1
|
Sripada SA, Hosseini M, Ramesh S, Wang J, Ritola K, Menegatti S, Daniele MA. Advances and opportunities in process analytical technologies for viral vector manufacturing. Biotechnol Adv 2024; 74:108391. [PMID: 38848795 DOI: 10.1016/j.biotechadv.2024.108391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.
Collapse
Affiliation(s)
- Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Mahshid Hosseini
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Srivatsan Ramesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Junhyeong Wang
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA
| | - Kimberly Ritola
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center, North Carolina State University, 890 Main Campus Dr, Raleigh, NC 27695, USA.
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University, and University of North Carolina, Chapel Hill, 911 Oval Dr., Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Dr, Raleigh, NC 27695, USA.
| |
Collapse
|
2
|
Yan S, Liu Q, Liang B, Zhang M, Chen W, Zhang D, Wang C, Xing D. Airborne microbes: sampling, detection, and inactivation. Crit Rev Biotechnol 2024:1-35. [PMID: 39128871 DOI: 10.1080/07388551.2024.2377191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 08/13/2024]
Abstract
The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.
Collapse
Affiliation(s)
- Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Bing Liang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wujun Chen
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Daijun Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Baruah S, Betty CA. Point of care devices for detection of Covid-19, malaria and dengue infections: A review. Bioelectrochemistry 2024; 158:108704. [PMID: 38593574 DOI: 10.1016/j.bioelechem.2024.108704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Need for affordable, rapid and user-friendly point of care (POC) devices are increasing exponentially for strengthening the health care system in primary care as well as for self- monitoring in routine analysis. In addition to routine analysis of glucose, Covid-19 type fast spreading, infectious diseases have created further push for exploring rapid, cost-effective and self-monitoring diagnostic devices. Successful implementation of self-monitoring devices for Covid -19 has been realized. However, not much success has been realized for malaria and dengue which are two fatal diseases that affect the population in underdeveloped and developing countries. To monitor the presence of parasites for these diseases, rapid, onsite monitoring devices are still being explored. In this review, we present a review of the research carried out on electrochemical POC devices for monitoring infectious diseases such as Covid-19, malaria and dengue.
Collapse
Affiliation(s)
- Susmita Baruah
- Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur University, PO: Napaam, Tezpur 784028, Assam, India
| | - C A Betty
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, Maharashtra, India; Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
4
|
Ramya PR, Halder S, Nagamani K, Singh Chouhan R, Gandhi S. Disposable graphene-oxide screen-printed electrode integrated with portable device for detection of SARS-CoV-2 in clinical samples. Bioelectrochemistry 2024; 158:108722. [PMID: 38697015 DOI: 10.1016/j.bioelechem.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis is the need of the hour, as cases are persistently increasing, and new variants are constantly emerging. The ever-changing nature of the virus leading to multiple variants, has brought an imminent need for early, accurate and rapid detection methods. Herein, we have reported the design and fabrication of Screen-Printed Electrodes (SPEs) with graphene oxide (GO) as working electrode and modified with specific antibodies for SARS-CoV-2 Receptor Binding Domain (RBD). Flexibility of design, and portable nature has made SPEs the superior choice for electrochemical analysis. The developed immunosensor can detect RBD as low as 0.83 fM with long-term storage capacity. The fabricated SPEs immunosensor was tested using a miniaturized portable device and potentiostat on 100 patient nasopharyngeal samples and corroborated with RT-PCR data, displayed 94 % sensitivity. Additionally, the in-house developed polyclonal antibodies detected RBD antigen of the mutated Omicron variant of SARS-CoV-2 successfully. We have not observed any cross-reactivity/binding of the fabricated immunosensor with MERS (cross-reactive antigen) and Influenza A H1N1 (antigen sharing common symptoms). Hence, the developed SPEs sensor may be applied for bedside point-of-care diagnosis of SARS-CoV-2 using miniaturized portable device, in clinical samples.
Collapse
Affiliation(s)
- P R Ramya
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sayanti Halder
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India
| | - K Nagamani
- Department of Microbiology, Gandhi Medical College, Gandhi Hospital, Hyderabad 500025, Telangana, India
| | - Raghuraj Singh Chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad 500032, Telangana, India; DBT-Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
5
|
Santos DJAD, Oliveira TRD, Araújo GMD, Pott-Junior H, Melendez ME, Sabino EC, Leite OD, Faria RC. An electrochemical genomagnetic assay for detection of SARS-CoV-2 and Influenza A viruses in saliva. Biosens Bioelectron 2024; 255:116210. [PMID: 38537427 DOI: 10.1016/j.bios.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient. Herein, we described the development of a genomagnetic assay for the selective capture of viral RNA from SARS-CoV-2 and Influenza A viruses in saliva samples and employing a simple disposable electrochemical device for gene detection and quantification. The proposed method showed excellent performance detecting RNA of SARS-CoV-2 and Influenza A viruses, with a limit of detection (LoD) and limit of quantification (LoQ) of 5.0 fmol L-1 and 8.6 fmol L-1 for SARS-CoV-2, and 1.0 fmol L-1 and 108.9 fmol L-1 for Influenza, respectively. The genomagnetic assay was employed to evaluate the presence of the viruses in 36 saliva samples and the results presented similar responses to those obtained by the real-time reverse transcription-polymerase chain reaction (RT-PCR), demonstrating the reliability and capability of a method as an alternative for the diagnosis of COVID-19 and Influenza with point-of-care capabilities.
Collapse
Affiliation(s)
| | | | | | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| | | | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, 05403-000, Brazil
| | - Oldair Donizeti Leite
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil; Federal Technological University of Paraná, Campus Medianeira, Medianeira, PR, 85884-000, Brazil.
| | - Ronaldo Censi Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
6
|
Ghaedamini H, Khalaf K, Kim DS, Tang Y. A novel ACE2-Based electrochemical biosensor for sensitive detection of SARS-CoV-2. Anal Biochem 2024; 689:115504. [PMID: 38458306 DOI: 10.1016/j.ab.2024.115504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
SARS-CoV-2 emerged in late 2019 and quickly spread globally, resulting in significant morbidity, mortality, and socio-economic disruptions. As of now, collaborative global efforts in vaccination and the advent of novel diagnostic tools have considerably curbed the spread and impact of the virus in many regions. Despite this progress, the demand remains for low-cost, accurate, rapid and scalable diagnostic tools to reduce the influence of SARS-CoV-2. Herein, the angiotensin-converting enzyme 2 (ACE2), a receptor for SARS-CoV-2, was immobilized on two types of electrodes, a screen-printed gold electrode (SPGE) and a screen-printed carbon electrode (SPCE), to develop electrochemical biosensors for detecting SARS-CoV-2 with high sensitivity and selectivity. This was achieved by using 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) and aryl diazonium salt serving as linkers for SPGEs and SPCEs, respectively. Once SARS-CoV-2 was anchored onto the ACE2, the interaction of the virus with the redox probe was analyzed using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Aryl diazonium salt was observed as a superior linker compared to PFDT due to its consistent performance in the modification of the SPCEs and effective ACE2 enzyme immobilization. A distinct pair of redox peaks in the cyclic voltammogram of the biosensor modified with aryl diazonium salt highlighted the redox reaction between the functional groups of SARS-CoV-2 and the redox probe. The sensor presented a linear relationship between the redox response and the logarithm of SARS-CoV-2 concentration, with a detection limit of 1.02 × 106 TCID50/mL (50% tissue culture infectious dose). Furthermore, the biosensor showed remarkable selectivity towards SARS-CoV-2 over H1N1virus.
Collapse
Affiliation(s)
| | - Khalid Khalaf
- Department of Bioengineering, University of Toledo, USA
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, USA
| | - Yuan Tang
- Department of Bioengineering, University of Toledo, USA.
| |
Collapse
|
7
|
Hosnedlova B, Werle J, Cepova J, Narayanan VHB, Vyslouzilova L, Fernandez C, Parikesit AA, Kepinska M, Klapkova E, Kotaska K, Stepankova O, Bjorklund G, Prusa R, Kizek R. Electrochemical Sensors and Biosensors for Identification of Viruses: A Critical Review. Crit Rev Anal Chem 2024:1-30. [PMID: 38753964 DOI: 10.1080/10408347.2024.2343853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Due to their life cycle, viruses can disrupt the metabolism of their hosts, causing diseases. If we want to disrupt their life cycle, it is necessary to identify their presence. For this purpose, it is possible to use several molecular-biological and bioanalytical methods. The reference selection was performed based on electronic databases (2020-2023). This review focused on electrochemical methods with high sensitivity and selectivity (53% voltammetry/amperometry, 33% impedance, and 12% other methods) which showed their great potential for detecting various viruses. Moreover, the aforementioned electrochemical methods have considerable potential to be applicable for care-point use as they are portable due to their miniaturizability and fast speed analysis (minutes to hours), and are relatively easy to interpret. A total of 2011 articles were found, of which 86 original papers were subsequently evaluated (the majority of which are focused on human pathogens, whereas articles dealing with plant pathogens are in the minority). Thirty-two species of viruses were included in the evaluation. It was found that most of the examined research studies (77%) used nanotechnological modifications. Other ones performed immunological (52%) or genetic analyses (43%) for virus detection. 5% of the reports used peptides to increase the method's sensitivity. When evaluable, 65% of the research studies had LOD values in the order of ng or nM. The vast majority (79%) of the studies represent proof of concept and possibilities with low application potential and a high need of further research experimental work.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Julia Werle
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Jana Cepova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Lab, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Lenka Vyslouzilova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, United Kingdom
| | - Arli Aditya Parikesit
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Timur, Indonesia
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Eva Klapkova
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Karel Kotaska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Olga Stepankova
- Czech Institute of Informatics, Robotics and Cybernetics, Department of Biomedical Engineering & Assistive Technologies, Czech Technical University in Prague, Prague, Czech Republic
| | - Geir Bjorklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Richard Prusa
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Rene Kizek
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
8
|
Hanifa Lestari TF, Irkham I, Pratomo U, Gaffar S, Zakiyyah SN, Rahmawati I, Topkaya SN, Hartati YW. Label-free and label-based electrochemical detection of disease biomarker proteins. ADMET AND DMPK 2024; 12:463-486. [PMID: 39091905 PMCID: PMC11289512 DOI: 10.5599/admet.2162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/22/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Biosensors, analytical devices integrating biological sensing elements with physicochemical transducers, have gained prominence as rapid and convenient tools for monitoring human health status using biochemical analytes. Due to its cost-effectiveness, simplicity, portability, and user-friendliness, electrochemical detection has emerged as a widely adopted method in biosensor applications. Crucially, biosensors enable early disease diagnosis by detecting protein biomarkers associated with various conditions. These biomarkers offer an objective indication of medical conditions that can be accurately observed from outside the patient. Method This review comprehensively documents both label-free and labelled detection methods in electrochemical biosensor techniques. Label-free detection mechanisms elicit response signals upon analyte molecule binding to the sensor surface, while labelled detection employs molecular labels such as enzymes, nanoparticles, and fluorescent tags. Conclusion The selection between label-free and labelled detection methods depends on various factors, including the biomolecular compound used, analyte type and biological binding site, biosensor design, sample volume, operational costs, analysis time, and desired detection limit. Focusing on the past six years, this review highlights the application of label-free and labelled electrochemical biosensors for detecting protein biomarkers of diseases.
Collapse
Affiliation(s)
| | - Irkham Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia
| | - Uji Pratomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia
| | - Isnaini Rahmawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424, Indonesia
| | - Seda Nur Topkaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, 45363, Indonesia
| |
Collapse
|
9
|
Yadav AK, Basavegowda N, Shirin S, Raju S, Sekar R, Somu P, Uthappa UT, Abdi G. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Mol Biotechnol 2024:10.1007/s12033-024-01157-y. [PMID: 38703305 DOI: 10.1007/s12033-024-01157-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
In 2019, a worldwide pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged. SARS-CoV-2 is the deadly microorganism responsible for coronavirus disease 2019 (COVID-19), which has caused millions of deaths and irreversible health problems worldwide. To restrict the spread of SARS-CoV-2, accurate detection of COVID-19 is essential for the identification and control of infected cases. Although recent detection technologies such as the real-time polymerase chain reaction delivers an accurate diagnosis of SARS-CoV-2, they require a long processing duration, expensive equipment, and highly skilled personnel. Therefore, a rapid diagnosis with accurate results is indispensable to offer effective disease suppression. Nanotechnology is the backbone of current science and technology developments including nanoparticles (NPs) that can biomimic the corona and develop deep interaction with its proteins because of their identical structures on the nanoscale. Various NPs have been extensively applied in numerous medical applications, including implants, biosensors, drug delivery, and bioimaging. Among them, point-of-care biosensors mediated with gold nanoparticles (GNPSs) have received great attention due to their accurate sensing characteristics, which are widely used in the detection of amino acids, enzymes, DNA, and RNA in samples. GNPS have reconstructed the biomedical application of biosensors because of its outstanding physicochemical characteristics. This review provides an overview of emerging trends in GNP-mediated point-of-care biosensor strategies for diagnosing various mutated forms of human coronaviruses that incorporate different transducers and biomarkers. The review also specifically highlights trends in gold nanobiosensors for coronavirus detection, ranging from the initial COVID-19 outbreak to its subsequent evolution into a pandemic.
Collapse
Affiliation(s)
- Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38451, Republic of Korea
| | - Saba Shirin
- Department of Mining Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Environmental Science, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, 201312, India
| | - Shiji Raju
- Bioengineering and Nano Medicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720, Tampere, Finland
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu, Tamil Nadu, 603308, India
| | - Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil, Biotechnology and Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Off. Jaipur-Ajmeer Expressway, Jaipur, Rajasthan, 303007, India.
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
- Department of Bioengineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| |
Collapse
|
10
|
Drobysh M, Ratautaite V, Brazys E, Ramanaviciene A, Ramanavicius A. Molecularly imprinted composite-based biosensor for the determination of SARS-CoV-2 nucleocapsid protein. Biosens Bioelectron 2024; 251:116043. [PMID: 38368643 DOI: 10.1016/j.bios.2024.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024]
Abstract
This article aims to present a comparative study of three polypyrrole-based molecularly imprinted polymer (MIP) systems for the detection of the recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (rN). The rN is known for its relatively low propensity to mutate compared to other SARS-CoV-2 antigens. The aforementioned systems include screen-printed carbon electrodes (SPCE) modified with gold nanostructures (MIP1), platinum nanostructures (MIP2), and the unmodified SPCE (MIP3), which was used for control. Pulsed amperometric detection (PAD) was employed as the detection technique, offering the advantage of label-free detection without the need for an additional redox probe. Calibration curves were constructed using the obtained data to evaluate the response of each system. Non-imprinted systems were also tested in parallel to evaluate the contribution of non-specific binding and assess the affinity sensor's efficiency. The analysis of calibration curves revealed that the AuNS-based MIP1 system exhibited the lowest contribution of non-specific binding and displayed a better fit with the chosen fitting model compared to the other systems. Further analysis of this system included determining the limit of detection (LOD) (51.2 ± 2.8 pg/mL), the limit of quantification (LOQ) (153.9 ± 8.3 pg/mL), and a specificity test using a recombinant receptor-binding domain of SARS-CoV-2 spike protein as a control. Based on the results, the AuNS-based MIP1 system demonstrated high specificity and sensitivity for the label-free detection of SARS-CoV-2 nucleocapsid protein. The utilization of PAD without the need for additional redox probes makes this sensing system convenient and valuable for rapid and accurate virus detection.
Collapse
Affiliation(s)
- Maryia Drobysh
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania
| | - Vilma Ratautaite
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania
| | - Ernestas Brazys
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, State Research Institute Center for Physical and Technological Sciences (FTMC), Sauletekio Ave. 3, Vilnius, LT-10257, Lithuania; Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, 03225 Vilnius, LT-03225, Lithuania.
| |
Collapse
|
11
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Zakiyyah SN, Irkham, Einaga Y, Gultom NS, Fauzia RP, Kadja GTM, Gaffar S, Ozsoz M, Hartati YW. Green Synthesis of Ceria Nanoparticles from Cassava Tubers for Electrochemical Aptasensor Detection of SARS-CoV-2 on a Screen-Printed Carbon Electrode. ACS APPLIED BIO MATERIALS 2024; 7:2488-2498. [PMID: 38577953 DOI: 10.1021/acsabm.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Green synthesis approaches for making nanosized ceria using starch from cassava as template molecules to control the particle size are reported. The results of the green synthesis of ceria with an optimum calcination temperature of 800 °C shows a size distribution of each particle of less than 30 nm with an average size of 9.68 nm, while the ratio of Ce3+ to Ce4+ was 25.6%. The green-synthesized nanoceria are applied to increase the sensitivity and attach biomolecules to the electrode surface of the electrochemical aptasensor system for coronavirus disease (COVID-19). The response of the aptasensor to the receptor binding domain of the virus was determined with the potassium ferricyanide redox system. The screen-printed carbon electrode that has been modified with green-synthesized nanoceria shows 1.43 times higher conductivity than the bare electrode, while those modified with commercial ceria increase only 1.18 times. Using an optimized parameter for preparing the aptasensors, the detection and quantification limits were 1.94 and 5.87 ng·mL-1, and the accuracy and precision values were 98.5 and 89.1%. These results show that green-synthesized ceria could be a promising approach for fabricating an electrochemical aptasensor.
Collapse
Affiliation(s)
- Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Irkham
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Noto Susanto Gultom
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Retna Putri Fauzia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Grandprix Thomreys Marth Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| | - Mehmet Ozsoz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
- Department of Biomedical Engineering, Near East University, Mersin 99138, Turkey
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang Km 21, Jatinangor, Sumedang, West Java 45363, Indonesia
| |
Collapse
|
13
|
Kazancı F, Kılıç MS, Uru ŞK, Aydın RST. A novel nanoliposome model platform mimicking SARS-CoV-2 as a bioreceptor to dissect the amperometric response in biosensor applications. Int J Biol Macromol 2024; 264:130530. [PMID: 38437936 DOI: 10.1016/j.ijbiomac.2024.130530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024]
Abstract
In this study, we proposed to investigate the response of an electrochemical-based immunosensor via nanoliposomes carrying the SARS-CoV-2 Spike-S1 protein. In this regard, we prepared RNA encapsulated nanoliposome functionalized with a specific SARS-CoV-2 Spike-S1 protein as a SARS-CoV-2 model. Then, this new nanoliposome mimicking SARS-CoV-2 was used as the bio-recognizing agent of an immunosensor developed to detect the SARS-CoV-2 within the scope of the study. The working electrode of the immunosensor was coated with chitosan polymer, decorated with SARS-CoV-2 Spike antibody, to achieve antibody-antigen matching on the electrode surface. SARS-CoV-2 mimicking nanoliposomes at various concentrations was used to achieve an amperometric response and the analytical parameters of the sensor were calculated from the relationship between the immunosensor's current values depending on the number of these matches with regard to varying antigen concentrations. Linear measurement range, LOD and measurement sensitivity were calculated as 53 pM-8 nM, 3.79 pM and 55.47 μA nM-1 cm-2, respectively. The standard deviation of the same measurements in the developed immunosensor was 0.33 %.
Collapse
Affiliation(s)
- Füsun Kazancı
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - M Samet Kılıç
- Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - Şeyda Korkut Uru
- Department of Environmental Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey
| | - R Seda Tığlı Aydın
- Department of Nanotechnology Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey; Department of Biomedical Engineering, Zonguldak Bülent Ecevit University, Incivez, Zonguldak 67100, Turkey.
| |
Collapse
|
14
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
15
|
Biswas SK, Bairagi A, Nag S, Bandopadhyay A, Banerjee I, Mondal A, Chakraborty S. Nucleic acid based point-of-care diagnostic technology for infectious disease detection using machine learning empowered smartphone-interfaced quantitative colorimetry. Int J Biol Macromol 2023; 253:127137. [PMID: 37776929 DOI: 10.1016/j.ijbiomac.2023.127137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
We report a nucleic acid-based point of care testing technology for infectious disease detection at resource limited settings by integrating a low-cost portable device with machine learning-empowered quantitative colorimetric analytics that can be interfaced via a smartphone application. We substantiate our proposition by demonstrating the efficacy of this technology in detecting COVID-19 infection from human swab samples, using the RT-LAMP protocol. Comparison with gold standard results from real-time PCR evidences high sensitivity and specificity, ensuring simplicity, portability, and user-friendliness of the technology at the same time. Colorimetric analytics of the reaction output without necessitating the opening of the reaction microchambers enables execution of the complete test workflow without any laboratory control that may otherwise be required stringently for safeguarding against carryover contamination. Seamless sample-to-answer workflow and machine learning-based readout further assures minimal human intervention for the test readout, thus eliminating inevitable inaccuracies stemming from erroneous execution of the test as well as subjectivity in interpreting the outcome. Our results further indicate the possibilities of upgrading the technology to predict the pathogenic load on the infected patients akin to the cyclic threshold value of the real-time PCR, when calibrated with reference to a wide range of 'training' data for the machine learner, thereby putting forward the same as viable alternative to the resource-intensive PCR tests that cannot be made readily accessible at underserved community settings.
Collapse
Affiliation(s)
- Sujay K Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ankan Bairagi
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sudip Nag
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Indranath Banerjee
- B.C. Roy Technology Hospital, Indian Institute of Technology Kharagpur, 721302, India
| | - Arindam Mondal
- School of Bioscience, Indian Institute of Technology Kharagpur, 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
16
|
Mandal N, Mitra R, Pramanick B. C-MEMS-derived glassy carbon electrochemical biosensors for rapid detection of SARS-CoV-2 spike protein. MICROSYSTEMS & NANOENGINEERING 2023; 9:137. [PMID: 37937185 PMCID: PMC10625972 DOI: 10.1038/s41378-023-00601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 11/09/2023]
Abstract
According to a World Health Organization (WHO) report, the world has experienced more than 766 million cases of positive SARS-CoV-2 infection and more than 6.9 million deaths due to COVID through May 2023. The WHO declared a pandemic due to the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and the fight against this pandemic is not over yet. Important reasons for virus spread include the lack of detection kits, appropriate detection techniques, delay in detection, asymptomatic cases and failure in mass screening. In the last 3 years, several researchers and medical companies have introduced successful test kits to detect the infection of symptomatic patients in real time, which was necessary to monitor the spread. However, it is also important to have information on asymptomatic cases, which can be obtained by antibody testing for the SARS-CoV-2 virus. In this work, we developed a simple, advantageous immobilization procedure for rapidly detecting the SARS-CoV-2 spike protein. Carbon-MEMS-derived glassy carbon (GC) is used as the sensor electrode, and the detection is based on covalently linking the SARS-CoV-2 antibody to the GC surface. Glutaraldehyde was used as a cross-linker between the antibody and glassy carbon electrode (GCE). The binding was investigated using Fourier transform infrared spectroscopy (FTIR) characterization and cyclic voltammetric (CV) analysis. Electrochemical impedance spectroscopy (EIS) was utilized to measure the change in total impedance before and after incubation of the SARS-CoV-2 antibody with various concentrations of SARS-CoV-2 spike protein. The developed sensor can sense 1 fg/ml to 1 µg/ml SARS-CoV-2 spike protein. This detection is label-free, and the chances of false positives are minimal. The calculated LOD was ~31 copies of viral RNA/mL. The coefficient of variation (CV) number is calculated from EIS data at 100 Hz, which is found to be 0.398%. The developed sensor may be used for mass screening because it is cost-effective. A schematic representation of the SARS-CoV-2 spike protein sensing using surface functionalized glassy carbon electrode.
Collapse
Affiliation(s)
- Naresh Mandal
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Raja Mitra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| | - Bidhan Pramanick
- School of Electrical Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- Centre of Excellence in Particulates Colloids and Interfaces, Indian Institute of Technology Goa, 403401 Ponda, Goa India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, 403401 Ponda, Goa India
| |
Collapse
|
17
|
Sensitive detection of SARS-CoV-2 spike protein based on electrochemical impedance spectroscopy of Fe 3O 4@SiO 2–Au/GCE biosensor. ADVANCED SENSOR AND ENERGY MATERIALS 2023; 2:100067. [PMCID: PMC10212796 DOI: 10.1016/j.asems.2023.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 02/25/2024]
Abstract
Highly contagious COVID-19 disease is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which poses a serious threat to global public health. Therefore, the development of a fast and reliable method for the detection of SARS-CoV-2 is an urgent research need. The Fe3O4@SiO2–Au is enriched with a variety of functional groups, which can be used to fabricate a sensitive electrochemical biosensor by biofunctionalization with angiotensin-converting enzyme 2 (ACE2). Accordingly, we developed a novel electrochemical sensor by chemically modifying a glassy carbon electrode (GCE) with Fe3O4@SiO2–Au nanocomposites (hereafter Fe3O4@SiO2–Au/GCE) for the rapid detection of S-protein spiked SARS-CoV-2 by electrochemical impedance spectroscopy (EIS). The new electrochemical sensor has a low limit detection (viz., 4.78 pg/mL) and a wide linear dynamic range (viz., 0.1 ng/mL to 10 μg/mL) for detecting the EIS response signal of S-protein. The robust Fe3O4@SiO2–Au/GCE biosensor has high selectivity, stability, and reproducibility for the detection of S-protein with good recovery of saliva samples.
Collapse
|
18
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
19
|
SARS-CoV-2 detection enabled by a portable and label-free photoelectrochemical genosensor using graphitic carbon nitride and gold nanoparticles. Electrochim Acta 2023; 451:142271. [PMID: 36974119 PMCID: PMC10024957 DOI: 10.1016/j.electacta.2023.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023]
Abstract
Fast, sensitive, simple, and cheap sensors are highly desirable to be applied in the health system because they improve point-of-care diagnostics, which can reduce the number of cases of infection or even deaths. In this context, here we report the development of a label-free genosensor using a screen-printed electrode modified with 2D-carbonylated graphitic carbon nitride (c-g-C3N4), poly(diallyldimethylammonium) chloride (PDDA), and glutathione-protected gold nanoparticles (GSH-AuNPs) for photoelectrochemical (PEC) detection of SARS-CoV-2. We also made use of Arduino and 3D printing to miniaturize the sensor device. The electrode surface was characterized by AFM and SEM techniques, and the gold nanoparticles by UV–Vis spectrophotometry. For SARS-CoV-2 detection, capture probe DNA was immobilized on the electrode surface. The hybridization of the final genosensor was tested with a synthetic single-strand DNA target and with natural saliva samples using the photoelectrochemistry method. The device presented a linear range from 1 to 10,000 fmol L−1 and a limit of detection of 2.2 and 3.4 fmol L−1 using cpDNA 1A and 3A respectively. The sensibility and accuracy found for the genosensor using cpDNA 1A using biological samples were 93.3 and 80% respectively, indicating the potential of the label-free and portable genosensor to detect SARS-CoV-2 RNA in saliva samples.
Collapse
|
20
|
Karuppaiah G, Vashist A, Nair M, Veerapandian M, Manickam P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. BIOSENSORS & BIOELECTRONICS: X 2023; 13:100324. [PMID: 36844889 PMCID: PMC9941073 DOI: 10.1016/j.biosx.2023.100324] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
COVID-19, a highly contagious viral infection caused by the occurrence of severe acute respiratory syndrome coronavirus (SARS-CoV-2), has turned out to be a viral pandemic then ravaged many countries worldwide. In the recent years, point-of-care (POC) biosensors combined with state-of-the-art bioreceptors, and transducing systems enabled the development of novel diagnostic tools for rapid and reliable detection of biomarkers associated with SARS-CoV-2. The present review thoroughly summarises and discusses various biosensing strategies developed for probing SARS-CoV-2 molecular architectures (viral genome, S Protein, M protein, E protein, N protein and non-structural proteins) and antibodies as a potential diagnostic tool for COVID-19. This review discusses the various structural components of SARS-CoV-2, their binding regions and the bioreceptors used for recognizing the structural components. The various types of clinical specimens investigated for rapid and POC detection of SARS-CoV-2 is also highlighted. The importance of nanotechnology and artificial intelligence (AI) approaches in improving the biosensor performance for real-time and reagent-free monitoring the biomarkers of SARS-CoV-2 is also summarized. This review also encompasses existing practical challenges and prospects for developing new POC biosensors for clinical monitoring of COVID-19.
Collapse
Affiliation(s)
- Gopi Karuppaiah
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
| | - Arti Vashist
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Murugan Veerapandian
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, 630 003, Tamil Nadu, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, Uttar Pradesh, India
| |
Collapse
|
21
|
Durdu S, Yalçin E, Altinkök A, Çavuşoğlu K. Characterization and investigation of electrochemical and biological properties of antibacterial silver nanoparticle-deposited TiO 2 nanotube array surfaces. Sci Rep 2023; 13:4699. [PMID: 36949171 PMCID: PMC10033515 DOI: 10.1038/s41598-023-31937-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023] Open
Abstract
The one of main reasons of the premature failure of Ti-based implants is infections. The metal- and metal oxide-based nanoparticles have very high potential on controlling of infections. In this work, the randomly distributed AgNPs-deposited onto well-ordered TiO2 nanotube surfaces were fabricated on titanium by anodic oxidation (AO) and electrochemical deposition (ED) processes. AgNPs-deposited nanotube surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. Moreover, the AgNPs-deposited nanotube surfaces, which prevent the leaching of metallic Ti ions from the implant surface, indicated great corrosion resistance under SBF conditions. The electrochemical corrosion resistance of AgNPs-deposited nanotube surfaces was improved up to about 145% compared to bare Gr2 surface. The cell viability of AgNPs-deposited nanotube surfaces was improved. Importantly, the AgNPs-deposited nanotube surfaces exhibited antibacterial activity for Gram-positive and Gram-negative bacteria. Eventually, it can be concluded that the AgNPs-deposited nanotube surfaces possess high stability for long-term usage of implant applications.
Collapse
Affiliation(s)
- Salih Durdu
- Industrial Engineering, Giresun University, Faculty of Engineering, 28200, Giresun, Turkey.
| | - Emine Yalçin
- Department of Biology, Giresun University, Faculty of Science, 28200, Giresun, Turkey
| | - Atilgan Altinkök
- Turkish Naval Academy, National Defence University, 34940, Istanbul, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Giresun University, Faculty of Science, 28200, Giresun, Turkey.
| |
Collapse
|
22
|
Vásquez V, Orozco J. Detection of COVID-19-related biomarkers by electrochemical biosensors and potential for diagnosis, prognosis, and prediction of the course of the disease in the context of personalized medicine. Anal Bioanal Chem 2023; 415:1003-1031. [PMID: 35970970 PMCID: PMC9378265 DOI: 10.1007/s00216-022-04237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
As a more efficient and effective way to address disease diagnosis and intervention, cutting-edge technologies, devices, therapeutic approaches, and practices have emerged within the personalized medicine concept depending on the particular patient's biology and the molecular basis of the disease. Personalized medicine is expected to play a pivotal role in assessing disease risk or predicting response to treatment, understanding a person's health status, and, therefore, health care decision-making. This work discusses electrochemical biosensors for monitoring multiparametric biomarkers at different molecular levels and their potential to elucidate the health status of an individual in a personalized manner. In particular, and as an illustration, we discuss several aspects of the infection produced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a current health care concern worldwide. This includes SARS-CoV-2 structure, mechanism of infection, biomarkers, and electrochemical biosensors most commonly explored for diagnostics, prognostics, and potentially assessing the risk of complications in patients in the context of personalized medicine. Finally, some concluding remarks and perspectives hint at the use of electrochemical biosensors in the frame of other cutting-edge converging/emerging technologies toward the inauguration of a new paradigm of personalized medicine.
Collapse
Affiliation(s)
- Viviana Vásquez
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N° 52-20, Medellín, 050010, Colombia.
| |
Collapse
|
23
|
Triastuti A, Zakiyyah SN, Gaffar S, Anshori I, Surawijaya A, Hidayat D, Wiraswati HL, Yusuf M, Hartati YW. CeO 2@NH 2 functionalized electrodes for the rapid detection of SARS-CoV-2 spike receptor binding domain. RSC Adv 2023; 13:5874-5884. [PMID: 36816083 PMCID: PMC9933633 DOI: 10.1039/d2ra07560a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
A detection method based on an electrochemical aptasensor has been developed as an alternative fast, portable, simple, inexpensive, and high-accuracy detection method for detecting the SARS-CoV-2 Spike Receptor Binding Domain (spike RBD). The CeO2@NH2 functionalized Screen Printed Carbon Electrode (SPCE) was used to immobilize an aminated aptamer of spike RBD protein via glutaraldehyde as a linker. The aptamer's interaction with the SARS-CoV-2 Spike RBD was measured via the [Fe(CN)6]4-/3- redox system signal. Experimental conditions were optimized using a Box-Behnken experimental design and showed that the optimal conditions of the SARS-CoV-2 aptasensor were 1.5 ng mL-1 of aptamer, immobilization of aptamer for 60 minutes, and Spike RBD incubation for 10 minutes. The developed aptasensor was able to detect the standard SARS-CoV-2 Spike RBD with a detection limit of 0.017 ng mL-1 in the range of 0.001-100 ng mL-1. This aptasensor was used to detect salivary and oropharyngeal swab samples of normal individuals with the addition of Spike RBD, and the recoveries were 92.96% and 96.52%, respectively. The testing on nasopharyngeal swab samples of COVID-19 patients showed that the aptasensor results were comparable with the qRT-PCR results. Thus, the developed aptasensor has the potential to be applied as a SARS-CoV-2 rapid test method for clinical samples.
Collapse
Affiliation(s)
- Ayu Triastuti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Salma Nur Zakiyyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| | - Isa Anshori
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
- Lab-on-Chip Group, Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology Indonesia
| | - Akhmadi Surawijaya
- Center of Excellence on Microelectronics, School of Electrical Engineering and Informatics, Bandung Institute of Technology Bandung Indonesia
| | - Darmawan Hidayat
- Department of Electrical Engineering, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
| | - Hesti Lina Wiraswati
- Department of Parasitology Faculty of Medicine, Universitas Padjadjaran Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran Indonesia
- Moleculer Biotechnology and Bioinformatics Research Center, Universitas Padjadjaran Indonesia
| |
Collapse
|
24
|
Truong PL, Yin Y, Lee D, Ko SH. Advancement in COVID-19 detection using nanomaterial-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20210232. [PMID: 37323622 PMCID: PMC10191025 DOI: 10.1002/exp.20210232] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/11/2022] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has exemplified how viral growth and transmission are a significant threat to global biosecurity. The early detection and treatment of viral infections is the top priority to prevent fresh waves and control the pandemic. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified through several conventional molecular methodologies that are time-consuming and require high-skill labor, apparatus, and biochemical reagents but have a low detection accuracy. These bottlenecks hamper conventional methods from resolving the COVID-19 emergency. However, interdisciplinary advances in nanomaterials and biotechnology, such as nanomaterials-based biosensors, have opened new avenues for rapid and ultrasensitive detection of pathogens in the field of healthcare. Many updated nanomaterials-based biosensors, namely electrochemical, field-effect transistor, plasmonic, and colorimetric biosensors, employ nucleic acid and antigen-antibody interactions for SARS-CoV-2 detection in a highly efficient, reliable, sensitive, and rapid manner. This systematic review summarizes the mechanisms and characteristics of nanomaterials-based biosensors for SARS-CoV-2 detection. Moreover, continuing challenges and emerging trends in biosensor development are also discussed.
Collapse
Affiliation(s)
- Phuoc Loc Truong
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Yiming Yin
- New Materials InstituteDepartment of MechanicalMaterials and Manufacturing EngineeringUniversity of Nottingham Ningbo ChinaNingboChina
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
| | - Daeho Lee
- Laser and Thermal Engineering LabDepartment of Mechanical EngineeringGachon UniversitySeongnamKorea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National UniversityGwanak‐guSeoulKorea
- Institute of Advanced Machinery and Design (SNU‐IAMD)/Institute of Engineering ResearchSeoul National UniversityGwanak‐guSeoulKorea
| |
Collapse
|
25
|
Zhu Z, Liang A, Haotian R, Tang S, Liu M, Xie B, Luo A. Application of Biosensors in the Detection of SARS-CoV-2. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22120483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Sarwar S, Lin MC, Amezaga C, Wei Z, Iyayi E, Polk H, Wang R, Wang H, Zhang X. Ultrasensitive electrochemical biosensors based on zinc sulfide/graphene hybrid for rapid detection of SARS-CoV-2. ADVANCED COMPOSITES AND HYBRID MATERIALS 2023; 6:49. [PMID: 36718472 PMCID: PMC9879254 DOI: 10.1007/s42114-023-00630-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 05/12/2023]
Abstract
UNLABELLED The coronavirus disease 2019 (COVID-19) is a highly contagious and fatal disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In general, the diagnostic tests for COVID-19 are based on the detection of nucleic acid, antibodies, and protein. Among different analytes, the gold standard of the COVID-19 test is the viral nucleic acid detection performed by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) method. However, the gold standard test is time-consuming and requires expensive instrumentation, as well as trained personnel. Herein, we report an ultrasensitive electrochemical biosensor based on zinc sulfide/graphene (ZnS/graphene) nanocomposite for rapid and direct nucleic acid detection of SARS-CoV-2. We demonstrated a simple one-step route for manufacturing ZnS/graphene by employing an ultrafast (90 s) microwave-based non-equilibrium heating approach. The biosensor assay involves the hybridization of target DNA or RNA samples with probes that are immersed into a redox active electrolyte, which are detectable by electrochemical measurements. In this study, we have performed the tests for synthetic DNA samples and, SARS-CoV-2 standard samples. Experimental results revealed that the proposed biosensor could detect low concentrations of all different SARS-CoV-2 samples, using such as S, ORF 1a, and ORF 1b gene sequences as targets. This microwave-synthesized ZnS/graphene-based biosensor could be reliably used as an on-site, real-time, and rapid diagnostic test for COVID-19. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42114-023-00630-7.
Collapse
Affiliation(s)
- Shatila Sarwar
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| | - Mao-Chia Lin
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| | - Carolina Amezaga
- Department of Material Engineering, Auburn University, Auburn, AL 36849 USA
| | - Zhen Wei
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Etinosa Iyayi
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Haseena Polk
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Ruigang Wang
- Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088 USA
| | - Xinyu Zhang
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849 USA
| |
Collapse
|
27
|
Wang A, Li Y, You X, Zhang S, Zhou J, Liu H, Ding P, Chen Y, Qi Y, Liu Y, Liang C, Zhu X, Zhang Y, Liu E, Zhang G. Electrochemical immunosensor nanoarchitectonics with the Ag-rGO nanocomposites for the detection of receptor-binding domain of SARS-CoV-2 spike protein. J Solid State Electrochem 2023; 27:489-499. [PMID: 36466035 PMCID: PMC9707143 DOI: 10.1007/s10008-022-05330-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/30/2022]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a grave threat to human life and health, it is essential to develop an efficient and sensitive detection method to identify infected individuals. This study described an electrode platform immunosensor to detect SARS-CoV-2-specific spike receptor-binding domain (RBD) protein based on a bare gold electrode modified with Ag-rGO nanocomposites and the biotin-streptavidin interaction system. The Ag-rGO nanocomposites was obtained by chemical synthesis and characterized by electrochemistry and scanning electron microscope (SEM). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to record the electrochemical signals in the electrode modification. The differential pulse voltammetry (DPV) results showed that the limit of detection (LOD) of the immunosensor was 7.2 fg mL-1 and the linear dynamic detection range was 0.015 ~ 158.5 pg mL-1. Furthermore, this sensitive immunosensor accurately detected RBD in artificial saliva with favorable stability, specificity, and reproducibility, indicating that it has the potential to be used as a practical method for the detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yuya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Xiaojuan You
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Ying Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Enping Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, Henan China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
28
|
Liu J, Tang Y, Cheng Y, Huang W, Xiang L. Electrochemical biosensors based on saliva electrolytes for rapid detection and diagnosis. J Mater Chem B 2022; 11:33-54. [PMID: 36484271 DOI: 10.1039/d2tb02031a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, electrochemical biosensors (ECBSs) have shown significant potential for real-time disease diagnosis and in situ physical condition monitoring. As a multi-constituent oral fluid comprising various disease signaling biomarkers, saliva has drawn much attention in the field of point-of-care (POC) testing. In particular, during the outbreak of the COVID-19 pandemic, ECBSs which hold the simplicity of a single-step assay compared with the multi-step assay of traditional testing methods are expected to relieve the human and economic burden caused by the massive and long-term sample testing process. Noteworthily, ECBSs for the detection of SARS-CoV-2 in saliva have already been developed and may replace current testing methods. Furthermore, the detection scope has expanded from routine indices such as sugar and uric acid to abnormal biomarkers for early-stage disease detection and drug level monitoring, which further facilitated the evolution of ECBSs in the last 5 years. This review is divided into several main sections. First, we discussed the latest advancements and representative research on ECBSs for saliva testing. Then, we focused on a novel kind of ECBS, organic electrochemical transistors (OECTs), which hold great advantages of high sensitivity and signal-to-noise ratio and on-site detection. Finally, application of ECBSs with integrated portable platforms in oral cavities, which lead to powerful auxiliary testing means for telemedicine, has also been discussed.
Collapse
Affiliation(s)
- Jiayi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China. .,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No 14th, 3rd section, Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
29
|
Primpray V, Kamsong W, Pakapongpan S, Phochakum K, Kaewchaem A, Sappat A, Wisitsoraat A, Lomas T, Tuantranont A, Karuwan C. An alternative ready-to-use electrochemical immunosensor for point-of-care COVID-19 diagnosis using graphene screen-printed electrodes coupled with a 3D-printed portable potentiostat. TALANTA OPEN 2022; 6:100155. [PMID: 36212546 PMCID: PMC9529345 DOI: 10.1016/j.talo.2022.100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 10/25/2022] Open
Abstract
A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a cause of worldwide Coronavirus 2019 (COVID-19) disease pandemic. It is thus important to develop ultra-sensitive, rapid and easy-to-use methods for the identification of COVID-19 infected patients. Herein, an alternative electrochemical immunosensor based on poly(pyrrolepropionic acid) (pPPA) modified graphene screen-printed electrode (GSPE) was proposed for rapid COVID-19 detection. The method was based on a competitive enzyme immunoassay process utilizing horseradish peroxidase (HRP)-conjugated SARS-CoV-2 as a reporter binding molecule to compete binding with antibody against the SARS-CoV-2 receptor binding domain (SARS-CoV-2 RBD) protein. This strategy enhanced the current signal via the enzymatic reaction of HRP-conjugated SARS-CoV-2 RBD antibody on the electrode surface. The modification, immobilization, blocking, and detection processes were optimized and evaluated by amperometry. The quantitative analysis of SARS-CoV-2 was conducted based on competitive enzyme immunoassay with amperometric detection using a 3D-printed portable potentiostat for point-of-care COVID-19 diagnosis. The current measurements at -0.2 V yielded a calibration curve with a linear range of 0.01-1500 ng mL-1 (r2 = 0.983), a low detection limit of 2 pg mL-1 and a low quantification limit of 10 pg mL-1. In addition, the analyzed results of practical samples using the developed method were successfully verified with ELISA and RT-PCR. Therefore, the proposed portable electrochemical immunosensor is highly sensitive, rapid, and reliable. Thus, it is an alternative ready-to-use sensor for COVID-19 point-of-care diagnosis.
Collapse
|
30
|
Devi MJ, Gaffar S, Hartati YW. A review post-vaccination SARS-CoV-2 serological test: Method and antibody titer response. Anal Biochem 2022; 658:114902. [PMID: 36122603 PMCID: PMC9481475 DOI: 10.1016/j.ab.2022.114902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
The development of the Coronavirus disease 2019 (COVID-19) vaccine is one of the most important efforts in controlling the pandemic. Serological tests are used to identify highly reactive human donors for convalescent plasma therapy, measuring vaccine efficacy and durability. This review article presents a review of serology tests and how antibody titers in response to vaccines have been developed. Some of the serological test methods discussed are Plaque Reduction Neutralization Test (PRNT), Enzyme-Linked Immunosorbent Assay (ELISA), Lateral flow immunoassay (LFIA), chemiluminescent immunoassay (CLIA), and Chemiluminescent Micro-particle Immunoassay (CMIA). This review can provide an understanding of the application of the body's immune response to vaccines to get some new strategies for vaccines.
Collapse
Affiliation(s)
- Melania Janisha Devi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
| | - Shabarni Gaffar
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Indonesia.
| |
Collapse
|
31
|
Agarkar T, Tripathy S, Chawla V, Sengupta M, Ghosh S, Kumar A. A batch processed titanium-vanadium oxide nanocomposite based solid-state electrochemical sensor for zeptomolar nucleic acid detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4495-4513. [PMID: 36326012 DOI: 10.1039/d2ay01141g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Approaching a nucleic acid amplification test (NAAT) based diagnosis of a pathogen from an electrochemistry pathway is a relatively economical, decentralized, and yet highly sensitive route. This work aimed to construct an electrochemical biosensor with a 2-electrode geometry using a transition metal oxide (TMO) based sensing layer. A series of batch-processed TiO2-V2O5 (TVO) nanocomposite-based electrodes were fabricated to probe their electrochemical performance and attain a highly sensitive dual-electrode electrochemical sensor (DEES) compared to pristine V2O5. The XRD analysis of the electrodes confirmed the formation of a nanocomposite, while the XPS analysis correlated the formation of oxygen vacancies with improved electrical conduction measured via EIS and I-V characterization. Furthermore, the work demonstrated the application of the optimized electrode in electrochemical detection of end-point loop-mediated isothermal amplification (LAMP) readout for 101-104 copies (0.1 zeptomoles to 0.1 attomoles) of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) plasmid DNA and in vitro transcribed RNA in an aqueous solution. The device achieved a limit of detection as low as 2.5 and 0.25 copies per μL for plasmid DNA and in vitro transcribed RNA, respectively. The DEES was able to successfully detect in situ LAMP performed on magneto-extracted SARS-CoV-2 plasmid and RNA from (a) an aqueous solution, (b) a sample spiked with excess human genomic DNA, and (c) a serum-spiked sample. The DEES results were then compared with those of real-time fluorescence and commercially available screen-printed electrodes (SPEs).
Collapse
Affiliation(s)
- Tanvi Agarkar
- Department of Physics, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
- Pristine Diamonds Pvt. Ltd., India
| | - Sayantan Tripathy
- Department of Chemistry, Bennett University, India
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Vipin Chawla
- Institute Instrumentation Centre, Indian Institute of Technology Roorkee, India
| | - Mrittika Sengupta
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
| | - Souradyuti Ghosh
- Department of Chemistry, Bennett University, India
- Department of Biotechnology, Bennett University, India
- Center of Excellence for Nanosensors and Nanomedicine, Bennett University, India
- Division of Radiation and Stress Biology, UGC-DAE CSR, Kolkata Center, India
| | - Ashvani Kumar
- Department of Physics, Bennett University, India
- Pristine Diamonds Pvt. Ltd., India
| |
Collapse
|
32
|
Liv L, Baş A. Discriminative electrochemical biosensing of wildtype and omicron variant of SARS-CoV-2 nucleocapsid protein with single platform. Anal Biochem 2022; 657:114898. [PMID: 36100035 PMCID: PMC9464311 DOI: 10.1016/j.ab.2022.114898] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical biosensors for determining wildtype and omicron variant of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) nucleocapsid antigen in nasopharyngeal swab samples were produced by using functionalised graphene oxide and the wildtype and omicron types of SARS-CoV-2 nucleocapsid antibody modified glassy carbon electrodes. The developed biosensors characterised by cyclic voltammetry, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy were able to detect 0.76 and 0.24 ag/mL of the wildtype and omicron SARS-CoV-2 nucleocapsid antigen protein in linear ranges varied from 1 ag/mL to 100 fg/mL and from 1 ag/mL to 10 fg/mL, respectively. The performance of both biosensors produced was compared in nasopharyngeal swab samples containing the wildtype and omicron variant of the SARS-CoV-2, and it was evaluated whether they could be used interchangeably.
Collapse
Affiliation(s)
- Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| | - Aysu Baş
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
33
|
El-Moghazy AY, Amaly N, Sun G, Nitin N. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Martins G, Gogola JL, Budni LH, Papi MA, Bom MA, Budel ML, de Souza EM, Müller-Santos M, Beirão BC, Banks CE, Marcolino-Junior LH, Bergamini MF. Novel approach based on GQD-PHB as anchoring platform for the development of SARS-CoV-2 electrochemical immunosensor. Anal Chim Acta 2022; 1232:340442. [PMID: 36257733 PMCID: PMC9529294 DOI: 10.1016/j.aca.2022.340442] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/01/2022]
Abstract
In the present work, we report an innovative approach for immunosensors construction. The experimental strategy is based on the anchoring of biological material at screen-printed carbon electrode (SPE) modified with electrodeposited Graphene Quantum Dots (GQD) and polyhydroxybutyric acid (PHB). It was used as functional substract basis for the recognition site receptor-binding domain (RBD) from coronavirus spike protein (SARS-CoV-2), for the detection of Anti-S antibodies (AbS). SEM images and EDS spectra suggest an interaction of the protein with GQD-PHB sites at the electrode surface. Differential pulse voltametric (DPV) measurements were performed before and after incubation, in presence of the target, shown a decrease in voltametric signal of an electrochemical probe ([Fe(CN)6]3/4-). Using the optimal experimental conditions, analytical curves were performed in PBS and human serum spiked with AbS showing a slight matrix effect and a relationship between voltametric signal and AbS concentration in the range of 100 ng mL-1 and 10 μg mL-1. The selectivity of the proposed sensor was tested against yellow fever antibodies (YF) and the selective layer on the electrode surface did not interact with these unspecific antibodies. Eight samples of blood serum were analyzed and 87.5% of these total investigated provided adequate results. In addition, the present approach showed better results against traditional EDC/NHS reaction with enhancements in time and the possibility to develop an immunosensor in a single drop, since the proteins can be anchored prior to the electrode modification step.
Collapse
Affiliation(s)
- Gustavo Martins
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Jeferson L. Gogola
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Lucas H. Budni
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maurício A. Papi
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Maritza A.T. Bom
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Maria L.T. Budel
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Emanuel M. de Souza
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Marcelo Müller-Santos
- Núcleo de Fixação de Nitrogênio (NFIX), Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), CP: 19046, CEP: 81531-980, Curitiba, PR, Brazil
| | - Breno C.B. Beirão
- Laboratório de Imunologia Comparada, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), CEP: 81531-980, Curitiba, PR, Brazil
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, United Kingdom
| | - Luiz H. Marcolino-Junior
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil
| | - Márcio F. Bergamini
- Laboratório de Sensores Eletroquímicos (LabSensE), Departamento de Química, Universidade Federal do Paraná (UFPR), CP 19032, CEP, 81531-990, Curitiba, PR, Brazil,Corresponding author
| |
Collapse
|
35
|
Ganesh PS, Kim SY. A comparison of conventional and advanced electroanalytical methods to detect SARS-CoV-2 virus: A concise review. CHEMOSPHERE 2022; 307:135645. [PMID: 35817176 PMCID: PMC9270057 DOI: 10.1016/j.chemosphere.2022.135645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.
Collapse
Affiliation(s)
- Pattan-Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education (KoreaTech), Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| |
Collapse
|
36
|
Zhai Q, Wang X, Hu C, Zhu L, Zhang C, Dai L. Label-free electrochemical immunosensor for highly sensitive COVID-19 spike protein detection. SENSORS AND ACTUATORS REPORTS 2022; 4:100124. [PMID: 36276922 PMCID: PMC9576265 DOI: 10.1016/j.snr.2022.100124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The ongoing coronavirus pandemic responsible for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly increased the rate of global death and infections due to variant mutations (such as Delta and Omicron). While specifically developed and approved vaccines can limit the spread of disease in a population and severity of resulting symptoms, none have been demonstrated to effectively prevent infection altogether. Thus, reliable early diagnosis of COVID-19 is critical to identify positive cases to help contain the outbreak. Herein we report a label-free electrochemical immunosensor for rapid diagnosis of COVID-19 by using nitrogen-doped holey graphene (N-HRGO) as a nanocarrier decorated with thionine (TH) molecules as electrochemical indicators. With the spike protein located on the surface of the COVID-19 particles as the model target, the as-prepared electrochemical immunosensor could detect the presence of the COVID-19 spike protein over a wide linear range (1 pg mL-1-10 ng mL-1) with a low detection limit (0.3 pg mL-1). In addition, the developed electrochemical immunosensor exhibited an excellent selectivity (with insignificant current changes towards interfering proteins comparing with COVID-19 spike protein), a good reproducibility and long-term storage stability. Importantly, the electrochemical immunosensor thus developed could successfully and reliably detect the spike protein of COVID-19 in saliva and human serum complex samples. Thus, the as-prepared label-free electrochemical immunosensor can achieve rapid and sensitive detection of the COVID-19 spike protein, as a promising clinical diagnosis tool in monitoring the progression of COVID-19.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xichu Wang
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Lin Zhu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Chenhao Zhang
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
37
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|
38
|
Elkhatib WF, Abdelkareem SS, Khalaf WS, Shahin MI, Elfadil D, Alhazmi A, El-Batal AI, El-Sayyad GS. Narrative review on century of respiratory pandemics from Spanish flu to COVID-19 and impact of nanotechnology on COVID-19 diagnosis and immune system boosting. Virol J 2022; 19:167. [PMID: 36280866 PMCID: PMC9589879 DOI: 10.1186/s12985-022-01902-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
The rise of the highly lethal severe acute respiratory syndrome-2 (SARS-2) as corona virus 2019 (COVID-19) reminded us of the history of other pandemics that happened in the last century (Spanish flu) and stayed in the current century, which include Severe-Acute-Respiratory-Syndrome (SARS), Middle-East-Respiratory-Syndrome (MERS), Corona Virus 2019 (COVID-19). We review in this report the newest findings and data on the origin of pandemic respiratory viral diseases, reservoirs, and transmission modes. We analyzed viral adaption needed for host switch and determinants of pathogenicity, causative factors of pandemic viruses, and symptoms and clinical manifestations. After that, we concluded the host factors associated with pandemics morbidity and mortality (immune responses and immunopathology, ages, and effect of pandemics on pregnancy). Additionally, we focused on the burdens of COVID-19, non-pharmaceutical interventions (quarantine, mass gatherings, facemasks, and hygiene), and medical interventions (antiviral therapies and vaccines). Finally, we investigated the nanotechnology between COVID-19 analysis and immune system boosting (Nanoparticles (NPs), antimicrobial NPs as antivirals and immune cytokines). This review presents insights about using nanomaterials to treat COVID-19, improve the bioavailability of the abused drugs, diminish their toxicity, and improve their performance.
Collapse
Affiliation(s)
- Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Shereen S Abdelkareem
- Department of Alumni, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Entertainment Area, Badr City, Cairo, Egypt
| | - Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11751, Egypt
| | - Mona I Shahin
- Zoology Department, Faculty of Tymaa, Tabuk University, Tymaa, 71491, Kingdom of Saudi Arabia
| | - Dounia Elfadil
- Biology and Chemistry Department, Hassan II University of Casablanca, Casablanca, Morocco
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Ahmed I El-Batal
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Laboratory, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
39
|
Cherusseri J, Savio CM, Khalid M, Chaudhary V, Numan A, Varma SJ, Menon A, Kaushik A. SARS-CoV-2-on-Chip for Long COVID Management. BIOSENSORS 2022; 12:890. [PMID: 36291027 PMCID: PMC9599615 DOI: 10.3390/bios12100890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a "wicked evil" in this century due to its extended progression and huge human mortalities. Although the diagnosis of SARS-CoV-2 viral infection is made simple and practical by employing reverse transcription polymerase chain reaction (RT-PCR) investigation, the process is costly, complex, time-consuming, and requires experts for testing and the constraints of a laboratory. Therefore, these challenges have raised the paradigm of on-site portable biosensors on a single chip, which reduces human resources and enables remote access to minimize the overwhelming burden on the existing global healthcare sector. This article reviews the recent advancements in biosensors for long coronavirus disease (COVID) management using a multitude of devices, such as point-of-care biosensors and lab-on-chip biosensors. Furthermore, it details the shift in the paradigm of SARS-CoV-2-on-chip biosensors from the laboratory to on-site detection with intelligent and economical operation, representing near-future diagnostic technologies for public health emergency management.
Collapse
Affiliation(s)
- Jayesh Cherusseri
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Claire Mary Savio
- Department of Engineering, Amity University Dubai, Dubai International Academic City P.O. Box 345019, United Arab Emirates
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
- SUMAN Laboratory (Sustainable Materials and Advanced Nanotechnology), New Delhi 110072, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group, Department of Physics, Sanatana Dharma College, University of Kerala, Alappuzha 688003, India
| | - Amrutha Menon
- Advanced Bio-Energy Devices Laboratory, Research & Development Division, JC Puli Energy Private Limited, Koduvayur, Palakkad 678501, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
40
|
Olgaç N, Şahin Y, Liv L. Development and characterisation of cysteine-based gold electrodes for the electrochemical biosensing of the SARS-CoV-2 spike antigen. Analyst 2022; 147:4462-4472. [PMID: 36052711 DOI: 10.1039/d2an01225a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes three novel electrochemical biosensing platforms developed to determine the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) spike antigen protein: glutaraldehyde, SARS-CoV-2 spike antibody and bovine serum albumin; N,N-dicyclohexyl carbodiimide/4-(dimethylamino)pyridine functionalised SARS-CoV-2 spike antibody and bovine serum albumin; and 1-ethyl-3-[3-dimethylaminopropyl]-carbodiimide hydrochloride/N-hydroxysuccinimide functionalised SARS-CoV-2 spike antibody and bovine serum albumin modified cysteine-based gold-flower modified glassy carbon electrodes. Two of the produced biosensors having better signals were used to determine the SARS-CoV-2 spike antigen in spiked-saliva and clinical samples containing gargle and mouthwash liquids and characterised using cyclic voltammetry, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The study provides highly significant information in terms of how coupling reagents ought to be used with linkers consisting of both amine and carboxylic acid terminals (i.e. cysteine). The electrochemical cathodic signals based on antibody-antigen protein interactions at approximately -270 mV were evaluated as a response using square wave voltammetry, and they increased in proportion to the SARS-CoV-2 spike antigen. The limit of detection values were 0.93 and 46.3 ag mL-1 in a linear range from 1 ag mL-1 to 100 pg mL-1 and from 100 ag mL-1 to 10 ng mL-1 and the recovery and relative standard deviation values for spiked-saliva samples were 99.50% and 99.40%, and 3.87% and 0.13% for BSA/S-AB/GluAl/Cys/Au/GCE and BSA/S-AB/f-Cys/Au/GCE, respectively. The results showed that both biosensing platforms could be selectively and accurately used to diagnose COVID-19 in RT-PCR-approved clinical samples.
Collapse
Affiliation(s)
- Nursel Olgaç
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey. .,Yildiz Technical University, Faculty of Arts and Science, Department of Chemistry, 34210, Istanbul, Turkey.
| | - Yücel Şahin
- Yildiz Technical University, Faculty of Arts and Science, Department of Chemistry, 34210, Istanbul, Turkey.
| | - Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific and Technological Research Council of Turkey, National Metrology Institute (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
41
|
Soni I, Kumar P, Jayaprakash GK, Pandith A. A Short Review Comparing Carbon-Based Electrochemical Platforms With Other Materials For Biosensing SARS-Cov-2. ChemistrySelect 2022; 7:e202202465. [PMID: 36711230 PMCID: PMC9874754 DOI: 10.1002/slct.202202465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Due to the 2019 SARS-CoV-2 outbreak, low-cost, fast, and user-friendly diagnostic kits for biosensing SARS-CoV-2 in real samples employing multiple working electrodes are in high demand. Choosing SARS-CoV-2 detecting electrodes is difficult because each has advantages and limitations. Carbon-based electrochemical sensing applications have attracted attention from the electrochemical sensing community because carbon and carbon-based materials have been a godsend for testing utilizing an electrochemical platform. Carbon working electrode electrochemical platforms are cost-effective and fast. Covid-sensors use carbon-based materials because they can be easily changed (with inorganic and organic functionalities), have quick response kinetics, and are chemically resistant. Covid-19 sensing materials include graphene and graphite. This review explains how carbon materials have been employed in N and S protein electrochemical detection. Here, we discussed a carbon-based technology for SARS-CoV-2 biosensing. We've compared carbon-based electrochemical sensing to different electrodes.
Collapse
Affiliation(s)
- Isha Soni
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
| | - Pankaj Kumar
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
- Department of ChemistryNitte Meenakshi Institute of Technology, Bangalore, 560064KarnatakaIndia
| | - Anup Pandith
- College of Biomedical EngineeringTaipei Medical UniversityTaipei City11031Taiwan (R.O.C
| |
Collapse
|
42
|
Morajkar RV, Kumar AS, Kunkalekar RK, Vernekar AA. Advances in nanotechnology application in biosafety materials: A crucial response to COVID-19 pandemic. BIOSAFETY AND HEALTH 2022; 4:347-363. [PMID: 35765656 PMCID: PMC9225943 DOI: 10.1016/j.bsheal.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has adversely affected the public domain causing unprecedented cases and high mortality across the globe. This has brought back the concept of biosafety into the spotlight to solve biosafety problems in developing diagnostics and therapeutics to treat COVID-19. The advances in nanotechnology and material science in combination with medicinal chemistry have provided a new perspective to overcome this crisis. Herein, we discuss the efforts of researchers in the field of material science in developing personal protective equipment (PPE), detection devices, vaccines, drug delivery systems, and medical equipment. Such a synergistic approach of disciplines can strengthen the research to develop biosafety products in solving biosafety problems.
Collapse
Affiliation(s)
- Rasmi V Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Akhil S Kumar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| | - Rohan K Kunkalekar
- School of Chemical Sciences, Goa University, Taleigao Plateau 403206, Goa, India
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai 600020, Tamil Nadu, India
| |
Collapse
|
43
|
Role of Nanomaterials in COVID-19 Prevention, Diagnostics, Therapeutics, and Vaccine Development. JOURNAL OF NANOTHERANOSTICS 2022. [DOI: 10.3390/jnt3040011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Facing the deadly pandemic caused by the SARS-CoV-2 virus all over the globe, it is crucial to devote efforts to fighting and preventing this infectious virus. Nanomaterials have gained much attention after the approval of lipid nanoparticle-based COVID-19 vaccines by the United States Food and Drug Administration (USFDA). In light of increasing demands for utilizing nanomaterials in the management of COVID-19, this comprehensive review focuses on the role of nanomaterials in the prevention, diagnostics, therapeutics, and vaccine development of COVID-19. First, we highlight the variety of nanomaterials usage in the prevention of COVID-19. We discuss the advantages of nanomaterials as well as their uses in the production of diagnostic tools and treatment methods. Finally, we review the role of nanomaterials in COVID-19 vaccine development. This review offers direction for creating products based on nanomaterials to combat COVID-19.
Collapse
|
44
|
Macovei DG, Irimes MB, Hosu O, Cristea C, Tertis M. Point-of-care electrochemical testing of biomarkers involved in inflammatory and inflammatory-associated medical conditions. Anal Bioanal Chem 2022; 415:1033-1063. [PMID: 36102973 PMCID: PMC9472196 DOI: 10.1007/s00216-022-04320-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 02/07/2023]
Abstract
Recent years have shown that the diagnosis and monitoring of biomarkers involved in inflammatory-associated medical conditions such as cancer, neurological disorders, viral infections, or daily physical activities offer real benefits in increasing the quality of medical care and patient life quality. In this context, the use of integrated and portable platforms as point-of-care testing devices for biomedical analysis to enable early disease diagnosis and monitoring, which can be successfully used even at the patient's bed, is an emergency nowadays. The development of low-cost, miniaturized, and portable, user-friendly devices that provide an answer in a timely manner, such as electrochemical sensors, is relevant for the elaboration of point-of-care testing devices. This review focuses on the recent progress in bioanalysis of both specific biomarkers and inflammatory-associated biomarkers present in several diseases like neoplasia, severe neurological disorders, viral infections, and usual physical activity and provides an overview of the state of the art over the most recent electrochemical (bio)sensors for the detection of inflammation-related biomarkers. Future perspectives of point-of-care testing to improve healthcare management are also discussed.
Collapse
Affiliation(s)
- Diana-Gabriela Macovei
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Maria-Bianca Irimes
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oana Hosu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Mihaela Tertis
- Department of Analytical Chemistry, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 4 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
45
|
Botelho CN, Falcão SS, Soares REP, Pereira SR, de Menezes AS, Kubota LT, Damos FS, Luz RCS. Evaluation of a photoelectrochemical platform based on strontium titanate, sulfur doped carbon nitride and palladium nanoparticles for detection of SARS-CoV-2 spike glycoprotein S1. BIOSENSORS & BIOELECTRONICS: X 2022; 11:100167. [PMID: 35647519 PMCID: PMC9124369 DOI: 10.1016/j.biosx.2022.100167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 06/02/2023]
Abstract
This work aims to develop a photoelectrochemical (PEC) platform for detection of SARS-CoV-2 spike glyprotein S1. The PEC platform is based on the modification of a fluorine-doped tin oxide (FTO) coated glass slide with strontium titanate (SrTiO3 or ST), sulfur-doped carbon nitride (g-C3N4-S or CNS) and palladium nanoparticles entrapped in aluminum hydroxide matrix (PdAlO(OH) or PdNPs). The PEC platform was denoted as PdNPs/CNS/ST/FTO and it was characterized by SEM, TEM, FTIR, DRX, and EIS. The PEC response of the PdNPs/CNS/ST/FTO platform was optimized by evaluating the effects of the concentration of the donor molecule, the nature of the buffer, pH, antibody concentration, potential applied to the working electrode, and incubation time. The optimized PdNPs/CNS/ST/FTO PEC platform was modified with 5 μg mL-1 of antibody for determination of SARS-CoV-2 spike glycoprotein S1. A decrease in the photocurrent was observed with an increase in the concentration of SARS-CoV-2 from 1 fg mL-1 to 1000 pg mL-1 showing that the platform is a promising alternative for the detection of S1 protein from SARS-CoV-2. The designed PEC platform exhibited recovery percentages of 96.20% and 109.65% in artificial saliva samples.
Collapse
Affiliation(s)
- Chirlene N Botelho
- Departamento de Química, Laboratório de Sensores, Dispositivos e Métodos Analíticos, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Suringo S Falcão
- Departamento de Química, Laboratório de Sensores, Dispositivos e Métodos Analíticos, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Rossy-Eric P Soares
- Departamento de Biologia, Laboratório de Genética e Biologia Molecular, Universidade Federal do Maranhão-UFMA, 65080-805, São Luís, MA, Brazil
| | - Silma R Pereira
- Departamento de Biologia, Laboratório de Genética e Biologia Molecular, Universidade Federal do Maranhão-UFMA, 65080-805, São Luís, MA, Brazil
| | - Alan S de Menezes
- Departamento de Física, Central Analítica de Materiais, Universidade Federal do Maranhão, CEP, 65080-805, São Luís, MA, Brazil
| | - Lauro T Kubota
- Instituto de Química, Laboratório de Eletroquímica, Eletroanalítica e Desenvolvimento de Sensores, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
| | - Flavio S Damos
- Departamento de Química, Laboratório de Sensores, Dispositivos e Métodos Analíticos, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| | - Rita C S Luz
- Departamento de Química, Laboratório de Sensores, Dispositivos e Métodos Analíticos, Universidade Federal do Maranhão, 65080-805, São Luís, MA, Brazil
| |
Collapse
|
46
|
Tan Q, Wu S, Liu Z, Wu X, Forsberg E, He S. High sensitivity detection of SARS-CoV-2 by an optofluidic hollow eccentric core fiber. BIOMEDICAL OPTICS EXPRESS 2022; 13:4592-4605. [PMID: 36187268 PMCID: PMC9484443 DOI: 10.1364/boe.465136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
Since the outbreak of coronavirus disease 2019 (COVID-19), efficient real-time monitoring has become one of the challenges faced in SARS-CoV-2 virus detection. A compact all-fiber Mach-Zehnder interferometer optofluidic sensor based on a hollow eccentric core fiber (HECF) for the detection and real-time monitoring of SARS-CoV-2 spike glycoprotein (SARS-CoV-2 S2) is proposed, analyzed and demonstrated. The sensor is comprised of fusion splicing single mode fiber (SMF), hollow core fiber (HCF) and HECF. After the incident light passes through the HCF from the SMF, it uniformly enters the air hole and the suspended micrometer-scale fiber core of the HECF to form a compact all-fiber Mach-Zehnder interferometer (MZI). HECF is side polished to remove part of the cladding that the suspended fiber core can contact the external environment. Subsequently, the mouse anti SARS-CoV-2 S2 antibody is fixed on the surface of the suspended-core for the sake of achieving high sensitivity and specific sensing of SARS-CoV-2 S2. The limit of detection (LOD) of the sensor is 26.8 pM. The proposed sensor has high sensitivity, satisfactory selectivity, and can be fabricated at low cost making it highly suitable for point-of-care testing and high-throughput detection of early stage of COVID-19 infection.
Collapse
Affiliation(s)
- Qin Tan
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Shengnan Wu
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Zhenchao Liu
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Xun Wu
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Erik Forsberg
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
| | - Sailing He
- Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical Instruments, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Shanghai Institute for Advanced Study, Zhejiang University, China
| |
Collapse
|
47
|
Nihal S, Guppy-Coles K, Gholami MD, Punyadeera C, Izake EL. Towards Label-free detection of viral disease agents through their cell surface proteins: Rapid screening SARS-CoV-2 in biological specimens. SLAS DISCOVERY 2022; 27:331-336. [PMID: 35667647 PMCID: PMC9166287 DOI: 10.1016/j.slasd.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.
Collapse
|
48
|
Naikoo GA, Arshad F, Hassan IU, Awan T, Salim H, Pedram MZ, Ahmed W, Patel V, Karakoti AS, Vinu A. Nanomaterials-based sensors for the detection of COVID-19: A review. Bioeng Transl Med 2022; 7:e10305. [PMID: 35599642 PMCID: PMC9110902 DOI: 10.1002/btm2.10305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.
Collapse
Affiliation(s)
- Gowhar A. Naikoo
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Fareeha Arshad
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Israr U. Hassan
- College of Engineering, Dhofar UniversitySalalahSultanate of Oman
| | - Tasbiha Awan
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Hiba Salim
- Department of Mathematics and SciencesCollege of Arts and Applied Sciences, Dhofar UniversitySalalahSultanate of Oman
| | - Mona Z. Pedram
- Faculty of Mechanical Engineering‐Energy DivisionK.N. Toosi University of TechnologyTehranIran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of ScienceUniversity of LincolnLincolnUK
| | - Vaishwik Patel
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajay S. Karakoti
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Ajayan Vinu
- Global Innovative Center for Advanced NanomaterialsCollege of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| |
Collapse
|
49
|
Abdul Ghani MA, Nordin AN, Zulhairee M, Che Mohamad Nor A, Shihabuddin Ahmad Noorden M, Muhamad Atan MKF, Ab Rahim R, Mohd Zain Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. BIOSENSORS 2022; 12:666. [PMID: 36005062 PMCID: PMC9406062 DOI: 10.3390/bios12080666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
With the rise of zoonotic diseases in recent years, there is an urgent need for improved and more accessible screening and diagnostic methods to mitigate future outbreaks. The recent COVID-19 pandemic revealed an over-reliance on RT-PCR, a slow, costly and lab-based method for diagnostics. To better manage the pandemic, a high-throughput, rapid point-of-care device is needed for early detection and isolation of patients. Electrochemical biosensors offer a promising solution, as they can be used to perform on-site tests without the need for centralized labs, producing high-throughput and accurate measurements compared to rapid test kits. In this work, we detail important considerations for the use of electrochemical biosensors for the detection of respiratory viruses. Methods of enhancing signal outputs via amplification of the analyte, biorecognition of elements and modification of the transducer are also explained. The use of portable potentiostats and microfluidics chambers that create a miniature lab are also discussed in detail as an alternative to centralized laboratory settings. The state-of-the-art usage of portable potentiostats for detection of viruses is also elaborated and categorized according to detection technique: amperometry, voltammetry and electrochemical impedance spectroscopy. In terms of integration with microfluidics, RT-LAMP is identified as the preferred method for DNA amplification virus detection. RT-LAMP methods have shorter turnaround times compared to RT-PCR and do not require thermal cycling. Current applications of RT-LAMP for virus detection are also elaborated upon.
Collapse
Affiliation(s)
- Muhammad Afiq Abdul Ghani
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Anis Nurashikin Nordin
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Munirah Zulhairee
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Adibah Che Mohamad Nor
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | | | - Muhammad Khairul Faisal Muhamad Atan
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Zainiharyati Mohd Zain
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
50
|
Thapa S, Singh KRB, Verma R, Singh J, Singh RP. State-of-the-Art Smart and Intelligent Nanobiosensors for SARS-CoV-2 Diagnosis. BIOSENSORS 2022; 12:637. [PMID: 36005033 PMCID: PMC9405813 DOI: 10.3390/bios12080637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 12/16/2022]
Abstract
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2. Smart and intelligent nanomaterial-enabled biosensors (nanobiosensors) have already proven their utility for the diagnosis of several viral infections, as various detection strategies based on nanobiosensor devices are already present, and several other methods are also being investigated by researchers for the determination of SARS-CoV-2 disease; however, considerably more is undetermined and yet to be explored. Hence, this review highlights the utility of various nanobiosensor devices for SARS-CoV-2 determination. Further, it also emphasizes the future outlook of nanobiosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Sushma Thapa
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Kshitij RB Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ranjana Verma
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak 484887, Madhya Pradesh, India
| |
Collapse
|