; 154:213621. [PMID: 37714042 DOI: 10.1016/j.bioadv.2023.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Bacterial infection causes lung inflammation and recruitment of several inflammatory factors that may result in acute lung injury (ALI). During bacterial infection, reactive oxygen species (ROS) and other signaling pathways are activated, which intensify inflammation and increase ALI-related mortality and morbidity. To improve the ALI therapy outcome, it is imperative clinically to manage bacterial infection and excessive inflammation simultaneously. Herein, a synergistic nanoplatform (AZI+IBF@NPs) constituted of ROS-responsive polymers (PFTU), and antibiotic (azithromycin, AZI) and anti-inflammatory drug (ibuprofen, IBF) was developed to enable an antioxidative effect, eliminate bacteria, and modulate the inflammatory milieu in ALI. The ROS-responsive NPs (PFTU NPs) loaded with dual-drugs (AZI and IBF) scavenged excessive ROS efficiently both in vitro and in vivo. The AZI+IBF@NPs eradicated Pseudomonas aeruginosa (PA) bacterial strain successfully. To imitate the entry of bacterial-derived compounds in body, a lipopolysaccharide (LPS) model was adopted. The administration of AZI+IBF@NPs via the tail veins dramatically reduced the number of neutrophils, significantly reduced cell apoptosis and total protein concentration in vivo. Furthermore, nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) and Interleukin-1 beta (IL-1β) expressions were most effectively inhibited by the AZI+IBF@NPs. These findings present a novel nanoplatform for the effective treatment of ALI.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiru Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
8
|
Jelen Ž, Kovač J, Rudolf R. Study of Gold Nanoparticles Conjugated with SARS-CoV-2 S1 Spike Protein Fragments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2160. [PMID: 37570478 PMCID: PMC10421057 DOI: 10.3390/nano13152160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
This study reports on the successful conjugation of SARS-CoV-2 S1 spike protein fragments with gold nanoparticles (AuNPs) that were synthesised with Ultrasonic Spray Pyrolysis (USP). This method enables the continuous synthesis of AuNPs with a high degree of purity, round shapes, and the formation of a surface that allows various modifications. The conjugation mechanism of USP synthesized AuNPs with SARS-CoV-2 S1 spike protein fragments was investigated. A gel electrophoresis experiment confirmed the successful conjugation of AuNPs with SARS-CoV-2 S1 fragments indirectly. X-ray Photoelectron Spectroscopy (XPS) analysis confirmed the presence of characteristic O1s and N1s peaks, which indicated that specific binding between AuNPs and SARS-CoV-2 S1 spike protein fragments takes place via a peptide bond formed with the citrate stabiliser. This bond is coordinated to the AuNP's surface and the N-terminals of the protein, with the conjugate displaying the expected response within a prototype LFIA test. This study will help in better understanding the behaviour of AuNPs synthesised with USP and their potential use as sensors in colorimetric or electrochemical sensors and LFIA tests.
Collapse
Affiliation(s)
- Žiga Jelen
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Janez Kovač
- Department of Surface Engineering, Institut Jožef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Rebeka Rudolf
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| |
Collapse
|
9
|
Amornwairat P, Pissuwan D. Colorimetric Sensing of Gram-Negative and Gram-Positive Bacteria Using 4-Mercaptophenylboronic Acid-Functionalized Gold Nanoparticles in the Presence of Polyethylene Glycol. ACS OMEGA 2023; 8:13456-13464. [PMID: 37065017 PMCID: PMC10099429 DOI: 10.1021/acsomega.3c01205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (GNPs) have been used as detection probes for rapid and sensitive detection of various analytes, including bacteria. Here, we demonstrate a simple strategy for bacterial detection using GNPs functionalized with 4-mercaptophenylboronic acid (4-MPBA). 4-MPBA can interact with peptidoglycan or lipopolysaccharides present in bacterial organelles. After the addition of a high concentration of sodium hydroxide (NaOH), the functionalization of the surface of 50 nm GNPs with 4-MPBA (4-MPBA@GNPs) in the presence of polyethylene glycol results in a color change because of the aggregation of 4-MPBA@GNPs. This color change is dependent on the amount of bacteria present in the tested samples. Escherichia coli (E. coli) K-12 and Staphylococcus aureus (S. aureus) are used as Gram-negative and Gram-positive bacterial models, respectively. The color change can be detected within an hour by the naked eye. A linear relationship is observed between bacterial concentrations and the absorbance intensity at 533 nm; R 2 values of 0.9152 and 0.8185 are obtained for E. coli K-12 and S. aureus, respectively. The limit of detection of E. coli K-12 is ∼2.38 × 102 CFU mL-1 and that of S. aureus is ∼4.77 × 103 CFU mL-1. This study provides a promising approach for the rapid detection of target Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Pinyapat Amornwairat
- Materials
and Engineering Graduate Program, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Payathai, Bangkok 10400, Thailand
- Nanobiotechnology
and Nanobiomaterials Research Laboratory, School of Materials Science
and Innovation, Faculty of Science, Mahidol
University, Rama VI Road, Ratchathewi, Payathai, Bangkok 10400, Thailand
| | - Dakrong Pissuwan
- Materials
and Engineering Graduate Program, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Payathai, Bangkok 10400, Thailand
- Nanobiotechnology
and Nanobiomaterials Research Laboratory, School of Materials Science
and Innovation, Faculty of Science, Mahidol
University, Rama VI Road, Ratchathewi, Payathai, Bangkok 10400, Thailand
| |
Collapse
|
10
|
Byzova NA, Zherdev AV, Gorbatov AA, Shevyakov AG, Biketov SF, Dzantiev BB. Rapid Detection of Lipopolysaccharide and Whole Cells of Francisella tularensis Based on Agglutination of Antibody-Coated Gold Nanoparticles and Colorimetric Registration. MICROMACHINES 2022; 13:2194. [PMID: 36557493 PMCID: PMC9784915 DOI: 10.3390/mi13122194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The paper presents development and characterization of a new bioanalytical test system for rapid detection of lipopolysaccharide (LPS) and whole cells of Francisella tularensis, a causative agent of tularemia, in water samples. Gold nanoparticles (AuNPs) coated by the obtained anti-LPS monoclonal antibodies were used for the assay. Their contact with antigen in tested samples leads to aggregation with a shift of absorption spectra from red to blue. Photometric measurements at 530 nm indicated the analyte presence. Three preparations of AuNPs with different diameters were compared, and the AuNPs having average diameter of 34 nm were found to be optimal. The assay is implemented in 20 min and is characterized by detection limits equal to 40 ng/mL for LPS and 3 × 104 CFU/mL for whole cells of F. tularensis. Thus, the proposed simple one-step assay integrates sensitivity comparable with other immunoassay of microorganisms and rapidity. Selectivity of the assay for different strains of F. tularensis was tested and the possibility to choose its variants with the use of different antibodies to distinguish virulent and non-virulent strains or to detect both kinds of F. tularensis was found. The test system has been successfully implemented to reveal the analyte in natural and tap water samples without the loss of sensitivity.
Collapse
Affiliation(s)
- Nadezhda A. Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Alexey A. Gorbatov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Anton G. Shevyakov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Sergey F. Biketov
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
11
|
Mohammadinejad A, Nooranian S, Kazemi Oskuee R, Mirzaei S, Aleyaghoob G, Zarrabi A, Selda Gunduz E, Nuri Ertas Y, Sheikh Beig Goharrizi MA. Development of Lateral Flow Assays for Rapid Detection of Troponin I: A Review. Crit Rev Anal Chem 2022; 54:1936-1950. [PMID: 36377822 DOI: 10.1080/10408347.2022.2144995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Troponin I as a particular and major biomarker of cardiac failure is released to blood demonstrating hurt of myocardial cells. Unfortunately, troponin I detection in the first hours of acute myocardial infarction usually faces with most negligence. Therefore, developments of point of care devices such as lateral flow strips are highly required for timely diagnosis and prognosis. Lateral flow assays are low-cost paper-based detection platforms relying on specific diagnostic agents such as aptamers and antibodies for a rapid, selective, quantitative and semi-quantitative detection of the analyte in a complex mixture. Moreover, lateral flow assay devices are portable, and their simplicity of use eliminates the need for experts or any complicated equipment to operate and interpret the test results. Additionally, by coupling the lateral flow assay technology with nanotechnology, for labeling and signal amplification, many breakthroughs in the field of diagnostics have been achieved. The present study reviews the use of lateral flow assays in early stage, quantitative, and sensitive detection of cardiac troponin I and mainly focuses on the structure of each type of developed lateral flow assays. Finally, this review summarized the improvements, detection time, and limit of detection of each study as well as the advantages and disadvantages.
Collapse
Affiliation(s)
- Arash Mohammadinejad
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Samin Nooranian
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ghazaleh Aleyaghoob
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Emine Selda Gunduz
- Vocational School of Health Services, Department of First and Emergency Aid, Akdeniz University, Antalya, Turkey
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
12
|
Aboelqassem ZM, Ibrahim HM, Sayed RH, Sobhy HM, Hekal SHA. Preparation and evaluation of a lateral flow immunochromatographic nanogold diagnostic kit for brucellosis in sheep. Vet World 2022; 15:2658-2664. [PMID: 36590134 PMCID: PMC9798059 DOI: 10.14202/vetworld.2022.2658-2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Aim Brucellosis is a zoonotic disease with a worldwide distribution. It has a serious impact on the health of humans and animals, along with a negative impact on the economy. This study aimed to prepare and evaluate the diagnostic performance of a lateral flow immunochromatographic test (LFIT) nanogold diagnostic kit for detecting brucellosis in sheep. Materials and Methods A rapidly developed LFIT, in which lipopolysaccharide conjugates with nanogold molecules, was placed on the conjugate pad. One hundred ovine serum samples were tested to detect Brucella antibodies (Ab) using the prepared lateral flow immunochromatography assay (LFA) kit and Rose Bengal test. The evaluation of specificity, sensitivity, and accuracy for LFIT and Rose Bengal plate test was conducted using the P04310-10 IDEXX brucellosis ovine/caprine Ab enzyme-linked immunosorbent assay (ELISA) test (gold standard). Results The lower amount of Brucella Ab in the ovine serum samples was detected and was 1.58 S/P ratio ELISA titer/100 μL using LFIT and with Rose Bengal to detect 1.86 S/P ratio ELISA. The results showed that the developed LFIT had high specificity with no cross-reactivity with other tested bacteria. The calculated sensitivity, specificity, and accuracy of LFIT and Rose Bengal test using the P04310-10 IDEXX brucellosis ovine/caprine Ab ELISA test (gold standard) were 74% and 89%, 81% and 59%, and 76.9% and 66%, respectively. Conclusion The present results showed interesting results implying that the LFIA strip test could be used as a substantial diagnostic tool for field screening ovine Brucella as an essential step in the control of brucellosis. However, further studies for the validation of the present findings are necessary.
Collapse
Affiliation(s)
| | - Hazem Mohammed Ibrahim
- Veterinary Serum and Vaccine Research Institute, Agricultural Research Center, Giza, Egypt
| | - Rafik Hamed Sayed
- Central Laboratory for evaluation of Veterinary Biologics, Agricultural Research Center, Giza, Egypt
| | - Hassan Mohamed Sobhy
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, Egypt
| | - Sahar Hussein Abdalla Hekal
- Department of Natural Resources, Faculty of African Postgraduate Studies, Cairo University, Giza, Egypt,Corresponding author: Sahar Hussein Abdalla Hekal, e-mail: Co-authors: ZMA: , HMI: , RHS: , HMS:
| |
Collapse
|
13
|
Rudenko N, Fursova K, Shepelyakovskaya A, Karatovskaya A, Brovko F. Antibodies as Biosensors' Key Components: State-of-the-Art in Russia 2020-2021. SENSORS 2021; 21:s21227614. [PMID: 34833687 PMCID: PMC8624206 DOI: 10.3390/s21227614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
The recognition of biomolecules is crucial in key areas such as the timely diagnosis of somatic and infectious diseases, food quality control, and environmental monitoring. This determines the need to develop highly sensitive display devices based on the achievements of modern science and technology, characterized by high selectivity, high speed, low cost, availability, and small size. Such requirements are met by biosensor systems—devices for reagent-free analysis of compounds that consist of a biologically sensitive element (receptor), a transducer, and a working solution. The diversity of biological material and methods for its immobilization on the surface or in the volume of the transducer and the use of nanotechnologies have led to the appearance of an avalanche-like number of different biosensors, which, depending on the type of biologically sensitive element, can be divided into three groups: enzyme, affinity, and cellular/tissue. Affinity biosensors are one of the rapidly developing areas in immunoassay, where the key point is to register the formation of an antigen–antibody complex. This review analyzes the latest work by Russian researchers concerning the production of molecules used in various immunoassay formats as well as new fundamental scientific data obtained as a result of their use.
Collapse
|
14
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
15
|
Pang R, Zhu Q, Wei J, Wang Y, Xu F, Meng X, Wang Z. Development of a gold-nanorod-based lateral flow immunoassay for a fast and dual-modal detection of C-reactive protein in clinical plasma samples. RSC Adv 2021; 11:28388-28394. [PMID: 35480760 PMCID: PMC9038069 DOI: 10.1039/d1ra04404d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Fast and simple detection of C-reactive protein (CRP) is highly significant for the diagnosis and prognosis of inflammatory or infectious diseases. Lateral flow immunoassay has the advantages of rapid detection, simple operation and low cost, but it is usually limited by the quantitative ability and speed of data extraction. Herein, a gold-nanorod-based lateral flow immunoassay was developed to rapidly detect CRP by simultaneously monitoring the colorimetric and temperature signals. In this method, anti-CRP antibody-modified gold nanorods (GNRs) were designed as colorimetric and photothermal conversion probes. A mouse anti-CRP monoclonal antibody and goat anti-mouse IgG were used as test and control lines, respectively. Then, a lateral flow immunochromatographic strip was constructed by a sandwich-type method for detecting CRP by introducing antibody-modified GNRs, and this procedure needed less than 15 min. Finally, the detection signals can be directly observed by eyes and directly read using a thermal imager. The as-synthesized GNR showed high photothermal conversion efficiency (η = 39%) and strong localized surface plasmon resonance (LSPR) absorption. For CRP detection, the proposed immunochromatographic strip exhibited good specificity, high sensitivity, good linearity within the range of 50-10 000 ng mL-1 and a low limit of detection (LOD, 1.3 ng mL-1). This method was successfully applied for CRP detection in clinical plasma samples, and it correlated very well with the diagnostic kit of immunoturbidimetry (r = 0.96). The results indicated that the developed GNR-based immunochromatographic strip has immense potential for use as a rapid and cost-effective in vitro diagnostic kit.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yaoqi Wang
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Fengqin Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei 230026 P. R. China
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
- School of Applied Chemical Engineering, University of Science and Technology of China Road Baohe District Hefei 230026 P. R. China
| |
Collapse
|
16
|
Panferov VG, Safenkova IV, Zherdev AV, Dzantiev BB. Methods for Increasing Sensitivity of Immunochromatographic Test Systems with Colorimetric Detection (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
17
|
Kim HM, Kim J, An J, Bock S, Pham XH, Huynh KH, Choi Y, Hahm E, Song H, Kim JW, Rho WY, Jeong DH, Lee HY, Lee S, Jun BH. Au-Ag assembled on silica nanoprobes for visual semiquantitative detection of prostate-specific antigen. J Nanobiotechnology 2021; 19:73. [PMID: 33712008 PMCID: PMC7953718 DOI: 10.1186/s12951-021-00817-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
Background Blood prostate-specific antigen (PSA) levels are widely used as diagnostic biomarkers for prostate cancer. Lateral-flow immunoassay (LFIA)-based PSA detection can overcome the limitations associated with other methods. LFIAbased PSA detection in clinical samples enables prognosis and early diagnosis owing to the use of high-performance signal reporters. Results Here, a semiquantitative LFIA platform for PSA detection in blood was developed using Au–Ag nanoparticles (NPs) assembled on silica NPs (SiO2@Au–Ag NPs) that served as signal reporters. Synthesized SiO2@Au–Ag NPs exhibited a high absorbance at a wide wavelength range (400–800 nm), with a high scattering on nitrocellulose membrane test strips. In LFIA, the color intensity of the test line on the test strip differed depending on the PSA concentration (0.30–10.00 ng/mL), and bands for the test line on the test strip could be used as a standard. When clinical samples were assessed using this LFIA, a visual test line with particular color intensity observed on the test strip enabled the early diagnosis and prognosis of patients with prostate cancer based on PSA detection. In addition, the relative standard deviation of reproducibility was 1.41%, indicating high reproducibility, and the signal reporter showed good stability for 10 days. Conclusion These characteristics of the signal reporter demonstrated the reliability of the LFIA platform for PSA detection, suggesting potential applications in clinical sample analysis. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00817-4.
Collapse
Affiliation(s)
- Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Jaehyun An
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Sungje Bock
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Kim-Hung Huynh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | - Yoonsik Choi
- Department of Chemistry Education, Seoul National University, Seoul, Korea
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea
| | | | | | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sangchul Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, Korea.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Korea.
| |
Collapse
|
18
|
Collantes C, González
Pedro V, Bañuls MJ, Maquieira Á. Monodispersed CsPb 2Br 5@SiO 2 Core-Shell Nanoparticles as Luminescent Labels for Biosensing. ACS APPLIED NANO MATERIALS 2021; 4:2011-2018. [PMID: 34993423 PMCID: PMC8721593 DOI: 10.1021/acsanm.0c03340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 06/14/2023]
Abstract
Despite the rising advances in the field of metal halide perovskite nanocrystals (NCs), the exploitation of such nanoparticles as luminescent labels for ex vivo imaging and biosensing is still unclear and in the early stages of investigation. One of the major challenges toward the implementation of metal halide perovskite NCs in biosensing applications is to produce monodispersed nanoparticles with desired surface characteristics and compatible with aqueous environments. Here, we report the synthesis of monodispersed spherical CsPb2Br5@SiO2 core-shell nanoparticles by post-synthetic chemical transformation of 3D CsPbBr3 NCs in the presence of tetraethyl orthosilicate and a critical water/ammonia ratio. This method involves an ammonia-mediated and ammonia-induced "top-down" transformation of as-synthesized 3D CsPbBr3 NCs to smaller CsPb2Br5 nanoclusters (ca. 2-3 nm), which trigger a seed-mediated silica growth, yielding monodispersed spherical blue luminescent (λemission = 432 nm) CsPb2Br5@SiO2 perovskite nanoparticles. By adjusting the reaction conditions, core-shell nanoparticles of a 36.1 ± 4.5 nm diameter, which preserve their optical properties in water, were obtained. Besides that, the viability of the developed nanoparticles as a luminescent label for biosensing has been proven by specific biorecognition of the IgG protein in a direct immunoassay. Our work sheds light on the chemical processes and transformations involved in the silica nucleation mechanism in the presence of perovskite nanoparticles and opens the way for the future rational design of the next generation of semiconductor NC luminescent biological labels.
Collapse
Affiliation(s)
- Cynthia Collantes
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - Victoria González
Pedro
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
| | - María-José Bañuls
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, E46022 València, Spain
| | - Ángel Maquieira
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València-Universitat de València, Camino de Vera s/n, E46022 València, Spain
- Departamento
de Química, Universitat Politècnica
de València, Camino de Vera s/n, E46022 València, Spain
| |
Collapse
|